Skip to main content

Potential indicators of soil quality in temperate forest ecosystems: a case study in the Basque Country

Indicateurs potentiels de la qualité des sols dans les écosystèmes forestiers tempérés : une étude de cas dans le Pays Basque

Abstract

  • • Assessment of forest sustainability requires reliable soil quality indicators. The present study evaluated the use of several potential such indicators in forests in the Basque Country under different types of management, involving: (i) species change and (ii) heavily mechanised forest operations.

  • • Five adjacent forest stands were selected for study: (i) two unmanaged forests (Quercus robur, Fagus sylvatica) and one (40-year-old) Pinus radiata plantation, to investigate the effect of species change; and (ii) a chronosequence of mechanised radiata pine plantations (3 and 16 years old), to investigate heavy mechanisation.

  • • Several physical, chemical and biological parameters were analysed in the mineral soil. Species change could not be assessed with chemical parameters, but parameters related to organic matter indicated the disturbance caused by heavy mechanisation. The Least Limiting Water Range was a good indicator of soil physical degradation induced by heavy mechanisation. Biological parameters proved sensitive indicators: (i) the fungal phospholipid fatty acid biomarker 18:2ω6 for species change; and (ii) the ratio of Gram-positive/Gram-negative bacteria for heavy mechanisation. Nevertheless, these parameters are complementary, and monitoring programmes should include physical, chemical and biological parameters.

  • • Further studies are required to assess natural boundaries of variation in soil quality indicators, and their resistance and resilience.

Résumé

  • • L’évaluation de la durabilité des forêts nécessite des indicateurs fiables de la qualité des sols. La présente étude a évalué l’utilisation de plusieurs de ces indicateurs potentiels dans les forêts du Pays Basque sous différents types de gestion, comprenant : (i) le changement des espèces et (ii) les opérations forestières fortement mécanisées.

  • • Cinq peuplements forestiers voisins ont été sélectionnés pour l’étude : (i) deux forêts non gérées (Quercus robur, Fagus sylvatica) et une plantation (âgée de 40 ans) de Pinus radiata, pour examiner l’effet des changements d’espèces, (ii) une chronoséquence de plantations mécanisées de Pinus radiata (âgées de 3 et 16 ans), pour enquêter sur la mécanisation lourde.

  • • Plusieurs caractéristiques physiques, chimiques et biologiques ont été analysées dans le sol minéral. Le changement d’espèce ne peut être évaluée avec des paramètres chimiques, mais les paramètres liés à la matière organique ont indiqué des perturbations causées par la forte mécanisation. Le Least Limiting Water Range est un bon indicateur de la dégradation des sols induite par la forte mécanisation. Paramètres biologiques qui se sont révélés des indicateurs sensibles : (i) le biomarqueur acide gras phospholipide fongique 18:2ω6 pour le changement d’espèces, (ii) le rapport bactérien Gram-positive/Gram-negative pour la mécanisation lourde. Néanmoins, ces paramètres sont complémentaires, et des programmes de suivi devraient inclure des paramètres physiques, chimiques et biologiques.

  • • D’autres études sont nécessaires pour évaluer les limites naturelles de la variation des indicateurs de la qualité des sols, de leur résistance et de leur résilience.

References

  • Bardgett R.D., Hobbs P.J., and Frostegård Å., 1996. Changes in fungal: bacterial biomass ratios following reductions in the intensity of management on an upland grassland. Biol. Fertil. Soils 22: 261–264.

    Article  Google Scholar 

  • Bauhus J., Khanna P.K., Hopmans P., and Weston C., 2002. Is soil carbon a useful indicator of sustainable forest soil management?-a case study from native eucalypt forests of south-eastern Australia. For. Ecol. Manage. 171: 59–74.

    Article  Google Scholar 

  • Benjamin J.G., Nielsen D.C., and Vigil M.F., 2003. Quantifying effects of soil conditions on plant growth and crop production. Geoderma 116: 137–148.

    Article  Google Scholar 

  • Cambardella C.A. and Elliot E.T., 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56: 777–783.

    Article  Google Scholar 

  • Chan K.Y., Oates A., Swan A.D., Hayes R.C., Dear B.S., and Peoples M.B., 2006. Agronomic consequences of tractor wheel compaction on a clay soil. Soil Tillage Res. 89: 13–21.

    Article  Google Scholar 

  • Clarholm M., 1993. Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol. Fertil. Soils 16: 287–292.

    Article  CAS  Google Scholar 

  • Dale V.H., Peacock A.D., Garten Jr. C.T., Sobek E., and Wolfe A.K., 2008. Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests. Ecol. Indic. 8: 818–827.

    Article  Google Scholar 

  • Da Silva A.P. and Kay B.D., 1997. Effect of soil water content on the variation in the least limiting water range. Soil Sci. Soc. Am. J. 58: 1775–1781.

    Article  Google Scholar 

  • Da Silva A.P. and Kay B.D., 2004. Linking process capability analysis and least limiting water range for assessing soil physical quality. Soil Tillage Res. 79: 167–174.

    Article  Google Scholar 

  • Dix N.J. and Webster J., 1995. Fungal Ecology. Chapman & Hall, London.

    Google Scholar 

  • Doran J.W., 2002. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 88: 119–122.

    Article  Google Scholar 

  • Doran J.W. and Parkin T.B., 1994. Defining and assessing soil quality. SSSA Special Publication, Madison, Wisconsin, EEUU 35: 3–21.

    CAS  Google Scholar 

  • Federle T.W., 1986. Microbial distribution in soil-new techniques. Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, Slovenia, 493–498.

    Google Scholar 

  • Frostegard A. and Bååth E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22: 59–65.

    Article  Google Scholar 

  • Gartzia-Bengoetxea N., 2008. Structure and dynamics of soil organic matter in temperate forest ecosystems: from case studies to landscape level. Ph.D. thesis, NEIKER-Tecnalia. Basque Institute for Agricultural Research and Development, Basque Country, 213 p.

    Google Scholar 

  • Gattinger A., Ruser R., Schloter M., and Munch J.C., 2002. Microbial community structure varies in different soil zones in a potato field. J. Plant Nutr. Soil Sci. 165: 421–428.

    Article  CAS  Google Scholar 

  • Godefroid S., Monbaliu D., Massant W., Van der Aa B., De Vos B., Quivy V., and Koedam N., 2007. Effects of soil mechanical treatments combined with bramble and bracken control on the restoration of degraded understory in an ancient beech forest. Ann. For. Sci. 64: 321–331.

    Article  Google Scholar 

  • Grable A.R. and Siemer E.G., 1968. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential elongation of corn roots. Soil Sci. Soc. Am. J. 32: 180–186.

    Article  CAS  Google Scholar 

  • Greacen E.L. and Sands R., 1980. Compaction of forest soils: a review. Aust. J. Soil Res. 18: 163–188.

    Article  Google Scholar 

  • Hackl E., Pfeffer M., Donat C., Bachmann G., and Zechmeister-Boltenstern S., 2005. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37: 661–671.

    Article  CAS  Google Scholar 

  • Haise H.R., Haas H.J., and Jensen L.R., 1955. Soil moisture studies of some great plain soils. II. Field capacity as related to 1/3 atmosphere percentage, and “minimum point” as related to 15- and 26-atmosphere percentage. Soil Sci. Soc. Am. J. 34: 20–25.

    Article  Google Scholar 

  • Hagen-Thorn A., Callesen I., Armolaitis K., and Nihlgård B., 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manage. 195: 373–384.

    Article  Google Scholar 

  • Hassett J.E. and Zak D.R., 2005. Aspen harvest intensity decreases microbial biomass, extracellular enzyme activity, and soil nitrogen cycling. Soil Sci. Soc. Am. J. 69: 227–235.

    Article  CAS  Google Scholar 

  • Lajtha K. and Schlesinger W.H., 1988. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 69: 24–39.

    Article  CAS  Google Scholar 

  • Leão T.P., da Silva A.P., Macedo M.C.M., Imhoff S., and Euclides V.P.B., 2006. Least limiting water range: A potential indicator of changes in near-surface soil physical quality after the conversion of Brazilian Savanna into pasture. Soil Tillage Res. 88: 279–285.

    Article  Google Scholar 

  • Leckie S.E., Prescott C.E., and Grayston S.J., 2004. Forest floor microbial community response to tree species and fertilization of regenerating coniferous forests. Can. J. For. Res. 34: 1426–1435.

    Article  Google Scholar 

  • Margesin R., Labbé D., Schinner F., Greer C., and Whyte L., 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085–3092.

    PubMed  Article  CAS  Google Scholar 

  • Margesin R., Hämmerle M., and Tscherko D., 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers and incubation time. Microb. Ecol. 53: 259–269.

    PubMed  Article  CAS  Google Scholar 

  • Mariani L., Chang S.X., and Kabzems R., 2006. Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration and N availability in a boreal aspen forest in British Columbia. Soil Biol. Biochem. 38: 1734–1744.

    Article  CAS  Google Scholar 

  • Marriott E.E. and Wander M.M., 2006. Total and labile soil organic matter in organic and conventional farming systems. Soil Sci. Soc. Am. J. 70: 950–959.

    Article  CAS  Google Scholar 

  • Martínez de Arano I., 2001. Estado nutritivo y recomendaciones de fertilización para Pinus radiata. Euskadi Forestal 61: 47–51.

    Google Scholar 

  • Marx M.C., Wood M., and Jarvis S.C., 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33: 1633–1640.

    Article  CAS  Google Scholar 

  • McKenzie D.C. and McBratney A.B., 2001. Cotton root growth in a compacted vertisol (grey vertosol) I. Predictionusing strength measurements and ‘limiting water ranges’. Aust. J. Soil Res. 39: 1157–1168.

    Article  Google Scholar 

  • MCPFE, 1993. Second Ministerial Conference on the Protection of Forests in Europe. General Declaration. 16–17 June 1993, Helsinki, Finland, 4 p.

  • Nambiar E.K.S., 1996. Sustained productivity of forests is a continuing challenge to soil science. Soil Sci. Soc. Am. J. 60: 1629–1642.

    Article  CAS  Google Scholar 

  • Olander L.P. and Vitousek P.M., 2000. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49: 175–190.

    Article  CAS  Google Scholar 

  • Olsson P.A., 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29: 303–310.

    Article  CAS  Google Scholar 

  • Ranger J., Bonnaud P., Bouriaud O., Gelhaye D., and Picard J.F., 2008. Effects of clear-cutting of a Douglas-fir (Pseudotsuga menziessii (Mirb.) Franco) plantation on chemical soil fertility. Ann. For. Sci. 65: 303.

    Article  Google Scholar 

  • Richards L.A. and Weaver L.R., 1944. Fifteen atmosphere percentage as related to the permanent wilting point. Soil Sci. 56: 331–339.

    Article  Google Scholar 

  • Salas A.M., Elliott E.T., Westfall D.G., Cole C.V., and Six J., 2003. The role of particulate organic matter in phosphorous cycling. Soil Sci. Soc. Am. J. 67: 181–189.

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez F., Rodríguez-Soalleiro R., Español E., López C.A., and Merino A., 2002. Influence of edaphic factors and tree nutritive status on the productivity of Pinus radiata D. Don plantations in northwestern Spain. For. Ecol. Manage. 171: 181–189.

    Article  Google Scholar 

  • Sands R., Greacen E.L., and Gerard C.J., 1979. Compaction of sandy soils in radiata pine forests. I A penetrometer study. Aust. J. Soil Res. 17: 101–113.

    Article  Google Scholar 

  • Santruckova H., Vrba J., Picek T. and Kopacek J., 2004. Soil biochemical activity and phosphorous transformations and losses from acidified forest soils. Soil Biol. Biochem. 36: 1569–1576.

    Article  CAS  Google Scholar 

  • Shukla M.K., Lal R., and Ebinger M., 2006. Determinig soil quality indicators by factor analysis. Soil Tillage Res. 87: 194–204.

    Article  Google Scholar 

  • Siira-Pietikäinen A., Haimi J., Kanninen A., Pietikäinen J., and Fritze H., 2001. Responses of decomposer community to root-isolation and addition of slash. Soil Biol. Biochem. 33: 1993–2004.

    Article  Google Scholar 

  • Sinsabaugh R.L., Saiya-Cork K., Long T., Osgood M.P., Neher D.A., Zak D.R., and Norby R.J., 2003. Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl. Soil Ecol. 24: 263–271.

    Article  Google Scholar 

  • Smith S.E. and Read D.J., 1997. Mycorhizal Symbiosis. Academic Press, San Diego.

    Google Scholar 

  • Stevens J.P., 2002. Applied Multivariate Statistics for the Social Sciences, 4th ed., Lawrence Erlbaum Associates, Inc., Mahwah, New Jersey.

    Google Scholar 

  • Tabachnick B.G. and Fidell L.S., 2001. Using Multivariate Statistics, 4th ed., Allyn and Bacon, Boston, MA, USA.

    Google Scholar 

  • Tscherko D. and Kandeler E., 1999. Biomonitoring of soils — microbial biomass and enzymatic processes as indicators for environmental change. Bodenkultur 50: 215–226.

    CAS  Google Scholar 

  • Tscherko D., Kandeler E., and Bárdossy A., 2007. Fuzzy classification of soil microbial biomass and enzyme activity in grassland soils. Soil Biol. Biochem. 39: 1799–1808.

    Article  CAS  Google Scholar 

  • Waldrop M.P., MacColl J.G., and Powers R.F., 2003. Effects of forest postharvest management practices on enzyme activities in decomposing litter. Soil Sci. Soc. Am. J. 67: 1250–1256.

    Article  CAS  Google Scholar 

  • Zou C., Sands R., Buchan G., and Hudson I., 2000. Least limiting water range: a potential indicator of physical quality of forest soil. Aust. J. Soil Res. 38: 947–958.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahia Gartzia-Bengoetxea.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Gartzia-Bengoetxea, N., González-Arias, A., Kandeler, E. et al. Potential indicators of soil quality in temperate forest ecosystems: a case study in the Basque Country. Ann. For. Sci. 66, 303 (2009). https://doi.org/10.1051/forest/2009008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009008

Keywords

  • species change
  • logging
  • soil indicator

Mots-clés

  • changement d’espèces
  • débardage
  • indicateurs de sol