Skip to main content

A comparison of mortality rates between top height trees and average site trees

Étude comparative des taux de mortalité entre les arbres dominants et les arbres indicateurs moyens de la station

Abstract

  • • Although comparisons between methods of selecting trees for site index estimates are well documented in the literature, little is known on mortality rates of different canopy tree cohorts used for that purpose.

  • • This study was initiated to test the hypothesis that the mortality rates of top height trees are lower than those of codominants only or a combination of codominant and dominant trees. To test this hypothesis, we used records from a network of permanent sample plots in Québec and studied the fate of different cohorts of site trees for five different species.

  • • Our results did not show clear evidence of lower mortality rates for top height trees. Instead we found that depending on the species, top height trees have lower (Populus tremuloides, Pinus banksiana), higher (Picea mariana, Abies balsamea) or equal mortality rates (Betula papyrifera) than codominant trees or codominant and dominant trees combined.

  • • These results suggest a tendency for shade intolerant species to maintain lower top height tree mortality rates over time when compared to shade tolerant species. In the latter case, it is also shown that spruce budworm epidemics (Choristoneura fumiferana) did not change the pattern of mortality rates of site trees of A. balsamea.

Résumé

  • • Bien que des études comparatives sur les méthodes servant à déterminer l’indice de qualité de station sont disponibles dans la littérature, on connaît peu de choses sur les taux de mortalité de différentes cohortes d’arbres utilisées à cette fin.

  • • Cette étude a été initiée dans le but de tester l’hypothèse selon laquelle les taux de mortalité de arbres dominants sont plus faibles que ceux des arbres codominants ou de ceux d’une combinaiso d’arbres codominants et dominants. Afin de tester cette hypothèse, nous avons utilisé la base de don nées des placettes-échantillons permanentes du Québec et nous avons suivi la destinée de différente cohortes d’arbres indicateurs de la station pour cinq espèces différentes.

  • • Nos résultats n’ont pas montré de façon tranchée que les arbres dominants ont un taux de mortalit inférieur à celui des autres cohortes à l’étude. Nos résultats démontrent plutôt que selon les espèces, les arbres dominants ont un taux de mortalité inférieur (Populus tremuloides, Pinus banksiana), suérieur (Picea mariana, Abies balsamea) ou égal (Betula papyrifera) au taux de mortalité des arbre codominants ou à une combinaison d’arbres codominants ou dominants.

  • • Ces résultats suggèrent que les taux de mortalité des espèces classées intolérantes à l’ombre ont ten dance à demeurer plus faibles dans le temps lorsqu’on les compare aux taux de mortalité des espèce tolérantes à l’ombre. Pour ces dernières, les résultats démontrent de plus que l’effet des épidémie de la tordeuse des bourgeons de l’épinette (Choristoneura fumiferana) n’ont eu aucun effet sur le patrons de mortalité des différentes cohortes d’arbres indicateurs de la station en ce qui concern A. balsamea.

References

  • Archambault L. and Beaulieu J., 1985. Réduction de croissance en volume occasionnée au sapin baumier, suite à la défoliation par la tordeuse des bourgeons de l’épinette. For. Chron. 61: 10–13.

    Google Scholar 

  • Assmann E., 1970. The principles of forest yield study: studies in the organic production, structure, increment, and yield of forest stands, Pergamon Press, Oxford.

    Google Scholar 

  • Baker F.S., 1949. A revised tolerance table. J. For. 47: 179–181.

    Google Scholar 

  • Batho A. and Garcia O., 2006. De Perthuis and the origins of site index: a historical note. FBMIS 1: 1–10.

    Google Scholar 

  • Belyea R.M., 1952. Death and deterioration of balsam fir weakened by spruce budworm defoliation in Ontario. Part II. An assessment of the role of associated insect species in the death of severely weakened trees. J. For. 50: 729–738.

    Google Scholar 

  • Blais J.R., 1958. Effects of defoliation by spruce budworm (Choristoneura fumiferana Clem.) on radial growth at breast height of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss.). For. Chron. 34: 39–47.

    Google Scholar 

  • Brandt J.P., Cerezke H.F., Mallett K.I., Volney W.J.A., and Weber J.D., 2003. Factors affecting trembling aspen (Populus tremuloides Michx.) health in the boreal forest of Alberta, Saskatchewan, and Manitoba, Canada. For. Ecol. Manage. 178: 287–300.

    Google Scholar 

  • Cajander A.K., 1926. Theory of forest types. Acta For. Fenn. 29: 1–108.

    Google Scholar 

  • Carmean W.H., 1975. Forest site quality evaluation in the United States. Adv. Agron. 27: 209–269.

    Article  Google Scholar 

  • Curtis R.O. and Marshall D.D., 2005. Permanent-plot procedures for silvicultural and yield research. Gen. Tech. Rep. PNW-GTR-634, Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 86 p.

    Google Scholar 

  • Dahms W.G., 1966. Effect of kind and number of measured tree heights on lodgepole pine site-quality estimates. US Forest Service Research Paper PNW-36.

  • Erdle T.A. and MacLean D.A., 1999. Stand growth model calibration for use in forest pest impact assessment. For. Chron. 75: 141–152.

    Google Scholar 

  • Fellin D.G. and Dewey J.E., 1982. Western Spruce Budworm. Forest Insect and Disease Leaflet No. 53, US Department of Agriculture, Forest Service. http://www.na.fs.fed.us/spfo/pubs/fidls/westbw/fidl-wb w.htm.

  • Feng Z., Stadt K.J., Lieffers V.J., and Huang S., 2006. Linking juvenile growth of white spruce with site index. For. Chron. 82: 819–824.

    Google Scholar 

  • Forest Productivity Council of British Columbia, 1998. Definition and estimation of top height for site index. Forest Productivity Council Policy, http://www.for.gov.bc.ca/hre/fpc/standards/topheight/00.htm.

  • Fortin M., Bédard S., DeBlois J., and Meunier S., 2008. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Ann. For. Sci. 65: 205.

    Google Scholar 

  • Franklin J.F., Shugart H.H., and Harmon M.E., 1987. Tree death as an ecological process: the causes, consequences and variability of tree mortality. BioScience 37: 550–556.

    Article  Google Scholar 

  • Garcia O., 1998. Estimating top height with variable plot sizes. Can. J. For. Res. 28: 1509–1517.

    Article  Google Scholar 

  • Garcia O. and Batho A., 2005. Top height estimation in Lodgepole pine sample plots. West. J. For. Res. 20: 64–68.

    Google Scholar 

  • Haddon B.D., 1988. Forest Inventory terms in Canada. 3rd ed., For. Can., Petawawa Nat. For. Inst., Chalk River, ON.

    Google Scholar 

  • Hägglund B., 1981. Evaluation of forest site productivity. For. Abstr. 42: 515–527.

    Google Scholar 

  • Hogg E.H., Brandt J.P., and Kochtubajda B., 2002. Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can. J. For. Res. 32: 823–832.

    Article  Google Scholar 

  • Hosmer D.W., Hosmer T., Le Cessie S., and Lemeshow S., 1997. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 16: 965–980.

    Article  PubMed  CAS  Google Scholar 

  • Hosmer D. and Lemeshow S., 2000. Applied logistic regression. 2nd ed., Wiley, New York.

    Book  Google Scholar 

  • Jones J., 1969. Review and comparison of site evaluation methods. USDA For. Serv. Res. Pap. RM-51.

  • Ker J.W., 1952. An evaluation of several methods of estimating site index of immature stands. For. Chron. 28: 63–74.

    Google Scholar 

  • Lin J., Harcombe P.A., and Fulton M.R., 2001. Characterizing shade tolerance by the relationship between mortality and growth in tree saplings in a southeastern Texas forest. Can. J. For. Res. 31: 345–349.

    Google Scholar 

  • MacLean D.A., 1984. Effects of spruce budworm outbreaks on the productivity and stability of balsam fir forests. For. Chron. 60: 273–279.

    Google Scholar 

  • MacLean D.A. and Ostaff D.P., 1989. Patterns of balsam fir mortality caused by an uncontrolled spruce budworm outbreak. Can. J. For. Res. 19: 1087–1095.

    Article  Google Scholar 

  • Magnussen S., 1999. Effect of plot size on top height in Douglas-fir. West. J. Appl. For. 14: 17–27.

    Google Scholar 

  • Mailly D., Turbis S., Auger I., and Pothier D., 2004. The influence of site tree selection method on site index determination and yield prediction in black spruce stands in northeastern Québec. For. Chron. 80: 134–140.

    Google Scholar 

  • Ministère des Ressources naturelles du Québec, 2001. Normes d’inventaire forestier: les placettes-échantillons permanentes. Direction des inventaires forestiers, Forêt-Québec, Ministère des Ressources naturelles, 248 p.

  • Nigh G.D. and Love B.A., 1999. How well can we select undamaged site trees for estimating site index? Can. J. For. Res. 29: 1989–1992.

    Article  Google Scholar 

  • Pothier D. and Mailly D., 2006. Stand-level prediction of balsam fir mortality in relation to spruce budworm defoliation. Can. J. For. Res. 36: 1631–1640.

    Article  Google Scholar 

  • Raulier F., Lambert M.C., Pothier D., and Ung C.H., 2003. Impact of dominant tree dynamics on site index curves. For. Ecol. Manage. 184: 65–78.

    Article  Google Scholar 

  • Robitaille A. and Saucier J.-P., 1998. Paysages régionaux du Québec méridional. Les Publications du Québec, Sainte-Foy, 213 p.

    Google Scholar 

  • Rose C.E. Jr., Hall D.B., Shiver B.D., Clutter M.L., and Borders B., 2006. A Multilevel Approach to Individual Tree Survival Prediction. For. Sci. 52: 31–43.

    Google Scholar 

  • Ryan M.G., Phillips N., and Bond B.J., 2006. The hydraulic limitation hypothesis revisited. Plant, Cell Environ. 29: 367–381.

    Article  Google Scholar 

  • Saveland J.M. and Neuenschwander L.F., 1990. A signal detection framework to evaluate models of tree mortality following fire damage. For. Sci. 36: 66–76.

    Google Scholar 

  • Skovsgaard J.P. and Vanclay J.K., 2007. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry Advance Access published November 22, 2007, pp. 1–19, http://forestry.oxfordjournals.org/cgi/reprint/cpm041v2.pdf.

  • Staebler G.R., 1948. Use of dominant tree heights in determining site index for Douglas-fir. PNW Old Series For. Res. Notes 44: 1–3.

    Google Scholar 

  • Sterba H. and Amateis R.L., 1998. Crown efficiency in a loblolly pine (Pinus taeda) spacing experiment. Can. J. For. Res. 28: 1344–1351.

    Article  Google Scholar 

  • Waring R.H., 1987. Characteristics of trees predisposed to die. Bioscience. 37: 569–574.

    Article  Google Scholar 

  • Zeide B. and Zakrzewski W.T., 1993. Selection of site trees: the combined method and its application. Can. J. For. Res. 23: 1019–1025.

    Article  Google Scholar 

  • Zeide B., 1981. Concepts of modelling: interpolation versus extrapolation. In: Applied Modelling and Simulation. Vol. 4, Association mondiale des sciences de l’éducation, Tassin-la-Demi-Lune, France, pp. 175–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mailly.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Mailly, D., Gaudreault, M., Picher, G. et al. A comparison of mortality rates between top height trees and average site trees. Ann. For. Sci. 66, 202 (2009). https://doi.org/10.1051/forest/2008084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2008084

Keywords

Mots-clés