Skip to main content

Modelling ozone fluxes to forests for risk assessment: status and prospects

Modélisation des flux d’ozone en forêts pour l’évaluation des risques : état et perspectives

Abstract

  • • Risk assessment of ozone effects on forests is gradually moving from concentration-based exposure metrics to a more complicated approach that requires modelling of ozone fluxes to trees.

  • • This study reviews the status of the DO3SE stomatal flux model employed within the Convention on Long-range Transboundary Air Pollution, describing a range of applications and identifying major research needs, especially in the context of support that could be provided by the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests.

  • • The most urgent development need for DO3SE is the modelling of the soil moisture status and its effect on stomatal conductance. Furthermore, the data related to the physical characteristics and the seasonal dynamics of physiological activity of vegetation continue to pose problems.

  • • There is a clear need for more extensive validation of models and risk estimates using more rigorous statistical procedures and comparisons with flux networks and satellites.

  • • The current large-scale forest monitoring activities provide only limited possibilities for flux modelling, but could be enhanced by introducing a new monitoring strategy outlined here.

Résumé

  • • L’évaluation des risques des effets de l’ozone sur les forêts est progressivement passée de la mesure de l’exposition à des concentrations à une approche plus complexe qui nécessite la modélisation des flux d’ozone chez les arbres.

  • • Cette étude passe en revue l’état du modèle de flux stomatique de DO3SE employé au sein de la Convention de la Pollution Atmosphérique Transfrontière à Longue Distance, en décrivant une série d’applications et en identifiant les principaux besoins en matière de recherche, en particulier dans le cadre de l’appui qui pourrait être fourni par le Programme Coopératif International d’Évaluation et de Surveillance des Effets de la Pollution de l’Air sur les Forêts.

  • • Le besoin de développement le plus urgent pour DO3SE est la modélisation de l’état d’humidité du sol et de ses effets sur la conductance stomatique. En outre, les données relatives aux caractéristiques physiques et à la dynamique saisonnière de l’activité physiologique de la végétation continuent à poser des problèmes.

  • • Il y a un besoin clair de validation plus large des modèles et des estimations du risque en utilisant des méthodes statistiques plus rigoureuses et des comparaisons avec les réseaux de flux et les satellites.

  • • Les activités courantes de surveillance forestière à grande échelle ne fournissent que des possibilités limitées de modélisation des flux, mais pourraient être améliorées par l’introduction d’une nouvelle stratégie de surveillance décrite ici.

References

  • Alonso R., Elvira S., Sanz M.J., Gerosa G., Emberson L.D., Bermejo V., and Gimeno B.S., 2008. Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes. Environ. Pollut. 155: 473–480.

    PubMed  Article  CAS  Google Scholar 

  • Altimir N., Kolari P., Tuovinen J.-P., Vesala T., Bäck J., Suni T., Kulmala M., and Hari P., 2006. Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 3: 209–228.

    Article  CAS  Google Scholar 

  • Amann M. and Lutz M., 2000. The revision of the air quality legislation in the European Union related to ground-level ozone. J. Hazard. Mater. 78: 41–62.

    PubMed  Article  CAS  Google Scholar 

  • Ashmore M.R., 2005. Assessing the future global impacts of ozone vegetation. Plant Cell Environ. 28: 949–964.

    Article  CAS  Google Scholar 

  • Ashmore M.R., Büker P., Emberson L.D., Terry A.C., and Toet S., 2007. Modelling stomatal flux and deposition to grassland communities across Europe. Environ. Pollut. 146: 659–670.

    PubMed  Article  CAS  Google Scholar 

  • Baldocchi D., Falge E., Gu L., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer C., Davis K., Evans R., Fuentes J., Goldstein A., Katul G., Law B., Lee X., Malhi Y., Meyers T., Munger W., Oechel W., Paw U.K.T., Pilegaard K., Schmid H.P., Valentini R., Verma S., Vesala T., Wilson K., and Wofsy S., 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystemscale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82: 2415–2434.

    Article  Google Scholar 

  • Batjes N.H., 2006. ISRIC-WISE derived soil properties on a 5 by 5 arcminutes global grid (version 1.0). Report 2006/02, ISRIC — World Soil Information, Wageningen, 46 p. (URL: http://www.isric.org).

    Google Scholar 

  • Braswell B., Schimel D., Privette J., Moore B., Emery W., Sulzman E., and Hudak A., 1996. Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling. J. Geophys. Res. 101: 23335–23348.

    Article  Google Scholar 

  • Büker P., Emberson L.D., Ashmore M.R., Cambridge H.M., Jacobs C.M.J., Massman W.J., Müller J., Nikolov N., Novak K., Oksanen E., Schaub M., and de la Torre D., 2007. Comparison of different stomatal conductance algorithms for ozone flux modelling. Environ. Pollut. 146: 726–735.

    PubMed  Article  Google Scholar 

  • Cape J.N., Hamilton R., and Heal M.R., 2009. Reactive uptake of ozone at simulated leaf surfaces: Implications for “non-stomatal” ozone flux. Atmos. Environ. 43: 1116–1123.

    Article  CAS  Google Scholar 

  • Chuine I., 2000. A unified model for budburst of trees. J. Theor. Biol. 207: 337–347.

    PubMed  Article  CAS  Google Scholar 

  • Cieslik S., 2004. Ozone uptake by various surface types: a comparison between dose and exposure. Atmos. Environ. 38: 2409–2420.

    Article  CAS  Google Scholar 

  • Elvira S., Alonso R., and Gimeno B.S., 2007. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake. Environ. Pollut. 146: 617–623.

    PubMed  Article  CAS  Google Scholar 

  • Emberson L.D., Simpson D., Tuovinen J.-P., Ashmore M.R., and Cambridge, H.M., 2000a. Towards a model of ozone deposition and stomatal uptake over Europe. EMEP/MSC-W Note 6/2000, Norwegian Meteorological Institute, Oslo, 58 p. (URL: http://www. emep.int).

  • Emberson L.D., Ashmore M.R., Cambridge H.M., Simpson D., and Tuovinen J.-P., 2000b. Modelling stomatal ozone flux across Europe. Environ. Pollut. 109: 403–413.

    PubMed  Article  CAS  Google Scholar 

  • Emberson L.D., Simpson D., Tuovinen J.-P., Ashmore M.R., and Cambridge H.M., 2001. Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut. 130: 577–582.

    Article  Google Scholar 

  • Emberson L.D., Büker P., and Ashmore M.R., 2007a. Assessing the risk caused by ground level ozone to European forest trees: A case study in pine, beech and oak across different climate regions. Environ. Pollut. 147: 454–466.

    PubMed  Article  CAS  Google Scholar 

  • Emberson L., Morrissey T., Bueker P., Gerosa G., Finco A., and Ballarin Denti A., 2007b. Ozone flux: modelling and reliability in relation to different input data. In: Bussotti F. and Ferretti M. (Eds.), OzoneFlux — Measuring and modelling of ozone flux in evergreen Mediterranean stands of the EU Intensive Monitoring of Forest Ecosystems (Level II) — An approach at different intensity levels. Final report — Italy, Corpo Forestale dello Stato, Italia, pp. 97–132.

    Google Scholar 

  • EMEP, 1995. EMEP manual for sampling and chemical analysis. EMEP/CCC Report 1/95, Norwegian Institute for Air Research, Kjeller, 303 p. (URL: http://www.emep.int).

    Google Scholar 

  • EU, 2002. Directive 2002/3/EC of the European Parliament and the Council of 12 February 2002 relating to ozone in ambient air. Official Journal of the European Communities L 67: 14–30.

    Google Scholar 

  • Ferretti M., Calderesi M., and Bussotti F., 2007. Ozone exposure, defoliation of beech (Fagus sylvatica L.) and visible foliar symptoms on native plants in selected plots of South-Western Europe. Environ. Pollut. 145: 644–651.

    PubMed  Article  CAS  Google Scholar 

  • Fischer R., Badea O., Barbosa P., Bastrup-Birk A., Becher G., Bertini R., Calatayud V., Coenen S., de Vries W., Dobbertin M., Ferretti M., Granke O., Hiederer R., Houston-Durrant T., Köhl M., Kraft P., Lorenz M., Meyer P., Nagel H.-D., Pavlenda P., Reinds G.J., Roskams P., Sanz M., Schaub M., Schulte E., Seidling W., Solberg S., and Stofer S., 2007. The Condition of Forests in Europe, 2007 Executive Report. ICP Forests, Federal Research Centre for Forestry and Forest Products (BFH), Hamburg, 34 p. (URL: http://www. icp-forests.org).

    Google Scholar 

  • Fuhrer J., Skärby L., and Ashmore M.R., 1997. Critical levels for ozone effects on vegetation in Europe. Environ. Pollut. 97: 91–106.

    PubMed  Article  CAS  Google Scholar 

  • Garratt J.R., 1992. The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 p.

    Google Scholar 

  • Gerosa G., Ferretti M., Bussotti F., and Rocchini D., 2007. Estimates of ozone AOT40 from passive sampling in forest sites in South-Western Europe. Environ. Pollut. 145: 629–635.

    PubMed  Article  CAS  Google Scholar 

  • Gerosa G., Finco A., Mereu S., Vitale M., Manes F., and Ballarin Denti A., 2008. Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year. Environ. Pollut. 157: 1737–1744.

    PubMed  Article  Google Scholar 

  • Granier A., Reichstein M., Bréda N., Janssens I.A., Falge E., Ciais P., Grünwald T., Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G., Heinesch B., Ilvesniemi H., Keronen P., Knohl A., Köstner B., Lagergren F., Lindroth A., Longdoz B., Loustau D., Mateus J., Montagnani L., Nys C., Moors E., Papale D., Peiffer M., Pilegaard K., Pita G., Pumpanen J., Rambal S., Rebmann C., Rodrigues A., Seufert G., Tenhunen J., Vesala T., and Wang Q., 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003 Agric. For. Meteorol. 143: 123–145.

    Google Scholar 

  • Grennfelt P., Hov Ø., and Derwent D.G., 1994. Second generation abatement strategies for NOx, NH3, SO2 and VOCs. Ambio 23: 425–433.

    Google Scholar 

  • Grulke N.E., Alonso R., Nguyen T., Cascio C., and Dobrowolski W., 2004. Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics. Tree Physiol. 24: 1001–1010.

    PubMed  CAS  Google Scholar 

  • Hatakka J., Aalto T., Aaltonen V., Aurela M., Hakola H., Komppula M., Laurila T., Lihavainen H., Paatero J., Salminen K., and Viisanen Y. (2003). Overview of the atmospheric research activities and results at Pallas GAW station. Boreal Environ. Res. 8: 365–383.

    CAS  Google Scholar 

  • Hayes F., Mills G., Harmens H., and Norris D., 2008. Evidence of widespread ozone damage to vegetation. Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, 60 p. (URL: http://icpvegetation.ceh.ac.uk).

    Google Scholar 

  • Jones H.G., 1992. Plants and microclimate, A quantitative approach to environmental plant physiology, Cambridge University Press, Cambridge, 452 p.

    Google Scholar 

  • Jonson J.E., Simpson D., Fagerli H., and Solberg S., 2006. Can we explain the trends in European ozone levels? Atmos. Chem. Phys. 6: 51–66.

    Article  CAS  Google Scholar 

  • Juang J.-Y., Katul G.G., Siqueira M.B., Stoy P.C., and McCarthy H.R., 2008. Investigating a hierarchy of Eulerian closure models for scalar transfer inside forested canopies. Boundary-Layer Meteorol. 128: 1–32.

    Article  Google Scholar 

  • Karlsson P.E., Pleijel H., Pihl Karlsson G., Medin E.L., and Skärby L., 2000. Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environ. Pollut. 109: 443–451.

    PubMed  Article  CAS  Google Scholar 

  • Karlsson P.E., Braun S., Broadmeadow M., Elvira S., Emberson L., Gimeno B.S., Le Thiec D., Novak K., Oksanen E., Schaub M., Uddling J., and Wilkinson M., 2007. Risk assessments for forest trees: The performance of the ozone flux versus the AOT concepts. Environ. Pollut. 146: 608–616.

    PubMed  Article  CAS  Google Scholar 

  • Karnosky D.F., Skelly J.M., Percy K.E., and Chappelka A.H., 2007. Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ. Pollut. 147: 489–506.

    PubMed  Article  CAS  Google Scholar 

  • Klap J.M., Oude Voshaar J.H., De Vries W., and Erisman J.W., 2000. Effects of environmental stress on forest crown condition in Europe. Part IV: Statistical analysis of relationships. Water Air Soil Pollut. 119: 387–420.

    Article  CAS  Google Scholar 

  • Klingberg J., Danielsson H., Simpson D., and Pleijel H., 2008. Comparison of modelled and measured ozone concentrations and meteorology for a site in south-west Sweden: Implications for ozone uptake calculations. Environ. Pollut. 155: 99–111.

    PubMed  Article  CAS  Google Scholar 

  • Körner C., 1994. Leaf diffusive conductances in the major vegetation types of the globe. In: Schulze E.-D. and Caldwell M.M. (Eds.), Ecophysiology of photosynthesis, Ecological Studies 100, Springer, Berlin, pp. 463–490.

    Google Scholar 

  • Köstner B., Granier A., and Cermák J., 1998. Sap flow measurements in forest stands: methods and uncertainties. Ann. Sci. For. 55: 13–27.

    Article  Google Scholar 

  • Krupa S., Nosal M., Ferdinand J.A., Stevenson R.E., and Skelly J.M., 2003. A multi-variate statistical model integrating passive sampler and meteorology data to predict the frequency distributions of hourly ambient ozone (O3) concentrations. Environ. Pollut. 124: 173–178.

    PubMed  Article  CAS  Google Scholar 

  • Kurpius M.R. and Goldstein A.H., 2003. Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 30: 1371, DOI:10.1029/2002GL016785.

    Article  Google Scholar 

  • Legates D.R. and McCabe G.J., 1999. Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35: 233–241.

    Article  Google Scholar 

  • Loibl W., Winiwarter W., Kopsca A., Zueger J., and Baumann R., 1994. Estimating the spatial distribution of ozone concentrations in complex terrain. Atmos. Environ. 28: 2557–2566.

    Article  CAS  Google Scholar 

  • Lorenz M., Becher G., Mues V., and Ulrich E., 2008. Monitoring forest condition in Europe: concentrations of nitrogen and sulphur in bulk deposition and defoliation of main tree species. Int. J. Environ. Stud. 65: 299–309.

    Article  Google Scholar 

  • Maas R., Amann M., Apsimon H., Hordijk L., and Tuinstra W., 2004. Integrated assessment modelling — the tool. In: Sliggers J. and Kakebeeke W. (Eds.), Clearing the Air, 25 Years of the Convention on Long-range Transboundary Air Pollution, United Nations, New York, pp. 85–96.

    Google Scholar 

  • Massman W.J., 2004. Toward an ozone standard to protect vegetation based on effective dose: a review of deposition resistances and a possible metric. Atmos. Environ. 38: 2323–2337.

    Article  CAS  Google Scholar 

  • Massman W.J., Musselman R.C., and Lefohn A.C., 2000. A conceptual model to develop a standard to protect vegetation. Atmos. Environ. 34: 745–759.

    Article  CAS  Google Scholar 

  • Matyssek R., Günthardt-Goerg M.S., Maurer S., and Keller T., 1995. Nighttime exposure to ozone reduces whole-plant production in Betula pendula. Tree Physiol. 15: 159–165.

    PubMed  CAS  Google Scholar 

  • Matyssek R., Bytnerowicz A., Karlsson P.-E., Paoletti E., Sanz M., Schaub M., and Wieser G., 2007. Promoting the O3 flux concept for European forests. Environ. Pollut. 146: 587–607.

    PubMed  Article  CAS  Google Scholar 

  • Matyssek R., Sandermann H., Wieser G., Booker F., Cieslik S., Musselman R., and Ernst D., 2008. The challenge of making ozone risk assessment for forest trees more mechanistic. Environ. Pollut. 156: 567–582.

    PubMed  Article  CAS  Google Scholar 

  • Meyers T.P. and Baldocchi D.D., 1988. A comparison of models for deriving dry deposition fuxes of O3 and SO2 to a forest canopy. Tellus 40B: 270–284.

    Article  CAS  Google Scholar 

  • Morén A.-S. and Perttu K.L., 1994. Regional temperature and radiation indices and their adjustment to horizontal and inclined forest land. Studia Forestalia Suecica 194, Swedish University of Agricultural Sciences, Uppsala, 19 p.

    Google Scholar 

  • Musselman R.C. and Minnick T.J., 2000. Nocturnal stomatal conductance and ambient air quality standards for ozone. Atmos. Environ. 34: 719–733.

    Article  CAS  Google Scholar 

  • Musselman R.C., Lefohn A.C., Massman W.J., and Heath R.L., 2006. Acritical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos. Environ. 40: 1869–1888.

    Article  CAS  Google Scholar 

  • Nilson T., Anniste J., Lang M., and Praks J., 1999. Determination of needle area indices of coniferous forest canopies in the NOPEX region by ground-based optical measurements and satellite images. Agric. For. Meteorol. 98-99: 449–462.

    Article  Google Scholar 

  • Nunn A.J., Kozovits A.R., Reiter I.M., Heerdt C., Leuchner M., Lütz C., Liu X., Löw M., Winkler J.B., Grams T.E.E., Häberle K.-H., Werner H., Fabian P., Rennenberg H., and Matyssek R., 2005. Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ. Pollut. 137: 494–506.

    PubMed  Article  CAS  Google Scholar 

  • Paoletti E., De Marco A., and Racalbuto S., 2007. Why should we calculate complex indices of ozone exposure? Results from Mediterranean background sites. Environ. Monit. Assess. 128: 19–30.

    PubMed  Article  CAS  Google Scholar 

  • Paoletti E. and Manning W.J., 2007. Towards a biologically significant and usable standard for ozone that will also protect plants. Environ. Pollut. 150: 85–95.

    PubMed  Article  CAS  Google Scholar 

  • Percy K.E. and Ferretti M., 2004. Air pollution and forest health: toward new monitoring concepts. Environ. Pollut. 130: 113–126.

    PubMed  Article  CAS  Google Scholar 

  • Pleijel H., Danielsson H., Emberson L., Ashmore M.R., and Mills G., 2007. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato. Atmos. Environ. 41: 3022–3040.

    Article  CAS  Google Scholar 

  • Reichstein M., Papale D., Valentini R., Aubinet M., Bernhofer C., Knohl A., Laurila T., Lindroth A., Moors E., Pilegaard K., and Seufert G., 2007. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux data. Geophys. Res. Lett. 34: L01402, DOI:10.1029/2006GL027880.

    Article  Google Scholar 

  • Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., and Tarantola S., 2008. Global Sensitivity Analysis: The Primer, John Wiley & Sons, Chichester, 304 p.

    Google Scholar 

  • Sanz M.J., Calatayud V., and Sánchez-Peña G., 2007. Measures of ozone concentrations using passive sampling in forests of South Western Europe. Environ. Pollut. 145: 620–628.

    PubMed  Article  CAS  Google Scholar 

  • Schaub M., Emberson L., Büker P., and Kräuchi N., 2007. Preliminary results of modeled ozone uptake for Fagus sylvatica L. trees at selected EU/UN-ECE intensive monitoring plots. Environ. Pollut. 145: 636–643.

    PubMed  Article  CAS  Google Scholar 

  • Schneider T. and Schneider J., 2004. EMEP — Backbone of the Convention. In: Sliggers J. and Kakebeeke W. (Eds.), Clearing the Air, 25 Years of the Convention on Long-range Transboundary Air Pollution, United Nations, New York, pp. 31–44.

    Google Scholar 

  • Schöpp W., Amann M., Cofala J., Heyes C., and Klimont Z., 1999. Integrated assessment of European air pollution emission control strategies. Environ. Modell. Softw. 14: 1–9.

    Google Scholar 

  • Schulze E.-D., Fuchs M., and Fuchs M.I., 1977. Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. III. The ecological significance of the evergreen habit. Oecologia 30: 239–248.

    Article  Google Scholar 

  • Simpson D., Tuovinen J.-P., Emberson L., and Ashmore M., 2001. Characteristics of an ozone deposition module. Water Air Soil Pollut. Focus 1: 253–262.

    Article  CAS  Google Scholar 

  • Simpson D., Fagerli H., Jonson J.E., Tsyro S., Wind P., and Tuovinen J.-P., 2003. Transboundary acidification, eutrophication and ground level ozone in Europe, Part I. Unified EMEP model description, EMEP Status Report 1/2003. Norwegian Meteorological Institute, Oslo, 74 p. (URL: http://www.emep.int).

    Google Scholar 

  • Simpson D., Tuovinen J.-P., Emberson L., and Ashmore M., 2003b. Characteristics of an ozone deposition module II: Sensitivity analysis. Water Air Soil Pollut. 143: 123–137.

    Article  CAS  Google Scholar 

  • Simpson D., Fagerli H., Hellsten S., Knulst J.C., and Westling O., 2006. Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe. Biogeosciences 3: 337–355.

    Article  CAS  Google Scholar 

  • Simpson D., Ashmore M., Emberson L., and Tuovinen J.-P., 2007. A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study. Environ. Pollut. 146: 715–725.

    Article  CAS  Google Scholar 

  • Simpson D. and Hjellbrekke A., 2008. Photooxidants. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2008, Norwegian Meteorological Institute, Oslo, pp. 43–55.

    Google Scholar 

  • Sofiev M. and Tuovinen J.-P., 2001. Factors determining the robustness of AOT40 and other ozone exposure indices. Atmos. Environ. 35: 3521–3528.

    Article  CAS  Google Scholar 

  • Solberg S., Hov Ø., Søvde A., Isaksen I.S.A., Coddeville P., De Backer H., Forster C., Orsolini Y., and Uhse K., 2008. European surface ozone in the extreme summer 2003. J. Geophys. Res. 113: D07307, DOI:10.1029/2007/JD009098.

    Article  Google Scholar 

  • Sutton M.A., Nemitz E., Erisman J.W., Beier C., Butterbach Bahl K., Cellier P., de Vries W., Cotrufo F., Skiba U., Di Marco C., Jones S., Laville P., Soussana J.F., Loubet B., Twigg M., Famulari D., Whitehead J., Gallagher M.W., Neftel A., Flechard C.R., Herrmann B., Calance P.L., Schjoerring J.K., Daemmgen U., Horvath L., Tang Y.S., Emmett B.A., Tietema A., Peñuelas J., Kesik M., Brueggemann N., Pilegaard K., Vesala T., Campbell C.L., Olesen J.E., Dragosits U., Theobald M.R., Levy P., Mobbs D.C., Milne R., Viovy N., Vuichard N., Smith J.U., Smith P., Bergamaschi P., Fowler D., and Reis S., 2007. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species. Environ. Pollut. 150: 125–139.

    PubMed  Article  CAS  Google Scholar 

  • Tausz M., Grulke N.E., and Wieser G., 2007. Defense and avoidance of ozone under global change. Environ. Pollut. 147: 525–531.

    PubMed  Article  CAS  Google Scholar 

  • Taylor K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106: 7183–7192.

    Article  Google Scholar 

  • Tian Y., Dickinson R., Zhou L., Zeng X., Dai Y., Myneni R., Knyazikhin Y., Zhang X., Friedl M., Yu I., Wu W., and Shaikh M., 2004. Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res. 109: D01103, doi:10.1029/2003JD003777.

    Article  Google Scholar 

  • Tuovinen J.-P., 2000. Assessing vegetation exposure to ozone: properties of the AOT40 index and modifications by deposition modelling. Environ. Pollut. 109: 361–372.

    PubMed  Article  CAS  Google Scholar 

  • Tuovinen J.-P., Simpson D., Mikkelsen T.N., Emberson L.D., Ashmore M.R., Aurela M., Cambridge H.M., Hovmand M.F., Jensen N.O., Laurila T., Pilegaard K., and Ro-Poulsen H., 2001. Comparisons of measured and modelled ozone deposition to forests in Northern Europe. Water Air Soil Pollut. Focus 1: 263–274.

    Article  CAS  Google Scholar 

  • Tuovinen J.-P., Ashmore M., Emberson L., and Simpson D., 2004. Testing and improving the EMEP ozone deposition module. Atmos. Environ. 38: 2373–2385.

    Article  CAS  Google Scholar 

  • Tuovinen J.-P., Simpson D., Emberson L., Ashmore M., and Gerosa G., 2007. Robustness of modelled ozone exposures and doses. Environ. Pollut. 146: 578–586.

    PubMed  Article  CAS  Google Scholar 

  • Tuovinen J.-P. and Simpson D., 2008. An aerodynamic correction for the European ozone risk assessment methodology. Atmos. Environ. 42: 8371–8381.

    Article  CAS  Google Scholar 

  • UNECE, 2000. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Part X: Monitoring of air quality, international co-operative programme on assessment and monitoring of air pollution effects on forests, United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution, Geneva, 20 p. (URL: http://www.icp-forests.org).

    Google Scholar 

  • UNECE, 2004a. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Part VII: Meteorological measurements, international co-operative programme on assessment and monitoring of air pollution effects on forests, United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution, Geneva, 40 p. (URL: http://www.icp-forests.org).

    Google Scholar 

  • UNECE, 2004b. Mapping critical levels for vegetation. Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends (2008 ed.), United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution, Geneva, 254 p. (URL: http://www.icpmapping.org).

    Google Scholar 

  • Verstraete M.M., Gobron N., Aussedat O., Robustelli M., Pinty B., Widlowski J.-L., and Taberner M., 2008. An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products. Adv. Space Res. 41: 1773–1783.

    Article  Google Scholar 

  • Vingarzan R., 2004. A review of surface ozone background levels and trends. Atmos. Environ. 38: 3431–3442.

    Article  CAS  Google Scholar 

  • Wieser G., Tegischer K., Tausz M., Häberle K.-H., Grams T.E.E., and Matyssek R., 2002. Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol. 22: 583–590.

    PubMed  Google Scholar 

  • Wilks D.S., 2006. Statistical Methods in the Atmospheric Sciences, 2nd ed., Academic Press, Amsterdam, 630 p.

    Google Scholar 

  • WMO, 1996. Guide to Meteorological Instruments and Methods of Observation, 6th ed., WMO No. 8, World Meteorological Organization, Geneva. (URL: http://www.wmo.ch).

    Google Scholar 

  • Zhang L., Moran M.D., and Brook J.R., 2001. A comparison of models to estimate in-canopy photosynthetically active radiation and their influence on canopy stomatal resistance. Atmos. Environ. 35: 4463–4470.

    Article  CAS  Google Scholar 

  • Zhang X., Friedl M.A., and Schaaf C.B., 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111: G04017, DOI:10.1029/2006JG000217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha-Pekka Tuovinen.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Tuovinen, JP., Emberson, L. & Simpson, D. Modelling ozone fluxes to forests for risk assessment: status and prospects. Ann. For. Sci. 66, 401 (2009). https://doi.org/10.1051/forest/2009024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009024

Keywords

  • ozone
  • risk assessment
  • stomatal flux
  • modelling
  • forest monitoring

Mots-clés

  • ozone
  • évaluation des risques
  • flux stomatique
  • modélisation
  • surveillance des forêts