Skip to main content
  • Original Article
  • Published:

Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone

Effets du climat sur les variation intra-annuelles de croissance radiale de Pinus cembra (L.) le long d’un écotone à la limite altitudinale de forêt alpine

Abstract

  • • Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.

  • • We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.

  • • Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.

  • • We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.

Résumé

  • • La croissance des arbres est fortement limitée par les conditions climatiques extrêmes de la limite altitudinale de la forêt. Les variations interannuelles de croissance radiale enregistrées par des dendromètres de tige peuvent être reliées au climat. Mais la croissance radiale peut être masquée par des changements de l’état hydrique des arbres.

  • • Nous avons testé l’hypothèse selon laquelle les variations intra-annuelles de croissance radiale des troncs de P. cembra étaient contrôlées par différents facteurs climatiques le long de l’écotone de la limite altitudinale de la forêt dans les Alpes autrichiennes. Les enregistrements obtenus à partir de dendromètres ont été comparés à des dynamiques de développement des cellules cambiales, afin de détecter avec précision la date de départ de la croissance cambiale au printemps.

  • • Les variations diurnes de diamètre du tronc reflétaient des variations de l’état hydrique des arbres le long de l’écotone. Les incréments quotidiens en diamètre extraits de ces signaux étaient corrélés à la température de l’air à la limite forestière, mais ne l’étaient plus à des altitudes supérieures, alors que le débourrement des bourgeons, la reprise d’activité cambiale et l’expansion des premiers trachéides se produisaient pratiquement en même temps le long de l’écotone. Une forte corrélation a été détectée tout au long de l’écotone, entre la croissance radiale et le nombre de trachéides en expansion.

  • • Nous concluons que : (i) la croissance radiale le long de l’écotone de la limite altitudinale de la forêt est fortement couplée aux conditions climatiques dans l’atmosphère, et que : (ii) l’initiation de l’activité cambiale et de la croissance radiale au printemps peut être distinguée de la réhydratation des troncs en mobilisant des analyses histologiques.

References

  • Antonova G.F. and Stasova V.V., 1993. Effects of environmental factors on wood formation in Scots pine stems. Trees 7: 214–219.

    Article  Google Scholar 

  • Antonova G.F. and Stasova V.V., 1997. Effects of environmental factors on wood formation in larch. Trees 11: 462–468.

    Google Scholar 

  • Aulitzky H., 1961. Die Bodentemperaturen in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitt. Forstl. Bundesvers. Wien 59: 155–208.

    Google Scholar 

  • Bäucker E., Bues C., and Vogel M., 1998. Radial growth dynamics of spruce (Picea abies) measured by micro-cores. IAWA J. 3: 301–309.

    Google Scholar 

  • Bouriaud O., Leban J.-M., Bert D., and Deleuze C., 2005. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol. 25: 651–660.

    PubMed  CAS  Google Scholar 

  • Bräker O.U., 1981. Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt. Forstl. Bundesvers. Wien 142: 75–102.

    Google Scholar 

  • Camarero J.J., Guerrero-Campo J., and Gutiérrez E., 1998. Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the central Spanish Pyrenees. Arct. Alp. Res. 30: 1–10.

    Article  Google Scholar 

  • Cannell M.G.R. and Smith R.I., 1986. Climatic warming, spring budburst and frost damage on trees. J. Appl. Ecol. 23: 177–191.

    Article  Google Scholar 

  • Carrer M., Anfodillo T., Urbinati C., and Carraro V., 1998. High-altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italian Alps. In: Beninston M. and Innes J.L. (Eds.), The impacts of climate variability on forests, Springer, Berlin, Heidelberg, New York, pp. 171–189.

    Chapter  Google Scholar 

  • Carrer M., Nola P., Eduards J.L., Motta R., and Urbinati C., 2007. Regional variability of climate-growth relationships in Pinus cembra high elevation forests in the Alps. J. Ecol. 95: 1072–1083.

    Article  Google Scholar 

  • Creber G.T. and Chaloner W.O., 1984. Influence of environmental factors on the wood structure of living and fossil trees. Bot. Rev. 50: 357–448.

    Article  Google Scholar 

  • Daudet F.A., Ameglio T., Cochard H., Archilla O., and Lacointe A., 2005. Experimental analysis of the role of water and carbon in tree stem diameter variations. J. Exp. Bot. 56: 135–144.

    PubMed  CAS  Google Scholar 

  • Day T.A., DeLucia E.H., and Smith W.K., 1989. Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80: 546–552.

    Article  Google Scholar 

  • DeLucia E.H., 1986. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol. 2: 143–154.

    PubMed  CAS  Google Scholar 

  • Deslauriers A. and Morin H., 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19: 402–408.

    Article  Google Scholar 

  • Deslauriers A., Morin H., Urbinati C., and Carrer M., 2003a. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17: 477–484.

    Google Scholar 

  • Deslauriers A., Morin H., and Begin Y., 2003b. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33: 190–200.

    Article  Google Scholar 

  • Deslauriers A., Rossi S., and Anfodillo T., 2007a. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia 25: 113–124.

    Article  Google Scholar 

  • Deslauriers A., Anfodillo T., Rossi S., and Carraro V., 2007b. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol. 27: 1125–1136.

    PubMed  Google Scholar 

  • Deslauriers A., Rossi S., Anfodillo T., and Saracino A., 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol. 28: 863–871.

    PubMed  Google Scholar 

  • Dobbs R.C. and Scott D.R.M., 1971. Distribution of diurnal fluctuations in stem circumference of Douglas-fir. Can. J. For. Res. 1: 80–83.

    Article  Google Scholar 

  • Downes G., Beadle C., and Worledge D., 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14: 102–111.

    Google Scholar 

  • Dünisch O. and Bauch J., 1994. Influence of soil substrate and drought on wood formation of spruce [Picea abies (L.) Karst.] under controlled conditions. Holzforschung 48: 447–457.

    Article  Google Scholar 

  • FAO (1998) World reference base for soil resources. FAO, Rome.

    Google Scholar 

  • Frenzel B. and Maisch I., 1981. Klimatische Analyse der Jahrringbreitenschwankungen an der alpinen Waldgrenze. Mitt. Forstl. Bundesvers. Wien 142: 399–416.

    Google Scholar 

  • Fritts H.C., 1961. An evaluation of three techniques for measuring radial tree growth. Bull. Ecol. Soc. Am. 42: 54–55.

    Google Scholar 

  • Grace J., Allen S.J., and Wilson C., 1989. Climate and the meristem temperatures of plant communities near the tree-line. Oecologia 79: 198–204.

    Article  Google Scholar 

  • Grace J., Berninger F., and Nagy L., 2002. Impacts of climate change on the tree line. Ann. Bot. 90: 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Granier A., 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 42: 193–200.

    Article  Google Scholar 

  • Gričar J., Zupančič M., Čufar K. and Primož O., 2007. Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci. Techn. 41: 463–475.

    Article  Google Scholar 

  • Gruber A., Baumgartner D., Zimmermann J., and Oberhuber W., 2009. Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees, doi: 10.1007/s00468-008-0307-7.

  • Guggenberger H., 1980. Untersuchungen zum Wasserhaushalt der alpinen Zwergstrauchheide Patscherkofel, Ph.D. thesis, University of Innsbruck, 229 p.

  • Havranek W.M., 1972. Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew. Bot. 46: 101–116.

    Google Scholar 

  • Hellmers H., Genthe M.K., and Ronco F., 1970. Temperature affects growth and development of Engelmann spruce. For. Sci. 16: 447–452.

    Google Scholar 

  • Herzog K.M., Häsler R., and Thum R., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10: 94–101.

    Article  Google Scholar 

  • Irvine J. and Grace J., 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202: 455–461.

    Article  CAS  Google Scholar 

  • Kirdyanov A., Hughes M., Vaganov E., Schweingruber F., and Silkin P., 2003. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17: 61–69.

    Article  Google Scholar 

  • Körner C., 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115: 445–459.

    Article  Google Scholar 

  • Körner C., 2003. Alpine plant life, 2nd ed., Springer, Berlin, 344 p.

    Book  Google Scholar 

  • Körner C. and Mayr R., 1981. Stomatal behaviour in alpine plant communities between 600 and 2 600 m above sea level. In: Grace J., Ford E.D., and Jarvis P.G. (Eds.), Plants and their atmospheric environment, Blackwell, Oxford, pp. 205–218.

    Google Scholar 

  • Körner C. and Paulsen J., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31: 713–732.

    Article  Google Scholar 

  • Kozlowski T.T. and Winget C.H., 1964. Diurnal and seasonal variations in radii of tree stems. Ecology 45: 149–155.

    Article  Google Scholar 

  • Kuroda K., 1986. Wound effects on cytodifferentiation in the secondary xylem of woody plants. Wood Res. 72: 67–117.

    Google Scholar 

  • Loris K., 1981. Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt. Forstl. Bundesvers. Wien 142: 417–441.

    Google Scholar 

  • Mäkinen H., Nöjd P., and Saranpää P., 2003. Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol. 23: 959–968.

    PubMed  Google Scholar 

  • Mäkinen H., Seo J.W., Nöjd P., Schmitt U., and Jalkanen R., 2008. Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur. J. For. Res. 127: 235–245.

    Google Scholar 

  • Molz F.J. and Klepper B., 1973. On the mechanism of water-stress-induced stem deformation. Agron. J. 65: 304–306.

    Article  Google Scholar 

  • Neuwinger I., 1970. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt. Ostalpin-Dinar. Ges. Vegetationskde. 11: 135–150.

    Google Scholar 

  • Oberhuber W., 2004. Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol. 24: 291–301.

    PubMed  Google Scholar 

  • Oberhuber W., Kofler W., Pfeifer K., Seeber A., Gruber A., and Wieser G., 2008. Long-term changes in tree-ring — climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 22: 31–40.

    Article  PubMed  Google Scholar 

  • Parlange J.Y., Turner N.C., and Waggoner P.E., 1975. Water uptake, diameter change, and nonlinear diffusion in tree stems. Plant Physiol. 55: 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer K., Kofler W., and Oberhuber W., 2005. Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 y. Veg. Hist. Archaeobot. 14: 211–220.

    Article  Google Scholar 

  • Plomion C., Leprovost G., and Stokes A., 2001. Wood formation in trees. Plant Physiol. 127: 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Rossi S. and Deslauriers A., 2007. Intra-annual time scales in tree rings. Dendrochronologia 25: 75–77.

    Article  Google Scholar 

  • Rossi S., Deslauriers A., and Morin H., 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21: 33–39.

    Article  Google Scholar 

  • Rossi S., Anfodillo T., and Menardi R., 2006a. Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27: 89–97.

    Google Scholar 

  • Rossi S., Deslauriers A., and Anfodillo T., 2006b. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J. 27: 383–394.

    Google Scholar 

  • Rossi S., Deslauriers A., Anfodillo T., Morin H., Saracino A., Motta R., and Borghetti M., 2006c. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170: 301–310.

    Article  PubMed  Google Scholar 

  • Rossi S., Deslauriers A., and Anfodillo T., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152: 1–12.

    Article  PubMed  Google Scholar 

  • Rossi S., Deslauriers A., Gricar J., Seo J.W., Rathgeber C.B.K., Anfodillo T., Morin H., Levanic T., Oven P., and Jalkanen R., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17: 696–707.

    Article  Google Scholar 

  • Schmitt U., Jalkanen R., and Eckstein D., 2004. Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silv. Fenn. 38: 167–178.

    Google Scholar 

  • Scott P.A., Bentley C.V., Fayle D.C.F., and Hansell R.I.C., 1987. Crown forms and shoot elongation of white spruce at the treeline, Churchill, Manitoba, Canada. Arct. Alp. Res. 19: 175–186.

    Article  Google Scholar 

  • Smith W.K., Germino M.J., Hancock T.E., and Johnson D.M., 2003. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 23: 1101–1112.

    PubMed  Google Scholar 

  • Steppe K., De Pauw D.J.W., Lemeur R., and Vanrolleghem P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol. 26: 257–273.

    Article  PubMed  Google Scholar 

  • Tardif J., Flannigan M., and Bergeron Y., 2001. An analysis of the daily radial activity of 7 boreal tree species, North-western Québec. Environ. Monit. Assess. 67: 141–160.

    Article  PubMed  CAS  Google Scholar 

  • Tranquillini W., 1979. Physiological ecology of alpine timberline. Tree existence at high altitudes with special references to the European Alps, Ecol. Studies 31, Springer, Berlin, 137 p.

    Google Scholar 

  • Vaganov E.A., Hughes M.K., and Shashkin A.V., 2006. Growth dynamics of conifer tree rings. Images of past and future environments, Ecol. Studies 183, Springer, Berlin, 354 p.

    Google Scholar 

  • Wolter E.K., 1968. A new method for marking xylem growth. For. Sci. 14: 102–104.

    Google Scholar 

  • Zeide B., 1993. Analysis of growth equations. For. Sci. 39: 594–616.

    Google Scholar 

  • Zweifel R. and Häsler R., 2000. Frost-induced reversible shrinkage of bark of mature, subalpine conifers. Agric. For. Meteorol. 102: 213–222.

    Article  Google Scholar 

  • Zweifel R. and Häsler R., 2001. Dynamics of water storage in mature sub-alpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol. 21: 561–569.

    PubMed  CAS  Google Scholar 

  • Zweifel R., Item H., and Häsler R., 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15: 50–57.

    Article  Google Scholar 

  • Zweifel R., Zimmermann L., Zeugin F., and Newbery D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot. 57: 1445–1459.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Oberhuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, A., Zimmermann, J., Wieser, G. et al. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann. For. Sci. 66, 503 (2009). https://doi.org/10.1051/forest/2009038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009038

Keywords

Mots-clés