Skip to main content

Effects of atmospheric and climate change at the timberline of the Central European Alps

Effets des changements atmosphériques et des changements climatiques à la limite supérieure de la forêt en Europe dans les Alpes centrales

Abstract

  • • This review considers potential effects of atmospheric change and climate warming within the timberline ecotone of the Central European Alps. After focusing on the impacts of ozone (O3) and rising atmospheric CO2 concentration, effects of climate warming on the carbon and water balance of timberline trees and forests will be outlined towards conclusions about changes in tree growth and treeline dynamics.

  • • Presently, ambient ground-level O3 concentrations do not exert crucial stress on adult conifers at the timberline of the Central European Alps. In response to elevated atmospheric CO2 Larix decidua showed growth increase, whereas no such response was found in Pinus uncinata. Overall climate warming appears as the factor responsible for the observed growth stimulation of timberline trees.

  • • Increased seedling re-establishment in the Central European Alps however, resulted from invasion into potential habitats rather than upward migration due to climate change, although seedlings will only reach tree size upon successful coupling with the atmosphere and thus loosing the beneficial microclimate of low stature vegetation.

  • • In conclusion, future climate extremes are more likely than the gradual temperature increase to control treeline dynamics in the Central European Alps.

Résumé

  • • Cette étude examine les effets potentiels des changements atmosphériques et du réchauffement climatique au sein de l’écotone que constitue la limite supérieure de la forêt dans les Alpes centrales en Europe. Après avoir mis l’accent sur les effets de l’ozone (O3) et de l’augmentation des concentrations atmosphériques du CO2, les effets du réchauffement climatique sur le bilan de carbone et le bilan hydrique des arbres et des forêts à la limite supérieure de la forêt seront présentés en vue de tirer des conclusions sur l’évolution de la croissance des arbres et sur les dynamiques de la limite supérieure de la forêt.

  • • Actuellement, les concentrations en O3 de l’air ambiant au niveau du sol n’exercent pas un stress critique sur les arbres adultes à la limite supérieure de la forêt dans les Alpes centrales en Europe. En réponse à des concentrations élevées en CO2 Larix decidua a montré une augmentation de la croissance, alors qu’une telle réponse n’a pas été trouvée chez Pinus uncinata. Globalement, le réchauffement climatique apparaît être le facteur responsable de la stimulation de la croissance observée chez les arbres à la limite supérieure de la forêt.

  • • Toutefois, l’augmentation de la réinstallation des semis dans les Alpes centrales en Europe est le résultats de l’invasion d’habitats potentiels plutôt qu’une migration en altitude due aux changements climatiques, bien que les semis atteindront seulement la taille des arbres après un couplage réussit avec l’atmosphère et donc perdant le microclimat favorable d’une végétation basse.

  • • En conclusion, les phénomènes climatiques extrêmes futurs sont plus susceptibles de contrôler les dynamiques de limite supérieure de la forêt, que l’augmentation progressive de la température dans les Alpes centrales en Europe.

References

  • Alvarez-Uria P. and Körner Ch., 2007. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct. Ecol. 221: 211–218.

    Article  Google Scholar 

  • Anfodillo T., Rento S., Carraro V., Furlanetto L., Urbinati C., and Carrer M., 1998. Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst. and Pinus cembra L. Ann. For. Sci. 55: 159–172.

    Article  Google Scholar 

  • Aulitzky H., 1963. Grundlagen und Anwendung des vorläufigen Wind-Schnee-Ökogramms. Mitt. Forstl. Bundesversuchsanstalt Mariabrunn 60: 765–834.

    Google Scholar 

  • Aulitzky H., 1984. The microclimatic conditions in a subalpine forest as basis for the management. Geo Journal 8: 277–281.

    Google Scholar 

  • Baig M.N. and Tranquillini W., 1980. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine treeline. Oecologia 47: 252–256.

    Article  Google Scholar 

  • Benecke U., Schulze E.-D., Matyssek R., and Havranek W.M., 1981. Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50: 54–61.

    Article  Google Scholar 

  • Beniston M., 2004. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31: 2022–2026.

    Article  Google Scholar 

  • Beniston M., Diaz H.F., and Bradley R.S., 1997. Climate change at high elevation sites: an overview. Climate Change 36: 233–251.

    Article  Google Scholar 

  • Beniston M., Keller F., Koffi B., and Goyette S., 2003. Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor. Appl. Climatol. 76: 125–140.

    Article  Google Scholar 

  • Bergh J. and Linder S., 1999. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob. Change Biol. 5: 245–253.

    Article  Google Scholar 

  • Bianco J. and Dalstein W., 1999. Abscisic acid in needles of Pinus cembra in relation to ozone exposure. Tree Physiol. 19: 787–791.

    PubMed  CAS  Google Scholar 

  • Breda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644.

    Article  Google Scholar 

  • Brunetti M., Maugeri M., Nanni T., Auer I., Böhm R., and Schöner W., 2006. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. 111, D11107, DOI: 10.1029/2005JD006674.

    Article  Google Scholar 

  • Büntgen U., Frank D.C., Schmidhalter M., Neuwirth B., Seifert M., and Esper J., 2006. Growth/climate response shift in a long subalpine spruce chronology. Trees 20: 99–110.

    Article  Google Scholar 

  • Callaway R.M., 1998. Competition and facilitation on elevation gradients in subalpine forests in the northern Rock Mountains, USA. Oikos 82: 561–573.

    Article  Google Scholar 

  • Carrer M. and Urbinati C., 2004. Age-dependent tree-ring growth response to climate in Larix decidua and Pinus cembra. Ecology 85: 730–740.

    Article  Google Scholar 

  • Carrer M. and Urbinati C., 2006. Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol. 170: 861–872.

    PubMed  Article  Google Scholar 

  • Cernusca A., 1999. Aims and tasks of ECOMONT. In: Cernusca A., Tappeiner U., and Bayfield N. (Eds.), Land-use changes in European mountain ecosystems. ECOMONT — Concepts and results. Blackwell, Berlin, pp. 13–35.

  • Christersson L., von Fricks H., and Sihe Y., 1988. Damage to conifer seedlings by summer frost and winter drought. In: Sakai A. and Larcher W. (Eds.), Plant cold hardiness. Alan R Liss, Inc., pp. 203–210.

  • Cornelissen J.H.C., Carnelli A.L., and Callaghan T.V., 1999. Generalities in the growth, allocation and leaf quality responses to elevated CO2 in eight woody species. New Phytol. 141: 401–409.

    Article  Google Scholar 

  • Crawford R.M.M., 2008. Plants at the margin. Ecological limits and climate change. Cambridge University Press, 478 p.

  • Dalstein L., Torti X., LeThiec D., and Dizengremel P., 2002. Physiological study of declining Pinus cembra (L.) trees in southern France. Trees 16: 299–305.

    Article  Google Scholar 

  • Däniker A., 1923. Biologische Studien über Baum- und Waldgrenzen, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 68: 1–102.

    Google Scholar 

  • Diaz H.F. and Bradley R.S., 1997. Temperature variations during the last century at high elevation sites. Climatic Change 36: 253–279.

    Article  Google Scholar 

  • Frank D. and Esper J., 2005. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22: 107–121.

    Article  Google Scholar 

  • Friedel H., 1967. Verlauf der alpinen Waldgrenze in Rahmen anliegender Gebirgsgelände. Mitt. Forstl. Bundesversuchsanstalt Mariabrunn 59: 81–172.

    Google Scholar 

  • Gehring-Fasel J., Gusian A., and Zimmermann N.E., 2007. Tree line shifts in the Swiss Alps: Climate change or land abandonment. J. Veg. Sci. 18: 571–582.

    Article  Google Scholar 

  • Gellrich M., Bauer P., Zimmerman N.E., and Koch B., 2007. Agricultural land abandonment and natural forest re-growth in the Swiss mountains. A spatially explicit economic analysis. Agric. Ecosyst. Environ. 118: 93–108.

    Article  Google Scholar 

  • Goldstein G.H., Brubaker L.B., and Hinckley T.M., 1985. Water relations of white spruce (Picea glauca (Moench) Voss) at tree line in north central Alaska. Can. J. For. Res. 15: 1080–1087.

    Article  Google Scholar 

  • Grace J. and Rayment M., 2000. Respiration in the balance. Nature 404: 819–820.

    PubMed  CAS  Article  Google Scholar 

  • Grace J., Berninger F., and Nagy L., 2002. Impact of climate change on the treeline. Ann. Bot. 90: 537–544.

    PubMed  CAS  Article  Google Scholar 

  • Groisman P.Y., Karl T.R., and Knight R.W., 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263: 198–200.

    PubMed  CAS  Article  Google Scholar 

  • Guggenberger H., 1980. Untersuchungen zum Wasserhaushalt der alpinen Zwergstrauchheide Patscherkofel. Ph.D. thesis, Innsbruck University, 229 p.

  • Gunsch J., 1972. Vergleichende ökologische Untersuchungen von Kleinstandorten im Bereich der subalpinen Zirben-Waldgrenze. Ph.D. thesis, Innsbruck University, 114 p.

  • Hadley J.L. and Smith W.K., 1989. Wind erosion of leaf surface wax in timberline conifers. Arct. Alp. Res. 21: 392–398.

    Article  Google Scholar 

  • Hadley J.L. and Smith W.K., 1990. Influence of leaf surface wax and leaf area to water content ratio on cuticular transpiration in western conifers, USA Can. J. For. Res. 20: 1306–1311.

    Article  Google Scholar 

  • Handa T., Körner Ch., and Hättenschwiler S., 2005. A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86: 1288–1300.

    Article  Google Scholar 

  • Handa T., Körner Ch., and Hättenschwiler S., 2006. Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Glob. Change Biol. 12: 2417–2430.

    Article  Google Scholar 

  • Hantel M., Ehrendorfer M., and Haslinger A., 2000. Climate sensitivity of snow cover duration in Austria. Int. J. Climatol. 20: 615–640.

    Article  Google Scholar 

  • Haselwandter K., 2007. Mycorrhiza in the alpine timberline ecotone: nutritional implications. In: Wieser G. and Tausz M. (Eds.), Trees at their upper limit. Treelife limitation at the alpine timberline. Plant Ecophysiology, vol. 5, Springer, Dorthrecht, The Netherlands, pp. 57–66.

    Google Scholar 

  • Häsler R., Savi C., and Herzog., 1991. Photiosynthese und stomatäre Leitfähigkeit der Fichte unter dem Einfluß von Witterung und Luftschadstoffen. In: Stark M. (Ed.), Luftschadstoffe und Wald-Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol. 5. Verlag der Fachvereine Zürich, pp. 143–168.

  • Häsler R., Streule A., and Turner H., 1999. Shoot and root growth of young Larix decidua in contrasting environments near the alpine timberline. Phyton 39: 47–52.

    Google Scholar 

  • Hättenschwiler S. and Körner Ch., 1995. Responses to recent climate warming of Pinus sylvestris and Pinus cembra within their montane transition zone in the Swiss Alps. J. Veg. Sci. 6: 357–368.

    Article  Google Scholar 

  • Hättenschwiler S., Miglietta F., Raschi A., and Körner Ch., 1997. Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob. Change Biol. 3: 463–471.

    Article  Google Scholar 

  • Hättenschwiler S., Handa I.T., Egli L., Asshoff R., Ammann W., and Körner Ch., 2002. Atmospheric CO2 enrichment of alpine timberline conifers. New Phytol. 156: 365–375.

    Article  Google Scholar 

  • Havranek W.M., 1972. Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew. Bot. 46: 101–116.

    Google Scholar 

  • Havranek W.M. and Benecke U., 1978. The influence of soil moisture on water potential, transpiration and photosynthesis of conifer seedlings. Plant Soil 49: 91–103.

    CAS  Article  Google Scholar 

  • Havranek W.M. and Tranquillini W., 1995. Physiological processes during winter dormancy and their ecological significance. In: Smith W.K. and Hinckley T.M. (Eds.), Ecophysiology of coniferous forests. Academic Press, San Diego, pp. 95–124.

    Google Scholar 

  • Havranek W.M. and Matyssek R., 2005. The carbon balance of European larch (Larix decidua) at the alpine timberline. Phyton 45: 213–231.

    CAS  Google Scholar 

  • Havranek W.M., Wieser G., and Bodner M., 1989. Ozone fumigation of Norway spruce at timberline. Ann. Sci. Forest. 46 Suppl.: 581s–585s.

    Google Scholar 

  • Havranek W.M., Pfeifhofer H., and Grill D., 1990. Pigmentgehalte und Gaswechsel von Tief- und Hochlagenfichten nach chronischer Ozonbelastung. Forstwiss. Centralbl. 109: 200–209.

    Article  Google Scholar 

  • Hecke K., Tausz M., Gigel T., Havranek W.M., Anfodillo T., and Grill D., 2003. Foliar antioxidants and protective pirments in Larix decidua Mill. from contrasting elevations in the Northern and Southern Tyrolean limestone Alps. Forstwiss. Centralbl. 122. 368–375.

    CAS  Article  Google Scholar 

  • Herman F., Smidt S., Huber S., Englisch M., and Knoflacher M., 2001. Evaluation of pollution-related stress factors for forest ecosystems in central Europe. Environ. Sci. Pollut. R. 8: 231–242.

    CAS  Article  Google Scholar 

  • Hoch G. and Körner Ch., 2003. The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135: 10–21.

    PubMed  Google Scholar 

  • Hoch G., Popp M., and Körner Ch., 2002. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98: 361–374.

    CAS  Article  Google Scholar 

  • Hoch G., Richter A., and Körner Ch., 2003. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26: 1067–1081.

    CAS  Article  Google Scholar 

  • Holtmeier F.-K., 1973. Geoecological aspects of timberlines in Northern and Central Europe. Arct. Alp. Res. 5: A45-A54.

    Google Scholar 

  • Holtmeier F.-K-. 1974. Geoökologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Steiner, Wiesbaden.

    Google Scholar 

  • Holtmeier F.-K., 1986. Die obere Waldgrenze unter dem Einfluß von Kilma und Mensch. Abhandlungen aus dem Landesmuseum für Naturkunde 48: 395–412.

    Google Scholar 

  • Holtmeier F.-K., 2003. Mountain timberlines. Ecology, patchiness, and dynamics. Advances in Global Change Research, vol 14. Kluwer Academic Publishers, Dordrecht, Boston, London, 369 p.

    Google Scholar 

  • Holtmeier F.-K. and Broll G., 2007. Treeline advance — driving processes and adverse factors. Landscape Online 1: 1–33. DOI:10.33097/LO.200701.

    Article  Google Scholar 

  • Hurtin K.R. and Marshall J.D., 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32–40.

    Article  Google Scholar 

  • IPCC, 2007. Climate change 2007. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones P.D., Wigley T.M.L., Folland C.K., Parker D.E., Angelli J.K., Jebedeff S., and Hansen J.E., 1988. Evidence of global warming in the last decade. Nature 332: 791 p.

  • Kaufmann M.R., 1975. Leaf water stress in Engelmann spruce: Influence of the root and shoot environments. Plant Physiol. 58: 841–844.

    Article  Google Scholar 

  • Keeling C.D. and Whorf T.P., 2005. Atmospheric CO2 records from sites in the SIO air sampling network (http://cdiac.ornl.guv/trends/co2/ sio-mli.htm).

  • Keeling C.D., Whorf T.P., Whalen M., and van der Plicht J., 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670.

    CAS  Article  Google Scholar 

  • Klasner F.L., 2002. A half century of change in alpine patterns at Glacier Nationalpark, Montana, USA Arct. Antarctic Alp. Res. 34. 49–56.

    Article  Google Scholar 

  • Körner Ch., 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115: 445–459.

    Article  Google Scholar 

  • Körner Ch., 2003. Carbon limitation in trees. J. Ecol. 94: 4–17.

    Article  Google Scholar 

  • Körner Ch., 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol. 172: 393–411.

    PubMed  Article  CAS  Google Scholar 

  • Körner Ch., 2007. Climatic treelines: conventions, global patterns, causes. Erdkunde 61: 316–324.

    Article  Google Scholar 

  • Körner Ch., and Hoch G., 2006. A test of treeline theory on a montane permafrost island. Arct. Antarctic Alp. Res. 38: 113–119.

    Article  Google Scholar 

  • Körner Ch., Asshoff R., Bignucolo O., Hättenschwiler S., Keel S.G., Pelaez-Riedl S., Pepin S., Siegwolf R.T.W., and Zotz G., 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309: 1360–1362.

    PubMed  Article  CAS  Google Scholar 

  • Kronfuss H., 1970. Räumliche Korrelation zwischen der Windstärke in Bodennähe und der Schneedeckenandauer. Centralbl. Gesamt. Forstwes. 87: 99–116.

    Google Scholar 

  • Kronfuss H. and Havranek W.M. 1999. Effects of elevation and wind on the growth of Pinus cembra L. in a subalpine afforestation. Phyton 39: 99–106.

    Google Scholar 

  • Kullman L., 2002. Rapid recent range-margin rise of trees and shrub species in the Swedish Scandes. J. Ecol. 90. 68–77.

    Article  Google Scholar 

  • Larcher W., 1957. Frosttrocknis an der Waldgrenze und in der alpinen Zwergstrauchheide. Veröff. Museum Ferdinandeum, Innsbruck 37: 49–81.

    Google Scholar 

  • Larcher W., 1963. Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Ber. Naturwiss. Med. Ver. Innsbruck 53: 125–137.

    Google Scholar 

  • Larcher W., 1985. Winter stress in high mountains. In: Turner H., Tranquillini W. (Eds.), Establishment and Tending of Subalpine Forests: Research and Management. Ber. Eidgen. Ans. Forstl. Versuchsw. 270, pp. 11–20.

  • Larcher W., 1994. Ökophysiologie der Pflanzen: Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt, 5th ed. Ulmer, Stuttgart, 394 p.

  • Larcher W., 2001. Ökophysiologie der Pflanzen. Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt. 6th ed. Ulmer-Verlag Stuttgart, 408 p.

  • Leidlmair A., 1983. Landeskunde Österreich. Landesnatur, Kulturlandschaft, Bevölkerung, Wirtschaft, Die Bundesländer. Paul List Verlag, München, 243 p.

    Google Scholar 

  • Luzian R. and Pindur P., 2007. Prähistorische Lawinen. Nachweis und Analyse holozäner Lawinenereignisse in den Zillertaler Alpen, Österreich. Mitteilungen der Kommission für Quartärforschung der Österreichische Akademie der Wissenschaft Band 16; BFW Berichte Band 141, 247 p.

  • Matyssek R., Havranek W.M., Wieser G., and Innes J.L., 1997. Ozone and the forests in Austria and Switzerland. In: Sandemann H., Wellburn A.R., and Heath R.L. (Eds.), Forest decline and ozone. A comparison of controlled chamber and field experiments. Ecological Studies, vol. 127. Springer, Berlin, Heildeberg, pp. 95–134.

    Google Scholar 

  • Matyssek R., Sandermann H., Wieser G., Booker F., Cieslik S., Musselmann R., and Ernst D., 2008a. The challenge of making ozone risk assessment for forest trees more realistic. Environ. Pollut. 156: 567–582.

    PubMed  CAS  Article  Google Scholar 

  • Matyssek R., Wieser G., Patzner K., Blaschke H., and Häberle K.-H., 2008b. Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts. Eur. J. For. Res. (in press).

  • Mayr S., Gruber A., and Bauer H., 2003. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217: 436–441.

    PubMed  CAS  Article  Google Scholar 

  • Mayr S., Cochard H., Ameglio T., and Kikuta B., 2007. Embolysm formation during freezing in the wood of Picea abies. Plant Physiol. 143: 60–67.

    PubMed  CAS  Article  Google Scholar 

  • Menzel A. and Fabian P., 1999. Growing season extend in Europe. Nature 397: 659.

    CAS  Article  Google Scholar 

  • Michealis P., 1934a. Ökologische Studien an der Baumgrenze, IV Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrb. Wiss. Bot. 80: 169–247.

    Google Scholar 

  • Michealis P., 1934b. Ökologische Studien an der Baumgrenze, V. Osmotischer Wert und Wassergehalt während des Winters in den verschiedenen Höhenlagen. Jahrb. Wiss. Bot. 80: 337–362.

    Google Scholar 

  • Mooney H.A. and Winner W.E., 1991. Partitioning response of plants to stress. In: Mooney H.A., Winner W.E., and Pell E.J. (Eds.), Response of Plants to multiple Stresses. Academic Pres, San Diego, CA, pp. 129–141.

    Google Scholar 

  • Moser M., 1967. Die ektotrophe Ernährungsweise an der Waldgrenze. Mitt. Forstl. Bundesversuchsanstalt Wien 65: 357–375.

    Google Scholar 

  • Neuner G., 2007. Frost resistance at the upper timberline. In: Wieser G. and Tausz M. (Eds.), Trees at their upper limit. Treelife limitation at the Alpine timberline. Plant Ecophysiology vol. 5. Springer, Dorthrecht, The Netherlands, pp. 171–180.

    Google Scholar 

  • Neuwinger I., 1970. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt.r Ostalpin-Dinarischen Gesellschaft 11: 135–150.

    Google Scholar 

  • Neuwinger I., 1980. Erwärmung, Wasserrückhalt und Erosionsbereitschaft subalpiner Böden. Mitt. Forstl. Bundesversuchsanstalt Wien 129: 113–144.

    Google Scholar 

  • Neuwinger-Raschendorfer I., 1961. Bodenfeuchtemessungen. Mitt. der Forstl. Bundesversuchs. Mariabrunn 59: 257–264.

    Google Scholar 

  • Nicolussi K., Bortenschlager S., and Körner Ch., 1995. Increase in treering width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees 9: 181–189.

    Article  Google Scholar 

  • Norby R.S., Wullschleger S.D., Gunderson C.A., Johnson D.W., and Ceulemans R., 1999. Tree response to rising CO2 in field experiments: implications for the forest future. Plant Cell Environ. 22: 683–714.

    CAS  Article  Google Scholar 

  • Oberhuber W., 2004. Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol. 24: 291–301.

    PubMed  Google Scholar 

  • Oberhuber W., 2007. Limitation by growth processes. In: Wieser G. and Tausz M. (Eds.), Trees at their upper limit. Treelife limitation at the Alpine timberline. Plant Ecophysiology vol 5. Springer, Dorthrecht, The Netherlands, pp. 131–143.

    Google Scholar 

  • Oberhuber W., Kofler W., Pfeifer K., Seeber A., Gruber A., and Wieser G., 2008. Long-term changes in tree-ring-climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s. Trees 22: 31–40.

    PubMed  Article  Google Scholar 

  • Patzelt G., 1996. Modellstudie Ötztal — Landschaftsgeschichte in Hochgebirgsraum. Mitt. Österr. Geogr. Ges. 138: 53–70.

    Google Scholar 

  • Paulsen J., Weber U.M., and Körner Ch., 2000. Tree growth near treeline: abrupt or gradual reduction with altitude? Arct. Antarctic Alp. Res. 32: 14–20.

    Article  Google Scholar 

  • Pfeifer K., Kofler W., and Oberhuber W., 2005. Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 years. Veg. Hist. Archaeobot. 14: 211–220.

    Article  Google Scholar 

  • Psenner R. and Nickus U., 1986. Snow chemistry of a glacier in the Central Eastern Alps (Hintereisferner, Tyrol, Austria). Z. Gletscherk. Glaziol. 22: 1–18.

    CAS  Google Scholar 

  • Polle A. and Rennenberg H., 1992. Field studies on Norway spruce trees at high altitudes. II. Defence systems against oxidative stress in needles. New Phytol. 121: 635–642.

    CAS  Article  Google Scholar 

  • Polle A., Havranek W.M., and Wieser G., 1995. Quanitfication of ozone iflux and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L., Karst) at high altitude. Plant Cell Environ. 18: 681–688.

    CAS  Article  Google Scholar 

  • Polle A., Mössnang M., von Schönborn A., Sladkovic R., and Rennenberg H., 1992. Field studies on Norway spruce trees at high altitudes. I. Mineral, pigment and soluble protein contents of needles as affected by climate and pollution. New Phytol. 121: 89–99.

    CAS  Article  Google Scholar 

  • Richardson A.D., Berlyn G.P., and Gregorie T.G., 2001. Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamifera (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am. J. Bot. 667–676.

  • Rolland C., Petitcolas V., and Michalet P., 1998. Changes in radial tree growth of Picea abies, Larix decidua, Pinus cembra, and Pinus uncinata near the alpine timberline since 1750. Trees 13: 40–53.

    Google Scholar 

  • Sakai A. and Larcher W., 1987. Frost survival of plants. Responses and adaptations to freezing stress. Ecological Studies, vol 62. Springer, Berlin, Heidelberg, New York, 321 p.

    Google Scholar 

  • Saxe H., Ellsworth D.E., and Heath J., 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol. 139: 396–436.

    Article  Google Scholar 

  • Schär C., Vidale P.L., Lüthi D., Frei C., Häberli C., Mark A., Liniger M.A., and Appenzeller C., 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427: 332–336.

    PubMed  Article  CAS  Google Scholar 

  • Schwarz R., 1983. Simulationsstudien zur Theorie der oberen Waldgrenze. Erdkunde 37: 1–11.

    Article  Google Scholar 

  • Shiyatov S.G., Terentev M.M., and Formin V.V., 2005. Spatiotemporal dynamics of forest-tundra communities in the polar urals. Russ. J. Ecol. 36. 69–75.

    Article  Google Scholar 

  • Slatyer R.O. and Noble I.R., 1992. Dynamics of treelines. In: Hansen A. and DiCastri F. (Eds.), Landscape Boundaries: consequences for biotic Diversity and ecological flows. Ecological Studies, vol. 92. Springer, Berlin, Heidelberg, New York, pp. 346–359.

    Google Scholar 

  • Smidt S., 1993. Die Ozonkonzentration in alpinen Tälern Österreichs. Centralbl. Ges. Forstwes. 110: 205–220.

    Google Scholar 

  • Smith W.K., Germino M.J., Hanckock T.E., and Johnson D.M., 2003. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 23. 1101–1112.

    PubMed  Google Scholar 

  • Sowell J.B., Kouitnik D.L., and Lansing A.J., 1982. Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arct. Alp. Res. 14: 97–103.

    Article  Google Scholar 

  • Stockwell W.R., Kramm G., Schel H.-E., Mohnen V.A., and Seiler W., 1997. Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H., Wellburn A.R., and Heath R.L. (Eds.), Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological Studies, vol. 127. Springer Verlag, Berlin Heidelberg, pp. 1–38.

    Google Scholar 

  • Strömgren M. and Linder S., 2002. Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. Glob. Change Biol. 8: 1195–1204.

    Article  Google Scholar 

  • Szeicz J.M. and MacDonald G.M., 1995. Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. J. Ecol. 83: 873–885.

    Article  Google Scholar 

  • Tausz M., Stabentheiner E., Wonisch A., and Grill D., 1998. Classification of biochemical response patterns for the assessment of environmental stress to Norway spruce. Environ. Sci. Pollut. R 1: 96–100.

    Google Scholar 

  • Theurillat J.-P. and Gusian A., 2001. Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change 50: 77–109.

    CAS  Article  Google Scholar 

  • Tranquillini W., 1959a. Die Stoffproduktion der Zirbe (Pinus cembra) an der Waldgrenze während eines Jahres. I. Standortklima und CO2-Asimilation. Planta 54: 107–129.

    CAS  Article  Google Scholar 

  • Tranquillini W., 1959b. Die Stoffproduktion der Zirbe (Pinus cembra) an der Waldgrenze während eines Jahres. II. Zuwachs und CO2-Bilanz. Planta 54: 130–151.

    CAS  Google Scholar 

  • Tranquillini W., 1962. Beitrag zur Kausalanalyse des Wettbewerbs ökologisch verschiedener Holzarten. Ber. Deut. Bot. Ges. 75: 356–364.

    Google Scholar 

  • Tranquillini W., 1973. Der Wasserhaushalt junger Forstpflanzen nach dem versetzen und seine Beeinflussbarkeit. Centralbl. Ges. Forstwes. 90: 46–52.

    Google Scholar 

  • Tranquillini W., 1976. Water relations at timberline. In: Lange O.L., Kappen L., and Schuklze E.-D. (Eds.), Water relations and plant life. Problems and modern approaches. Ecological Studies, vol 19. Springer Berlin, Heidelberg, New York, pp. 473–491.

    Google Scholar 

  • Tranquillini W., 1979. Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Ecological Studies, vol 31. Springer, Berlin, Heidelberg, New York, 137 p.

    Google Scholar 

  • Tranquillini W., 1982. Frost drought and its ecological significance. In: Lange O.L., Nobel P.S., Osmond C.B., and Ziegler H. (Eds.), Encyclopaedia of Plant Physiology 12B. Physiological Plant Ecology II. Springer, Berlin, Heidelberg, New York, pp. 379–400.

    Google Scholar 

  • Turner H., 1968. Über “Schneeschliff” in den Alpen. Wetter und Leben 20: 192–200.

    Google Scholar 

  • Turner H., 1993. Alpine microclimates: typology and examples. In: Anfodillo T. and Urbinati C. (Eds.), Ecologia Delle Foreste di alti Quota. Corso di cultura in ecologia 30. University Padua, pp. 27–34.

  • Turner H. and Streule A., 1983. Wurzelwachstum und Sprossentwicklung junger Koniferen im Klimastress der alpinen Waldgrenze, mit Berücksichtigung von Mikroklima, Photosynthese und Stoffproduktion. Wurzelökologie und ihre Nutzanwendung. Internationales Symposium Gumpenstein, 1982. Bundesanstalt Gumpenstein, pp. 617–635.

  • Turner H., Rochat P., and Streule A., 1975. Thermische Charakteristik von Hochlagenstandorten im Bereich der oberen Waldgrenze (Stillberg, Dischmatal bei Davos). Mitt. Eidgen. Anst. Forstl. Versuchswesen Birmensdorf 51: 95–119.

    Google Scholar 

  • Volgger E., 1995. Zur Ozonempfindlichkeit der europäischen Lärche (Larix decidua Mill.) an der Waldgrenze. Diploma thesis, Innsbruck University, 112 p.

  • Vollenweider P., Ottiger M., and Günthardt-Goerg M.S., 2003. Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environ. Pollut. 124: 101–118.

    PubMed  CAS  Article  Google Scholar 

  • Walther G.-R., 2003. Plants in a warmer world. Perspect. Plant Ecol. Evol. Syst. 6: 169–185.

    Article  Google Scholar 

  • Walther G.-R., Beißner S., and Pott R., 2005. Climate change and high mountain vegetation shifts. In: Broll G. and Keplin B. (Eds.). Mountain ecosystems. Studies in Treeline Ecology. Springer, Berlin, Heidelberg, pp. 77–95.

    Google Scholar 

  • Wan X., Landhäusser S.M., Zwiazek J.J., and Lieffers J.L. 1999. Root water flow and growth of aspen (Populus tremuloides) at low root temperatures. Tree Physiol. 19: 897–387.

    Google Scholar 

  • Wardle P., 1974. Alpine timberlines. In: Ives J.D. and Barry R. (Eds.), Arctic and Alpine Environments. Methuen Publishing, London, pp. 371–402.

    Google Scholar 

  • Wieser G., 1997. Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol. 17: 473–477.

    PubMed  Google Scholar 

  • Wieser G., 2004. Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps. Tree Physiol. 24. 475–480.

    PubMed  Google Scholar 

  • Wieser G. and Bahn M., 2004. Seasonal and spatial variation in woodytissue respiration in a Pinus cembra tree at the alpine timberline in the Central Austrian Alps. Trees 18: 576–580.

    Article  Google Scholar 

  • Wieser G. and Havranek W.M., 2001. Effects of ozone on conifers in the timberline ecotone. In: Huttunen S., Heikkilä H., Bucher J., Sundberg B., Jarvis P., and Matyssek R. (Eds.), Trends in European forest tree physiology research. Tree Physiology, vol 2. Kluwer Academic Publishers, Dorthrecht, Boston, London, pp. 115–125.

    Google Scholar 

  • Wieser G. and Stöhr D., 2005. Net ecosystem carbon dioxide exchange dynamics in a Pinus cembra forest at the upper timberline in the central Austrian Alps. Phyton 45: 233–242.

    CAS  Google Scholar 

  • Wieser G. and Tausz M., 2007. Trees at their Upper Limit: Treelife limitation at the alpine timberline. Plant Ecophysiology, vol. 5. Springer, 232 p.

  • Wieser G., Gigele T., and Pausch H., 2005. The carbon budget of an adult Pinus cembra tree at the alpine timberline in the Central Austrian Alps. E. J. For. Res. 124: 1–8.

    Google Scholar 

  • Wieser G., Häsler R., Götz B., Koch W., and Havranek W.M., 2000. Role, of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: s synthesis. Environ. Pollut.109: 415–422.

    PubMed  CAS  Article  Google Scholar 

  • Wieser G., Manning W.J., Tausz M., and Bytnerowicz A., 2006. Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: An overview. Environ. Pollut. 139: 53–58.

    PubMed  CAS  Article  Google Scholar 

  • Wieser G., Tausz M., Wonisch A., and Havrabnek W.M., 2001. Free radical scavangers and photosynthetic pigments in Pinus cembra L. needles as affected by ozone exposure. Biol. Plant. 44: 225–232.

    CAS  Article  Google Scholar 

  • Wilmking M., Juday G.P., Barber V.A., and Zald H.S.J., 2004. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob. Change Biol. 10: 1724–1736.

    Article  Google Scholar 

  • Zha T., Kellomaki S., Wang K.Y., and Rouvien I., 2004. Carbon sequestration in for 4 years in a Scots pine forest. Glob. Change Biol. 10: 1492–1503.

    Article  Google Scholar 

  • Zwerger P. and Pindur P., 2007. Waldverbreitung und Waldentwicklung im Oberen Zemmgrund. In: Luzian R. and Pindur P. (Eds.), Prähistorische Lawinen. Nachweis und Analyse holozäner Lawinenereignisse in den Zillertaler Alpen, Österreich. Mitteilungen der Kommission für Quartärforschung der Österreichische Akademie der Wissenschaft Band 16; BFW Berichte Band 141, pp. 69–97.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wieser.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Wieser, G., Matyssek, R., Luzian, R. et al. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 66, 402 (2009). https://doi.org/10.1051/forest/2009023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009023

Keywords

  • Alpine timberline
  • treeline
  • global warming
  • CO2
  • ozone
  • water balance
  • carbon gain

Mots-clés

  • limite supérieure alpine de la forêt
  • limite de croissance des arbres
  • réchauffement global
  • CO2
  • ozone
  • bilan hydrique
  • gain de carbone