Skip to main content

Radial variation of wood density components and ring width in cork oak trees

Variation radiale des composantes de la microdensité du bois et de la largeur de cerne dans le chêne-liège

Abstract

The radial variation of ring width and wood density was studied in cork oaks (Quercus suber) using microdensitometry. The observations were made in young never debarked cork oaks (30–40 years of age) and in mature trees under cork production (37–60 years of age). The cork oak wood is very dense (mean ring density 0.86 g.cm−3, between 0.79 g.cm−3 and 0.97 g.cm−3) with a small intra-ring variability (mean earlywood density 0.80 g.cm−3 and latewood density 0.90 g.cm−3). The density components decreased from pith to bark more rapidly until the 15th ring, and then only slightly. There were no significant differences in the mean density components between never debarked trees and trees under cork production but their outwards decrease was accentuated in the never debarked trees. The annual growth was high, with a ring width mean of 3.9 mm (4.2 mm in the first 30 years) and the latewood represented 57% of the annual growth.

Résumé

La variation radiale de la largeur des cernes et de la densité du bois a été étudiée dans le chêne-liège (Quercus suber) par microdensitométrie. Les observations ont été réalisées dans des arbres jeunes jamais écorcés (âge 30–40 ans) et des arbres en phase de production de liège (37–60 ans). Le bois de chêne-liège est très dense (densité moyenne 0,86 g.cm−3, variant entre 0,79 g.cm−3 et 0,97 g.cm−3) avec une variabilité dans le cerne faible (densité moyenne du bois initial 0,80 g.cm−3 et du bois final 0,97 g.cm−3). Les composantes de la densité diminuent du cœur à la périphérie rapidement jusqu’au 15e cerne, puis plus lentement. Les différences entre valeurs moyennes des composantes de la densité du bois des arbres non écorcés et écorcés ne sont pas statistiquement significatives, quoique la diminution radiale soit plus accentuée dans les arbres non écorcés. La croissance annuelle était élevée avec une largeur moyenne de cerne de 3,9 mm (4,2 mm dans les premiers 30 ans) avec le bois final correspondant à 57 % de la croissance annuelle.

References

  1. Abdel-Gadir A.Y., Krahmer R.L., McKimmy M.D., Intra-ring variations in mature Douglas-fir trees from provenance plantations, Wood Fiber Sci. 25 (1993) 170–181.

    Google Scholar 

  2. Ackermann F., Relationship between forest site and intra-ring wood density components for the pedunculate oak (Quercus robur L.) of southwestern France, Ann. Sci. For. 52 (1995) 635–652.

    Article  Google Scholar 

  3. Aubert M., Relations entre l’hétérogénéité d’épaisseur des placages de cinq essences résineuses (P. sylvestris, P. strobus, Pseudotsuga menziesii, P. pinaster, Picea excelsa) déroulés en conditions préindustrielles et les composantes densitométriques de leur bois, DEA Science du Bois, I.N.P.L., Université de Nancy I, 1984, 67 p.

  4. Barbour R.J., Fayle D.C.F., Chauret G., Cook J., Karsh M.B., Ran S., Breast-height relative density and radial growth in mature jack pine (Pinus banksiand) for 38 years after thinning, Can. J. For. Res. 24 (1994) 2439–2447.

    Article  Google Scholar 

  5. Berges L., Dupouey J.L., Franc A., Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century, Trees 14 (2000) 398–408.

    Article  Google Scholar 

  6. Bonamini G., Un nuovo criterio per il raggruppamento razionale delle specie legnose in base alla massa volumica, Monti e Boschi 47 (1996) 34–38.

    Google Scholar 

  7. Costa A., Pereira H., Oliveira A., A dendroclimatological approach to diameter growth in adult cork oak trees under production, Trees 15 (2001) 438–443.

    Article  Google Scholar 

  8. Costa A., Pereira H., Oliveira A., Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle, Ann. For. Sci. 59 (2002) 429–437.

    Article  Google Scholar 

  9. Cown D.J., Parker M.L., Comparison of annual ring density profiles in hardwoods and softwoods by X-ray densitometry, Can. J. For. Res. 8 (1978) 442–449.

    Article  Google Scholar 

  10. DeBell J.D., Tappeiner J.C. II, Krahmer R.L., Wood density of western hemlock: effect of ring width, Can. J. For. Res. 24 (1994) 638–641.

    Article  Google Scholar 

  11. Degron R., Nepveu G., Prévision de la variabilité intraet interarbre de la densité du bois de chêne rouvre (Quercus petraea Liebl.) par modélisation des largeurs et des densités des bois initial et final en fonction de l’âge cambial, de la largeur de cerne et du niveau dans l’arbre, Ann. Sci. For. 53 (1996) 1019–1030.

    Article  Google Scholar 

  12. Deret-Varcin E., Étude comparative de la qualité du bois de trois types de chênes (rouvres, pédonculés et intermédiaires), en forêt de Morimond, Ann. Sci. For. 40 (1983) 373–398.

    Article  Google Scholar 

  13. Dodd R.S., Power A.B., Population variation in wood structure of white fir, Can. J. For. Res. 24 (1994) 2269–2274

    Article  Google Scholar 

  14. Falcão A.O., Borges J.G., Designing decision support tools for Mediterranean forest ecosystems management: a case study in Portugal, Ann. For. Sci. 62 (2005) 751–760.

    Article  Google Scholar 

  15. Fearnside P.M., Wood density for estimating forest biomass in Brazilian Amazonia, For. Ecol. Manage. 90 (1997) 59–87.

    Article  Google Scholar 

  16. Ferrand J.C., Réflexions sur la densité du bois. 2e Partie: Calcul de la densité et de son hétérogénéité, Holzforschung 36 (1982) 153–157.

    Article  Google Scholar 

  17. Fortes M.A., Rosa M.E., Pereira H., A Cortiça, Editera IST Press, Lisboa, 2004.

    Google Scholar 

  18. Fujisawa Y., Ohta S., Tajima M., Wood characteristics and genetic variations in sugi (Cryptomeria japonica). II. Variation in growth ring components among plus trees clones and test stands, Mokuzai Gakkaishi (J. Japan Wood Res. Soc.), 39 (1993) 875–882.

    Google Scholar 

  19. González-Adrados J.R., Gourlay I., Applications of dendrochronology to Quercus suber L., in: Pereira H. (Ed.), Cork oak and cork, Proceedings of the European Conference on Cork Oak and Cork, Centro de Estudos Florestais, Lisboa, Portugal, 1998, pp. 162–166.

    Google Scholar 

  20. Gourlay I., Pereira H., The effect of bark stripping on wood production in cork oak (Quercus suber L.) and problems of growth ring definition, in: Pereira H. (Ed.), Cork oak and cork, Proceedings of the European Conference on Cork Oak and Cork, Centro de Estudos Florestais, Lisboa, Portugal, 1998, pp. 99–107.

    Google Scholar 

  21. Guilley E., Hervé J.C., Huber F., Nepveu G., Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silvicultures on wood density, Ann. For. Sci. 56 (1999) 449–458.

    Article  Google Scholar 

  22. Hidayat S., Simpson W.T., Use of green moisture content and basic specific gravity to group tropical woods for kiln drying, Forest Products Laboratory, Research Note FPL-RN-0263 (1994) 39 p.

  23. Hodge G.R., Purnell R.C., Genetic parameter estimates for wood density, transition age, and radial growth in slash pine, Can. J. For. Res. 23 (1993) 1881–1891.

    Article  Google Scholar 

  24. Keller R., Xeuxet D., Méthode de la mesure des données microdensitométriques et de leur traitement à l’ordinateur, Communication présentée au Congrès de l’IUFRO, Le Cap, Prétoria, Septembre–Octobre, 1973, 22 p.

  25. Leal S., Sousa V.B., Pereira H., Radial variation of vessel size and distribution in the wood of cork oak (Quercus suber L.). Wood Sci. Technol. (2006), in press.

  26. Lei H., Milota M.R., Gartner B.L., Between- and within-tree variation in the anatomy and specific gravity of wood in Oregon white oak (Quercus garryana Dougl.), IAWA J. 17 (4) (1996) 445–461.

    Google Scholar 

  27. Louzada J.L., Fonseca F., The heritability of wood density components in Pinus pinaster Ait. and the implications for tree breeding, Ann. For. Sci. 59 (2002) 867–873.

    Article  Google Scholar 

  28. Mothe F., Sciama D., Leban J.-M., Nepveu G., Localisation de la transition bois initial-bois final dans un cerne de chêne par analyse microdensitométrique, Ann. For. Sci. 55 (1998) 437–449.

    Article  Google Scholar 

  29. Nunes E., Estudo da influência da precipitação e temperatura no crescimento juvenil de Quercus suber L. através dos anéis anuais de crescimento, Dissertation, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal, 1996.

    Google Scholar 

  30. Park Y.I., Dallaire G., Morin H., A method for multiple intra-ring demarcation of coniferous trees, Ann. For. Sci. 63 (2006) 9–14.

    Article  Google Scholar 

  31. Parolin P., Radial gradients in wood specific gravity in trees of central amazonial floodplains, IAWA J. 23(4) (2002) 449–457.

    Google Scholar 

  32. Pereira H., Tome M., Cork oak, in: Burley J. (Ed.), Encyclopedia of Forest Sciences, Elsevier Ltd., Oxford, UK, 2004, pp. 613–620.

    Chapter  Google Scholar 

  33. Polge H., Etablissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants — Applications dans les domaines technologique et physiologique, Ann. Sci. For. 23, 1966.

  34. Polge H., Fifteen years of wood radiation densitometry, Wood Sci. Technol. 12 (1978) 187–196.

    Article  Google Scholar 

  35. Polge, H., Study of wood density variations by densitometric analysis of X-ray negatives of samples taken with a Pressler auger, IUFRO, Section 41 (1965) 19 p.

  36. Rozenberg Ph., Franc A., Cahalan C., Incorporating wood density in breeding programs for softwoods in Europe: a strategy and associated methods, Silvae Genet. 50 (2001) 1–7.

    Google Scholar 

  37. Sanchez-Gonzalez M., Tomé M., Montero G., Modelling height and diameter growth of dominant cork oak trees in Spain, Ann. For. Sci. 62 (2005) 633–643.

    Article  Google Scholar 

  38. Silva M.E., Louzada, J.L., Utilização da microdensitometria por raios-x na avaliação qualitativa da madeira de choupo (Populus × euramericana. CV I.214), I Simposio del Chopo, Zamora, Espanha (2001) 469–478.

  39. Sokal R.R., Rohlf F.J., Biometry — The principles and practice of statistics in biological research, 2nd ed., W.H. Freeman and Company, New York, 1981.

    Google Scholar 

  40. Tomé M., Coelho M.B., Lopes F., Pereira H., Modelo de produção para o montado de sobro em Portugal, in: Pereira H. (Ed.), Cork oak and cork, Proceedings of the European Conference on Cork Oak and Cork, Centro de Estudos Florestais, Lisboa, Portugal, 1998, pp. 22–46.

    Google Scholar 

  41. Vasquez J., Pereira H., Mixed models to estimate tree oven-dried cork weight in Central and Southern Portugal, For. Ecol. Manage. 213 (2005) 117–132.

    Article  Google Scholar 

  42. Williams R.S., Miller R., Gangstad J., Characteristics of ten tropical hardwoods from certified forests in Bolivia. Part I. Weathering characteristics and dimensional change, Wood Fiber Sci. 33 (2001) 618–626.

    CAS  Google Scholar 

  43. Zhang S.Y., Variations and correlations of various ring width and ring density features in European oak: implications in dendroclimatology, Wood Sci. Technol. 31 (1997) 63–72.

    CAS  Google Scholar 

  44. Zhang S.Y., Owoundi R.E., Nepveu G., Mothe F., Dhôte J.F., Modelling wood density in european oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence, Can. J. For. Res. 23 (1993) 2587–2593.

    Article  Google Scholar 

  45. Zhang S.Y., Zhong Y., Effect of growth rate on specific gravity of east-liaoning oak (Quercus liaotungensis) wood, Can. J. For. Res. 21 (1991) 255–260.

    Article  Google Scholar 

  46. Zobel B.J., van Buijtenen J.P., Wood variation — Its causes and control, Springer Series in Wood Science, Ed: Timell T.E., Springer-Verlag, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Pereira.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Knapic, S., Louzada, J.L., Leal, S. et al. Radial variation of wood density components and ring width in cork oak trees. Ann. For. Sci. 64, 211–218 (2007). https://doi.org/10.1051/forest:2006105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2006105