Skip to main content
  • Review Article
  • Published:

Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review

Effet de quelques traits des arbres sur la répartition des eaux de pluie en forêts tem-pérées et boréales —synthèse bibliographique

Abstract

  • • In forests, rainfall is partitioned into intercepted water (IW), throughfall (TF) and stemflow (SF). We reviewed the majority of published works comparing water flows among tree species in temperate and boreal forests to test the effect of several tree traits on water flows.

  • • We hypothesized that water flows differed between evergreen and deciduous species, and according to successional status and bark roughness. We also investigated that water flows would be explained by stand variables such as basal area.

  • • Linear mixed models fitted on reviewed data showed that evergreens had a lower TF than deciduous trees (decrease of 13.9% of total precipitation year-round and 8.4% over the growing period). Similar results were found for conifers compared to broadleaves. TF also declined with the successional status from pioneer to late-successional tree species. SF decreased with bark roughness from smoother to rougher bark. Evergreens had water flows that were dependent on age of the stand, especially for TF which increased by 15.6% of total precipitation from young to adult forests.

  • • The large scale of TF differences between tree genera together with specific transpiration amounts and rooting features highlighted in other studies should result in significant differences in soil water content among tree species. This may have consequences on stand fitness and growth, and understory vegetation.

Résumé

  • • En forêt, l’eau de pluie se fractionne en eau interceptée (IW), égouttements (TF) et écoulements le long des troncs (SF). Nous analysons les publications comparant les flux d’eau selon les essences d’arbres, pour les forêts tempérées et boréales, et nous testons l’effet de quelques traits des arbres sur ces flux d’eau.

  • • Nous faisons l’hypothèse que les flux d’eau diffèrent entre les essences à feuilles persistantes et les essences à feuilles caduques, et diffèrent selon le statut successionnel de l’essence et la rugosité de son écorce. Nous testons aussi l’effet de variables du peuplement telles que sa surface terrière.

  • • L’analyse des données (par modèle linéaire à effets mixtes) montre que les essences à feuilles persistantes ont des égouttements (TF) plus faibles que les essences à feuilles caduques (diminution de 13,9 % des précipitations totales en moyenne sur toute l’année et de 8,4 % pour la période estivale). Les résultats sont similaires en comparant les conifères au feuillus. Les égouttements diminuent aussi avec le stade successionnel de l’essence, des pionnières vers les dryades. Les écoulements (SF) diminuent nettement avec la rugosité de l’écorce, des plus lisses vers les plus rugueuses. Les essences à feuilles persistantes ont des flux d’eau qui dépendent de l’âge du peuplement : les égouttements augmentent de 15,6 % des précipitations totales en passant des jeunes forêts aux forêts adultes.

  • • L’amplitude des différences d’égouttements entre essences que nous avons observée, conjointement avec les différences spécifiques de transpiration et de caractéristiques du système racinaire mentionnées dans la littérature, induisent probablement des différences de contenu en eau du sol entre les essences forestières. Cela peut avoir des conséquences sur la santé et la croissance des peuplements, et sur la végétation des strates inférieures.

References

  • Aboal J.R., Morales D., Hernández M., and Jiménez M.S., 1999. The measurement and modelling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands. J. Hydrol. 221: 161–175.

    Article  Google Scholar 

  • Abrahamsen G., Bjor K., Horntvedt R., and Tveite B., 1976. Effects of acid precipitation on coniferous forest. In: Braekke F.H. (Ed.), Impact of acid precipitation on forest and freshwater ecosystems in Norway: summary report on the research results from the phase 1 (1972–1975) of the SNSF project. SNSF project, Oslo, pp. 36–63.

  • Anderson D.R., Burnham K.P., and Thompson W.L., 2000. Null hypothesis testing: Problems, prevalence, and an alternative. J. Wildl. Manage. 64: 912–923.

    Article  Google Scholar 

  • Aussenac G., 1968. Interception des précipitations par le couvert forestier. Ann. Sci. For. 25: 135–156.

    Article  Google Scholar 

  • Aussenac G., 1970. Aperçu du rôle de la forêt dans l’économie d’eau. Rev. For. Fr. 22: 603–618.

    Article  Google Scholar 

  • Aussenac G., 1981. L’interception des précipitations par les peuplements forestiers. La Houille Blanche 7/8: 531–536.

    Article  Google Scholar 

  • Aussenac G. and Boulangeat C., 1980. Interception des précipitations et évapotranspiration réelle dans des peuplements de feuillus (Fagus sylvatica L.) et de résineux. Ann. Sci. For. 37: 91–107.

    Article  Google Scholar 

  • Balandier P., Collet C., Miller J.H., Reynolds P.E., and Zedacker S.M., 2006a. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79: 3–27.

    Article  Google Scholar 

  • Balandier P., De Montard F.X., and Curt T., 2008. Root competition for water between trees and grass in a silvopastoral plot of ten-year-old Prunus avium. In: Batish D.R., Kohli R.K., Jose S., and Singh H.P. (Eds), Ecological basis of agroforestry, CRC Press, Boca Raton, pp. 253–270.

    Google Scholar 

  • Balandier P., Sonohat G., Sinoquet H., Varlet-Grancher C., and Dumas Y., 2006b. Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercus petraea, Q. robur) stands. Trees 20: 363–370.

    Article  Google Scholar 

  • Barbier S., Gosselin F., and Balandier P., 2008. Influence of tree species on understory vegetation diversity and mechanisms involved critical review for temperate and boreal forests. For. Ecol. Manage. 254: 1–15.

    Article  Google Scholar 

  • Bergkvist B. and Folkeson L., 1995. The influence of tree species on acid deposition proton budgets and element fluxes in south Swedish forest ecosystems. Ecol. Bull. 44: 90–99.

    CAS  Google Scholar 

  • Bersier L.F. and Meyer D.R., 1994. Bird assemblages in mosaic forests: the relative importance of vegetation structure and floristic composition along the successional gradient. Acta Oecol. 15: 561–576.

    Google Scholar 

  • Bladon K.D., Silins U., Landhäusser S.M., and Lieffers V.J., 2006. Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agric. For. Meteorol. 138: 104–119.

    Article  Google Scholar 

  • Bréda N., 1999. L’indice foliaire des couverts forestiers: mesure, variabilité et rôle fonctionnel. Rev. For. Fr. 51: 135–150.

    Google Scholar 

  • Bréda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644.

    Article  Google Scholar 

  • Breshears D.D., McDowell N.G., Goddard K.L., Dayem K.E., Martens S.N., Meyer C.W., and Brown K.M., 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89: 41–47.

    Article  PubMed  Google Scholar 

  • Bultot F., Dupriez G., and Bodeux A., 1972. Interception de la pluie par la végétation forestière ; estimation de l’ évaporation journalière à l’aide d’un modèle mathématique. J. Hydrol. 17: 193–223.

    Article  Google Scholar 

  • Burgess S.S.O. and Dawson T.E., 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ. 27: 1023–1034.

    Article  Google Scholar 

  • Burnham K.P. and Anderson D.R., 2002. Model selection and multimodel inference: a practical information theoretic approach, Springer-Verlag, New York, 488 p.

    Google Scholar 

  • Canham D.C., Finzi A.C., Pacala S.W., and Burbank D.H., 1994. Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can. J. For. Res. 24: 337–349.

    Article  Google Scholar 

  • Cape J.N., Brown A.H.F., Robertson S.M.C., Howson G., and Paterson I.S., 1991. Interspecies comparisons of throughfall and stemflow at three sites in northern Britain. For. Ecol. Manage. 46: 165–178.

    Article  Google Scholar 

  • Chang S.C. and Matzner E., 2000. Soil nitrogen turnover in proximal and distal stem areas of European beech trees. Plant Soil 218: 117–125.

    Article  CAS  Google Scholar 

  • Comerford N.B. and White E.H., 1977. Nutrient content of throughfall in Paper Birch and Red Pine stands in northern Minnesota. Can. J. For. Res. 7: 556–561.

    Article  CAS  Google Scholar 

  • Cosandey C. and Robison M., 2000. Hydrologie continentale, Armand Colin, Paris, 360 p.

    Google Scholar 

  • Courchesne F. and Hendershot W.H., 1988. Apport en sulfate et en eau à la surface du sol sous quatre espèces arborescentes. Naturaliste Canadien 115: 57–63.

    Google Scholar 

  • Crozier C.R. and Boerner R.E.J., 1984. Correlations of understory herb distribution patterns with microhabitats under different tree species in a mixed mesophytic forest. Oecologia 62: 337–343.

    Article  Google Scholar 

  • Curt T. and Prévosto B., 2003. Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255: 265–279.

    Article  CAS  Google Scholar 

  • eFloras, 2008. http://efloras.org

  • Eidmann F.E., 1959. Die Interception in Buchen- und Fichtenbeständen; Ergebnis mehrjähriger Untersuchungen im Rothaargebirge (Sauerland). In: Symposium of Hannoversch-Münden. T. 1, Vol. 1 Water and woodlands. International Union of Geodesy and Geophysic, Gentbrugge, pp. 5–25.

  • Ewers B.E., Mackay D.S., Gower S.T., A.D.E., Burrows S.N., and Samanta S.S., 2002. Tree species effects on stand transpiration in northern Wisconsin. Water Resour. Res. 38: 1–11.

    Article  Google Scholar 

  • Forgeard F., Gloaguen J.C., and Touffet J., 1980. Interception des précipitations et apports au sol d’éléments minéraux par les eaux de pluie et les pluviolessivats dans une hêtraie atlantique et dans quelques peuplements résineux de Bretagne. Ann. Sci. For. 37: 53–71.

    Article  CAS  Google Scholar 

  • Freedman B. and Prager U., 1986. Ambient bulk deposition, throughfall, and stemflow in a variety of forest stands in Nova Scotia. Can. J. For. Res. 16: 854–860.

    Article  Google Scholar 

  • Gilliam, F.S., Turrill, N.L., and Adams, M.B., 1995. Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forests. Ecol. Appl. 5: 947–955.

    Article  Google Scholar 

  • Gurevitch J. and Hedges L.V., 2001. Meta-analysis. Combining the results of independent experiments. In: Scheiner S.M. and Gurevitch J. (Eds.), Design and analysis of ecological experiments, Oxford University Press, New-York, pp. 347–369.

    Google Scholar 

  • Harrell F.E., 2001. Regression modeling strategies, with applications to linear models, logistic regression, and survival analysis, Springer, New York, USA, xxiii + 568 p.

    Google Scholar 

  • Heinrichs H. and Mayer R., 1977. Distribution and cycling of major and trace elements in two Central European forest ecosystems. J. Environ. Qual. 6: 402–407.

    Article  CAS  Google Scholar 

  • Hélardot J., 2008. Arbres. http://jeanlouis.helardot.free.fr

  • Helliwell D.R., 1982. Options in forestry. A review of literature on the effects of different tree species and sylvicultural systems on the soil, flora, fauna, visual amenity, and timber production. Packard Publishing, Chichester, 60 p.

    Google Scholar 

  • Helvey J.D., Hewlett J.D., and Douglass J.E., 1972. Predicting Soil Moisture in the Southern Appalachians. Soil Sci. Soc. Am. Proceed. 36: 954–959.

    Article  Google Scholar 

  • Houdijk A.L.F.M. and Roelofs J.G.M., 1991. Deposition of acidifying and eutrophicating substances in Dutch forests. Acta Bot. Neerl. 40: 245–255.

    CAS  Google Scholar 

  • Howard L.F. and Lee T.D., 2003. Temporal patterns of vascular plant diversity in southeastern New Hampshire forests. For. Ecol. Manage. 185: 5–20.

    Article  Google Scholar 

  • Humbert J. and Najjar G., 1992. Influence de la forêt sur le cycle de l’eau en domaine tempéré — une analyse de la littérature francophone, Université Louis Pasteur, Strasbourg, 85 p.

    Google Scholar 

  • IPCC, 2007. Summary for Policymakers. In: Solomon S. et al., (Eds.), Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge university press, Cambridge, pp. 1–18.

    Google Scholar 

  • Keim R.F., Skaugset A.E., and Weiler M., 2006. Storage of water on vegetation under simulated rainfall of varying intensity. Adv. Water Resour. 29: 974–986.

    Article  Google Scholar 

  • Lacoste A. and Salanon R., 1991. Eléments de biogéographie et d’écologie, Nathan, Paris, 189 p.

    Google Scholar 

  • Larcher W., 1975. Physiological plant ecology, Springer, Berlin, 513 p.

    Google Scholar 

  • Lebourgeois F. and Jabiol B., 2002. Enracinements comparés des chênes (sessile et pédonculé) et du hêtre sur différents matériaux. Réflexions sur l’autécologie des essences. Rev. For. Fr. 54: 17–42.

    Google Scholar 

  • Levia D.F. and Frost E.E., 2003. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrol. 274: 1–29.

    Article  CAS  Google Scholar 

  • Levia D.F. and Herwitz S.R., 2005. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena 64: 117–137.

    Article  CAS  Google Scholar 

  • Leyton L., Reynolds E.R., and Thompson F.B., 1967. Rainfall interception in forest and moorland. In: Sopper W.E. and Lull H.W. (Eds.), Forest hydrology, Pergamon Press, Oxford, pp. 163–178.

    Google Scholar 

  • Link T.E., Unsworth M., and Marks D., 2004. The dynamics of rainfall interception by a seasonal temperate rainforest. Agric. For. Meteorol. 124: 171–191.

    Article  Google Scholar 

  • Llorens P. and Domingo F., 2007. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 335: 37–54.

    Article  Google Scholar 

  • Mahendrappa M.K., 1990. Partitioning of rainwater and chemicals into throughfall and stemflow in different forest stands. For. Ecol. Manage. 30: 65–72.

    Article  Google Scholar 

  • Martin-Aranda J. and Coutts J.R.H., 1963. Micrometeorological observations in an afforested area in Aberdeenshire: rainfall characteristics. J. Soil Sci. 14: 124–133.

    Article  Google Scholar 

  • Mina V.N., 1965. Leaching of certain substances by precipitation from woody plants and its importance in the biological cycle. Soviet Soil Sci. 6: 609–617.

    Google Scholar 

  • Nihlgard B., 1970a. Precipitation, its chemical composition and effect on soil water in a beech and a spruce forest in south Sweden. Oikos 21: 208–217.

    Article  CAS  Google Scholar 

  • Nihlgard B., 1970b. Vegetation types of planted Spruce forest in Scania, southern Sweden. Botaniska Notiser 123: 310–347.

    Google Scholar 

  • Noirfalise A., 1959. Sur l’interception de la pluie par le couvert dans quelques forêts belges. Bull. Soc. Roy. For. Belgique 10: 433–439.

    Google Scholar 

  • Norden U., 1991. Acid deposition and throughfall fluxes of elements as related to tree species in deciduous forests of South Sweden. Water Air Soil Pollut. 60: 209–230.

    Article  CAS  Google Scholar 

  • Olszewsky J.L., 1976. Relation between the amount of rainfall reaching the forest floor and the amount of rainfall over a mixed deciduous forest. Phytocoenosis 5: 127–156.

    Google Scholar 

  • Onof C. and Wheater H.S., 1996. Analysis of the spatial coverage of British rainfall fields. J. Hydrol. 176: 97–113.

    Article  Google Scholar 

  • Otto H.J., 1998. Écologie forestière, Institut pour le Développement Forestier, Paris, 397 p.

    Google Scholar 

  • Ovington J.D., 1954. A comparison of rainfall in different woodlands. Forestry 27: 41–53.

    Article  Google Scholar 

  • Packham J.R., Harding D., Hilton G., and Stuttard R., 1992. Functional ecology of woodlands and forests, Kluwer academic publishers, Dordrecht, 407 p.

    Google Scholar 

  • Parker G.G., 1983. Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res. 13: 58–120.

    Google Scholar 

  • Pataki D.E. and Oren R., 2003. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv. Water Resour. 26: 1267–1278.

    Article  Google Scholar 

  • Petit F. and Kamutanda K., 1984. L’interception des pluies par différents types de couverts forestiers. Bull. Soc. Géogr. Liège 20: 99–127.

    Google Scholar 

  • Puckett L.J., 1991. Spatial variability and collector requirements for sampling throughfall volume and chemistry under a mixed-hardwood canopy. Can. J. For. Res. 21: 1581–1588.

    Article  CAS  Google Scholar 

  • Rameau J.C., Mansion D., Dumé G., Timbal J., Lecointe A., Dupont P., and Keller R., 1989. Flore forestière française. Guide écologique illustré. Tome 1: Plaines et collines, Institut pour le Développement Forestier, Paris, 1785 p.

    Google Scholar 

  • Robertson S.M., Hornung M., and Kennedy V.H., 2000. Water chemistry of throughfall and soil water under four tree species at Gisburn, northwest England, before and after felling. For. Ecol. Manage. 129: 101–117.

    Article  Google Scholar 

  • Robins P.C., 1974. A method of measuring the aerodynamic resistance to the transport of water vapour from forest canopies. J. Appl. Ecol. 11: 315–325.

    Article  Google Scholar 

  • Ross M., Flanagan L., and La Roi G., 1986. Seasonal and successional changes in light quality and quantity in the understory of boreal forest ecosystems. Can. J. Bot. 64: 2792–2799.

    Article  Google Scholar 

  • Schmid C.H. and Brown E.N., 2000. Bayesian hierarchical models. Methods Enzymol. 321: 305–330.

    Article  PubMed  CAS  Google Scholar 

  • Schnock G. and Galoux A., 1967. Recherches sur l’écosystème forêt. Contribution No. 8: Réception des précipitations et écoulement le long des troncs en 1966. Bull. Inst. Roy. Sci. Nat. Belg. 43: 1–30.

    Google Scholar 

  • Toba T. and Ohta T., 2005. An observational study of the factors that influence interception loss in boreal and temperate forests. J. Hydrol. 313: 208–220.

    Article  Google Scholar 

  • Vannitsem S. and Naveau P., 2007. Spatial dependences among precipitation maxima over Belgium. Nonlinear Process. Geophys. 14: 621–630.

    Article  Google Scholar 

  • Verry F.S. and Timmons D.R., 1977. Precipitation nutrients in the open and under two forests in Minnesota. Can. J. For. Res. 7: 112–119.

    Article  CAS  Google Scholar 

  • Voigt G.K., 1960. Distribution of rainfall under forest stands. For. Sci. 6: 2–10.

    Google Scholar 

  • Waisel Y., 1960. Fog precipitation by trees. La-Yaaran 9: 3.

    Google Scholar 

  • Wei X., Liu S., Zhou G., and Wang C., 2005. Hydrological processes in major types of Chinese forest. Hydrol. Process. 19: 63–75.

    Article  CAS  Google Scholar 

  • Wells C.A., Whigham D., and Lieth H., 1972. Investigations of mineral cycling in an upland Piedmont forest. J. Elisha Mitchell Sci. Soc. 88: 66–78.

    CAS  Google Scholar 

  • Wittig R. and Neite H., 1985. Acid indicators around the trunk base of Fagus sylvatica in limestone and loess beechwoods: distribution pattern and phytosociological problems. Vegetatio 64: 113–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Gosselin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbier, S., Balandier, P. & Gosselin, F. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Ann. For. Sci. 66, 602 (2009). https://doi.org/10.1051/forest/2009041

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1051/forest/2009041

Keywords

Mots-clés