Apiolaza L.A., 2008. Improvement objectives for short rotation forestry. New Zeal. J. For. 52: 28–30.
Google Scholar
Apiolaza L.A. and Garrick D.J., 2001. Analysis of longitudinal data from progeny tests: some multivariate approaches. For. Sci. 47: 129–140.
Google Scholar
Apiolaza L.A. and Greaves B.L., 2001. Why are most breeders not using economic breeding objectives? In: IUFRO Conference developing the Eucalypt of the Future, Valdivia, Chile.
Apiolaza L.A., Raymond C.A., and Yeo B.J., 2005. Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genet. 54: 160–166.
Google Scholar
Apiolaza L.A., Walker J.C.F., Nair H., and Butterfield B.G., 2008. Very early screening of wood quality for radiata pine: pushing the envelope. In: Proceedings of the 51st international convention of society of wood science and technology, WQ-1.
Balocchi C.E., Bridgwater F.E., Zobel B.J., and Jahromi S., 1993. Age trends in genetic parameters for tree height in a nonselected population of loblolly pine. For. Sci. 39: 231–251.
Google Scholar
Binet F.E., 1965. On the construction of an index for indirect selection. Biometrics 21: 291–299.
Article
PubMed
CAS
Google Scholar
Burdon R.D., Kibblewhite R.P., Walker J.C.F., Megraw R.A., Evans R., and Cown D.J., 2004. Juvenile versus mature wood: a new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and P taeda. For. Sci. 50: 399–415.
Google Scholar
Calus M.P.L., Meuwissen T.H.E., de Roos A.P.W., and Veerkamp R.F., 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics 178: 553–561.
Article
PubMed
CAS
Google Scholar
Cave I.D., 1968. The anisotropic elasticity of the plant cell wall. Wood Sci. Technol. 2: 269–278.
Article
Google Scholar
Chauhan S.S., 2008. Pairing test and longitudinal growth strain: establishing the association. In: proceedings of the 51st international convention of society of wood science and technology, WQ-2.
Chauhan S.S. and Walker J.C.F., 2006. Variations in acoustic velocity and density with age, and their relationship in radiata pine. For. Ecol. Manage. 229: 388–394.
Article
Google Scholar
Dungey H.S., Matheson A.C., Kain D., and Evans R., 2006. Genetics of wood stiffness and its component traits in Pinus radiata. Can. J. For. Res. 36: 1165–1178.
Article
Google Scholar
Evans R. and Ilic J., 2001. Rapid prediction of wood stiffness from microfibril, angle and density. For. Prod. J. 51: 53–57.
Google Scholar
Fernando R.L. and Grossman M., 1989. Marker assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 21: 467–477.
Article
Google Scholar
Fernando R.L., Habier D., Stricker C., Dekkers J.C.M., and Totir L.R., 2007. Genomic selection. Acta Agr. Scand. A — An. 57: 192–195.
CAS
Google Scholar
Floyd S.L. and Stanish M.A., 2004. Methods for quantitatively determining lengthwise shrinkage in wood products. US Patent Application 10814767.
Gaunt D., 1998. If you are not winning change the rules. New Zeal. For. Res. Wood Proc. Newsletter 23: 3.
Google Scholar
Gianola D., Fernando R.L., and Stella A., 2006. Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173: 1761–1776.
Article
PubMed
CAS
Google Scholar
Gibson J.P., 1999. Molecular and quantitative genetics: a useful flirtation. In: from Jay Lush to Genomics: Visions for animal breeding and genetics, Iowa State University, Ames, Iowa, USA, pp. 77–84.
Google Scholar
Gilmour A.R., Cullis B.R., Welham S.J., and Thompson R., 2002. ASReml reference manual. New South Wales Agriculture, Orange, NSW, Australia.
Google Scholar
Grattapaglia D. and Kirst M., 2008. Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol. 179: 911–929.
Article
PubMed
CAS
Google Scholar
Hazel L.N., 1943. The genetic basis for constructing selection indexes. Genetics 28: 476–490.
PubMed
CAS
Google Scholar
Huang C.L., Lindström H., Nakada R., and Ralston J., 2003. Cell wall structure and wood properties determined by acoustics — a selective review. Holz Roh. Werkst. 61: 321–335.
Article
CAS
Google Scholar
Isik F., Gumpertz M., Li B.L., Goldfarb B., and Sun X., 2008. Analysis of cellulose microfibril angle using a linear mixed model in Pinus taeda clones. Can. J. For. Res. 38: 1676–1689.
Article
Google Scholar
Isik F. and Li B., 2003. Rapid assessment of wood density of live trees using the resistograph for selection in tree improvement programs. Can. J. For. Res. 33: 2426–2435.
Article
Google Scholar
Kumar S., Dungey H.S., and Matheson A.C., 2006. Genetic parameters and strategies for genetic improvement of stiffness in radiata pine. Silvae Genet. 55: 77–84.
Google Scholar
Lima J.T., Breese M.C., and Cahalan C.M., 2004. Variation in microfibril angle in Eucalyptus clones. Holzforschung 58: 160–166.
Article
CAS
Google Scholar
Lin C.Y., 1978. Index selection for genetic improvement of quantitative characters. Theor. Appl. Genet. 52: 49–56.
Google Scholar
Lindström H., Harris P., and Nakada R., 2002. Methods for measuring stiffness of young trees. Holz Roh. Werkst. 60: 165–174.
Article
Google Scholar
Lopez G.A., Potts B.M., Vaillancourt R.E., and Apiolaza L.A., 2003. Maternal and carry over effects on early growth of Eucalyptus globulus. Can. J. For. Res. 33: 2108–2115.
Article
Google Scholar
Megraw R.A., Bremer D., Leaf G., and Roers J., 1999. Stiffness in loblolly pine as a function of ring position and height, and its relationship to microfibril angle and specific gravity. In: IUFRO workshop connection between silviculture and wood quality through modelling approaches and simulation software, La Londe-Les-Maures, France, pp. 341–349.
Google Scholar
Meuwissen T.H.E., Hayes B.J., and Goddard M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.
PubMed
CAS
Google Scholar
Myszewski J.H., Bridgwater F.E., Lowe W.J., Byram T.D., and Megraw R.A., 2004. Genetic variation in the microfibril angle of loblolly pine from two test sites. Southern J. Appl. For. 28: 196–204.
Google Scholar
Nakada R., 2007. Within-tree variation of wood characteristics in conifers and the anatomical characteristics specific to very young trees. In: J.C.F. Walker (Ed.), The compromised wood workshop, Christchurch, New Zealand, 51–67.
Google Scholar
Newman D.H. and Williams C.G., 1991. The incorporation of risk in optimal selection age determination. For. Sci. 37: 1350–1364.
Google Scholar
O’Malley D.M. and McKeand S.E., 1994. Marker assisted selection for breeding value in forest trees. For. Genet. 1: 207–218.
Google Scholar
R Development Core Team, 2008. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
Raymond C.A., 2002. Genetics of Eucalyptus wood properties. Ann. For. Sci. 59: 525–531.
Article
Google Scholar
Raymond C.A. and Schimleck L.R., 2002. Development of near infrared reflectance analysis calibrations for estimating genetic parameters for cellulose content in Eucalyptus globulus. Can. J. For. Res. 32: 170–176.
Article
Google Scholar
Raymond C.A., Schimleck L.R., Muneri A., and Michell A.J., 2001. Genetic parameters and genotype-by-environment interaction for pulp yield predicted using near infrared reflectance analysis and pulp productivity in Eucalyptus globulus. For. Genet. 8: 213–224.
Google Scholar
Schaeffer L.R., 2006. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123: 218–223.
Article
PubMed
CAS
Google Scholar
Schimleck L.R., Evans R., Ilic J., and Matheson A.C., 2002. Estimation of wood stiffness of increment cores by near-infrared spectroscopy. Can. J. For. Res. 32: 129–135.
Article
Google Scholar
Schimleck L.R., Evans R., Jones P.D., Peter G., Daniels R.F., and Clark A., 2005. Estimation of microfibril angle and stiffness by near infrared spectroscopy using sample sets having limited wood density variation. IAWA J. 26: 175–187.
Google Scholar
Schneeberger M., Barwick S.A., Crow G.H., and Hammond K., 1992. Economic indices using breeding values predicted by blup. J. Anim. Breed. Genet. 107: 180–187.
Article
Google Scholar
Searle S.R., 1965. The value of indirect selection: I. mass selection. Biometrics 21: 682–707.
Article
PubMed
CAS
Google Scholar
Shelbourne C.J.A., 1997. Genetics of adding value to the end-products of radiata pine. In: Burdon R.D. and Moore J.M. (Eds.), IUFRO ’97 Genetics of Radiata Pine, Rotorua, New Zealand, 129–141.
Google Scholar
Smith D.M., 1954. Maximum moisture content method for determining specific gravity of small wood samples. Report 2014, Forest Products Laboratory, Forest Service, US Department of Agriculture.
Sorensson C.T. and Shelbourne C.J.A., 2005. NZIF Forestry handbook, New Zealand Institute of Forestry, chapter Clonal forestry, pp. 92–96.
Tsehaye A., Buchanan A., and Walker J.C.F., 2000. Sorting of logs using acoustics. Wood Sci. Technol. 34.
Van Vleck L.D., 1993. Selection Index and introduction to mixed model methods. CRC Press, Boca Raton.
Google Scholar
Walker J.C.F. and Butterfield B.G., 1995. The importance of microfibril angle for the processing industries. New Zeal. For. 40: 34–40.
Google Scholar
White T.L., Adams W.T., and Neale D., 2007. Forest genetics, CAB international.
Wielinga B., Raymond C.A., James R., and Matheson A.C., 2009. Genetic parameters and genotype by environment interactions for green and basic density and stiffness of Pinus radiata d. don estimated using acoustics. Silvae Genet. (in press).
Wilcox P.L., Carson S.D., Richardson T.E., Ball R.D., Horgan G.P., and Carter P., 2001. Benefit-cost analysis of dna marker based-selection in progenies of Pinus radiata seed orchard parents. Can. J. For. Res. 31: 2213–2224.
Google Scholar
Woolaston R.R. and Jarvis S.F., 1995. The importance of breeding objectives in forest tree improvement. In: Eucalypt plantations: improving fibre yield and quality, Hobart, Tasmania, Australia, 184–188.
Wu H.X., Powell M.B., Yang J.L., Ivkovich M., and McRae T.A., 2007. Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64: 1–9.
Article
Google Scholar
Yamashita K., Hirakawa Y., Nakatani H., and Ikeda M., 2009. Longitudinal shrinkage variations within trees of sugi (Cryptomeria japonica) cultivars. J. Wood Sci. 55: 1–7.
Article
Google Scholar
Zamudio F., Baettyg R., Vergara A., Guerra F., and Rozenberg P., 2002. Genetic trends in wood density and radial growth with cambial age in a radiata pine progeny test. Ann. For. Sci. 59: 541–549.
Article
Google Scholar