Skip to main content

Epicormic sprout development in pruned coast redwood: pruning severity, genotype, and sprouting characteristics

Développement de rejets épicormiques sur des séquoias californiens : intensité de l’élagage, génotype, caractéristiques des rejets

Abstract

  • • Young coast redwood (Sequoia sempervirens (D. Don.) Endl.) trees were pruned to various heights to examine the effect of pruning severity on epicormic sprouting. Seven separate stands were used with as many as six treatments per stand in coastal Humboldt County, California, USA.

  • • Epicormic sprout development was affected by pruning severity but primarily at the most severe pruning treatments that removed all but the branches in the top 15% of tree height. Less severe treatments produced sprouts but the number and size of these sprouts were comparable to unpruned trees.

  • • Natural clonal patterns were also used to explore patterns of sprouting between genotypes. Linear mixed-effects models were developed to predict sprouting frequency as a function of pruning severity while accounting for the nested data structure (i.e., stem sections sampled nested within genotypes within treatments within sites).

  • • Comparing variances attributed to each of these random effects indicated that at any level of pruning severity, differences in epicormic sprouting between genotypes and sites expressed soon after pruning had disappeared after six growing seasons. Epicormic branches were more common two years after pruning than six years indicating many branches were dying. Branches were more common in the middle of the pruned bole, possibly because of competition from basal sprouts and the expanding tree crown.

Résumé

  • • De jeunes séquoias de Californie (Sequoia sempervirens (D. Don.) Endl.) ont été élagués à différentes hauteurs afin d’examiner l’effet de l’intensité de l’élagage sur les rejets épicormiques. Sept peuplements ont été utilisés avec jusqu’à six traitements par peuplement dans la région côtière du Comté de Humboldt en Californie (USA).

  • • Le développement des rejets épicormiques a été affecté par l’intensité de l’élagage, mais surtout par les traitements les plus sévères qui ont presque supprimé toutes les branches au sommet sur 15 % de la hauteur des arbres. Des traitements moins sévères ont produit des rejets, mais le nombre et la dimension de ces rejets étaient comparables à ceux des arbres non élagués.

  • • Des clones naturels ont également été utilisés pour explorer les modèles de rejet entre génotypes. Des modèles linéaires a effets mixtes ont été développés pour prédire la fréquence des rejets en fonction de l’intensité de l’élagage, en prenant en compte la structure imbriquée des données (c’est-à-dire, les sections du tronc échantillonnées, imbriquées avec les génotypes, les traitements et les stations).

  • • La comparaison des variances attribuées à chacun de ces effets aléatoires a indiqué qu’à tout niveau d’intensité d’élagage, les différences de rejets épicormiques entre les génotypes et les stations exprimées peu de temps après la taille avaient disparu au bout de six saisons de croissance.

  • • Les branches épicormiques ont été plus fréquentes deux ans après l’élagage que six ans plus tard indiquant que de nombreuses branches sont en train de mourir. Les branches ont été plus fréquentes dans le milieu de la partie du tronc élaguée, peut-être en raison de la concurrence des rejets de la base et de l’expansion du houppier.

References

  • Auchmoody L.R., 1972. Epicormic branching: seasonal change, influence of fertilization, and frequency of occurrence in uncut stands. USDA For. Serv. Res. Pap. NE-228, 8 p.

  • Begin C. and Filion L., 1999. Black spruce (Picea mariana) architecture. Can. J. Bot. 77: 664–672.

    Google Scholar 

  • Büsgen M. and Münch E., 1929. The structure and life of forest trees, English translation by T. Thomson, Chapman & Hall, Ltd, London, 436 p.

    Google Scholar 

  • Collier R.L. and Turnblom E.C., 2001. Epicormic branching on pruned coastal Douglas fir. West. J. Appl. For. 16: 80–86.

    Google Scholar 

  • Cosens R.D., 1952. Epicormic branching on pruned white fir (Abies concolor). J. For. 50: 939–940.

    Google Scholar 

  • Crawley M.J., 2002. Statistical computing: an introduction to data analysis using S-Plus, John Wiley and Sons, Inc. Chichester, UK, 761p.

    Google Scholar 

  • Deal R.L., Barbour R.J., McClellan M.H., and Parry D.L., 2003. Development of epicormic sprouts in Sitka spruce following thinning and pruning in southeast Alaska. For. 76: 401–412.

    Google Scholar 

  • Del Tredici P., 1998. Lignotubers in Sequoia sempervirens: development and ecological significance. Madroño 45: 255–260.

    Google Scholar 

  • Douhovnikoff V., Cheng A.M., and Dodd R.S., 2004. Incidences size and spatial structure of clones in second-growth stands of coast redwood Sequoia sempervirens (Cupressaceae). Am. J. Bot. 91, 1140–1146.

    PubMed  Article  Google Scholar 

  • Eckstein E., 1974. [Dangers to success in pruning Douglas-fir.] Allgemeine Forstzeitschrift 29: 1032–1034 (in German).

    Google Scholar 

  • Evans J., 1987. The control of epicormic branches. In: Patch D. (Ed.), Advances in practical arboriculture, Forestry Commission Bulletin 65, Her Majesty’s Stationary Office, London, pp. 115–120.

    Google Scholar 

  • Fink S., 1984. The cases of delayed or induced development of axillary buds from persisting detached meristems in conifers. Am. J. Bot. 71: 44–51.

    Article  Google Scholar 

  • Harrington C.A., 1984. Factors influencing sprouting of red alder. Can. J. For. Res. 14, 357–361.

    Article  Google Scholar 

  • Hingston R.A., 1990. Chemical control of epicormic shoots on 4 year old Pinus radiata D. Don. Aust. For. 53: 3–6.

    Google Scholar 

  • Insightful Corp 2005. S-Plus 7 for Windows user’s guide, Insightful Corp. Seattle, WA, 654p.

    Google Scholar 

  • Ishii H. and Ford E.D., 2001. The role of epicormic shoot production in maintaining foliage in old Pseudotsuga menziesii (Douglas-fir) trees. Can. J. Bot. 79: 251–264.

    Google Scholar 

  • Ishii H., Ford E.D., and Dinnie C.E., 2002. The role of epicormic shoot production in maintaining foliage in old Pseudotsuga menziesii (Douglas-fir) trees II. Basal reiteration from older branch axes. Can. J. Bot. 80: 916–926.

    Article  Google Scholar 

  • Kerr G. and Harmer R., 2001. Production of epicormic shoots on oak (Quercus robur): effects of frequency and timing of pruning. For. 74: 467–477.

    Google Scholar 

  • Kozlowski T.T. and Pallardy S.G., 1997. Growth Control in Woody Plants, Academic Press, San Diego, CA, 641p.

    Google Scholar 

  • Lange P.W., Ronde C.D., and Bredenkamp B.V., 1987. The effects of different intensities of pruning on the growth of Pinus radiata in South Africa. South African For. J. 30–36.

  • Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., and Schabenberger O., 2006. SAS for mixed models. 2nd ed., SAS Institute Inc. Cary, NC. 814 p.

    Google Scholar 

  • O’Hara K.L., 2007. Pruning wounds and occlusion: a long-standing conundrum in forestry. J. For. 105: 131–138.

    Google Scholar 

  • O’Hara K.L. and Valappil N.I., 2000. Epicormic sprouting of pruned western larch. Can. J. For. Res. 30: 324–328.

    Article  Google Scholar 

  • O’Hara K.L., York R.A., and Heald R.C., 2008. Effect of pruning severity and timing of treatment on epicormic sprout development in giant sequoia. Forestry 81: 103–110.

    Article  Google Scholar 

  • Stein W.I., 1955. Pruning to different heights in young Douglas-fir. J. For. 53: 352–355.

    Google Scholar 

  • Waring K.M. and O’Hara K.L., 2005. Ten-year growth and epicormic sprouting response of western larch to pruning in western Montana. West. J. Appl. For. 20: 228–232.

    Google Scholar 

  • Zimmermann M.H. and Brown C.L., 1971. Trees: structure and function, Springer-Verlag, New York, 336p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. O’Hara.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

O’Hara, K.L., Berrill, JP. Epicormic sprout development in pruned coast redwood: pruning severity, genotype, and sprouting characteristics. Ann. For. Sci. 66, 409 (2009). https://doi.org/10.1051/forest/2009015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009015

Keywords

  • Sequoia sempervirens
  • artificial pruning
  • epicormic sprouts
  • stand management

Mots-clés

  • Sequoia sempervirens
  • élagage artificiel
  • rejets épicormiques
  • gestion de peuplements