Skip to main content

Table 5 Exponential and logarithm models to examine the relationship between woody biomass and DBH and basal diameter (diameter at 22.5 cm)

From: Polyculture affects biomass production of component species but not total standing biomass and soil carbon stocks in a temperate forest plantation

Plant species

Tree parameter

Types

 

R 2

F

P

RMSE

B. pendula

DBH

Exponential

Y = 0.6242 e0.0407D

0.9757

321.47

< 0.0001

0.6854

Logarithm

Y = − 22.0148 + 7.2838 ln D

0.7744

27.47

< 0.0001

2.0891

Basal diameter

Exponential

Y = 0.5264 e0.0323d

0.9831

467.47

< 0.0001

0.5706

Logarithm

Y = − 27.6937 + 8.0970 ln d

0.7964

31.30

0.0005

1.9845

A. glutinosa

DBH

Exponential

Y = 0.8275 e0.0337D

0.9744

304.64

< 0.0001

0.8340

Logarithm

Y = − 48.0301 + 13.7332 ln D

0.8775

57.34

< 0.0001

1.8243

Basal diameter

Exponential

Y = 0.5916 e0.0304d

0.9673

273.06

< 0.0001

0.9420

Logarithm

Y = − 63.4545 + 16.4406 ln d

0.8733

55.16

< 0.0001

1.8555

F. sylvatica

DBH

Exponential

Y = 0.4777 e0.0488D

0.9485

147.59

< 0.0001

0.3811

Logarithm

Y = −10.1198 + 3.7605 ln D

0.9457

139.36

< 0.0001

0.3917

Basal diameter

Exponential

Y = 0.1842 e0.0595d

0.9807

407.38

< 0.0001

0.2332

Logarithm

Y = −14.9092 + 4.7496 ln d

0.8823

59.98

< 0.0001

0.5764

  1. General model Y = a ebx (exponential) and Y = y0+ ln x (logarithm), where Y is the woody biomass of plant (kg), x is the tree variables (here, D and d denote DBH and basal diameter in mm, respectively), a and b are regression coefficients
  2. RMSE, root mean square error