Skip to main content

Genetic similarity of natural populations and plantations of Pinus roxburghii Sarg. in Nepal

Similitude génétique des populations naturelles et des plantations de Pinus roxburghii Sarg. au Népal

Abstract

  • • Genetic structures of five population pairs each consisting of one natural population and one neighbouring plantation of Pinus roxburghii Sarg. in Nepal were assessed using nuclear (nSSRs) and chloroplast microsatellite loci (cpSSRs).

  • • The mean number of alleles at nSSRs loci in natural populations was 5.0 compared to 4.93 in plantations while the average observed heterozygosities were the same in both groups (H 0 = 0.50). Most of the alleles were common to all the populations, indicating that the populations correspond to a single genetic entity. Similarly forty-seven haplotypes were observed in natural populations compared to fifty haplotypes in plantations. Mean haplotype diversities of natural populations (0.953) and plantations (0.955) were very similar. Genetic diversity of Pinus roxburghii was relatively high with low or no evidence of inbreeding while genetic differentiation among all populations was very low (about 1%).

  • • The very low differentiation among natural populations indicates efficient long-distance gene flow among populations resulting in homogeneous genetic structures at least at selectively neutral loci. Even though the harvest and production of seeds and seedlings was largely uncontrolled, genetic structures of most plantations show no signs of reduced variation, inbreeding or other negative effects compromising the adaptedness or adaptability of planted forests.

Résumé

  • • Les structures génétique de cinq paires de populations composées chacune d’une population naturelle et d’une plantation voisine de Pinus roxburghii Sarg. au Népal ont été évalués à l’aide de loci nucléaires (nSSRs) et de loci microsatellites chloroplastiques (cpSSRs).

  • • Le nombre moyen d’allèles à loci nSSRs dans les populations naturelles était de 5,0 comparé à 4,93 dans les plantations alors que la moyenne des hétérozygoties observées étaient les mêmes dans les deux groupes (H 0 = 0,50). La plupart des allèles étaient communs à toutes les populations, indiquant que les populations correspondent à une seule entité génétique. De même, quarante-sept haplotypes ont été observés dans les populations naturelles par rapport à cinquante haplotypes dans les plantations. La diversité moyenne des haplotypes des populations naturelles (0,953) et des plantations (0,955) étaient très similaires. La diversité génétique de Pinus roxburghii a été relativement importante, avec peu ou pas de preuve de consanguinité tandis que la différenciation génétique entre les populations était très faible (environ 1 %).

  • • Le très faible différenciation entre les populations naturelles indique des flux de gènes efficaces à longue distance entre les populations issues de structures génétiques homogènes avec au moins une sélectivité neutre des loci. Même si la récolte et la production de semences et de plants ont été largement incontrôlées, les structures génétiques de la plupart des plantations ne montrent aucun signe de réduction de la variation de la consanguinité ou d’autres effets négatifs compromettant la faculté d’adaptation des forêts plantées.

References

  • Arya S., Kalia R.K., and Arya I.D., 2000. Induction of somatic embryogenesis in Pinus roxburghii Sarg. Plant Cell Rep. 19: 775–780.

    Article  CAS  Google Scholar 

  • Auckland L.D., Bui T., Zhou Y., Shepherd M., and Williams C.G., 2002. Conifer microsatellite handbook, Corporate Press, Raleigh, N.C.

    Google Scholar 

  • Austerlitz F., Mariette S., Machon N., Gouyon P.-H., and Godelle B., 2000. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154: 1309–1321.

    PubMed  CAS  Google Scholar 

  • Dogra P.D., 1985. Conifers of India and their wild gene resources in relation to tree breeding. Ind. For. 111: 935–955.

    Google Scholar 

  • Ellstrand N.C., 1992. Gene flow by pollen: implications for plant conservation genetics. Oikos 63: 77–86.

    Article  Google Scholar 

  • Excoffier L., Laval G., and Schneider S., 2005. Arlequin ver. 3.1: an integrated software package for population genetics data analysis, evolutionary bioinformatics online.

  • Excoffier L., Smouse P.E., and Quattro J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitrochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Felsenstein J., 1989. PHYLIP: phylogeny inference package (version 3.2). Cladistics 5: 164–166.

    Google Scholar 

  • Finkeldey R. and Hattemer H.H., 2007. Tropical forest genetics, Springer, Berlin, Heidelberg.

    Book  Google Scholar 

  • Goudet J., 2001. FSTAT: A program to estimate and test gene diversities and fixation indices (Version 2.9.3.2), University of Lausanne, Switzerland.

    Google Scholar 

  • Hamrick J.L., Godt M.J.W., and Sherman-Broyles S.L., 1992. Factors influencing levels of genetic diversity in woody plant species. New For. 6: 95–124.

    Article  Google Scholar 

  • Hedrick P.W., 2005. A standardized genetic differentiation measure. Evolution 59: 1633–1638.

    PubMed  CAS  Google Scholar 

  • Hussain A., 1995. Untersuchungen zur genetischen Kontrolle von Isoenzym-Polymorphismen und zur genetischen Struktur von Pinus roxburghii SARG. Thesis for the degree of Doctor of Forestry Science at the Faculty of Forestry Sciences and Forest Ecology, Georg-August university of Göttingen, Germany.

    Google Scholar 

  • Jackson J.K., 1994. Manual of Afforestation in Nepal (Part II), Department of Forest Research and Forest Survey, Kathmandu, Nepal.

    Google Scholar 

  • Langella O., 2002. Populations (Version 1.2.28), CNRS, France.

    Google Scholar 

  • Liewlaksaneeyanawin C., Ritland C.E., El-Kassaby Y.A., and Ritland R., 2004. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor. Appl. Genet. 109: 361–369.

    PubMed  Article  CAS  Google Scholar 

  • Mantel N.A., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Mariette S., Chagné D., Lézier C., Pastuszka P., Raffin A., Plomion C., and Kremer A., 2001. Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86: 469–479.

    PubMed  Article  CAS  Google Scholar 

  • Marquardt P.E., Echt C.S., Epperson B.K., and Pubanz D.M., 2007. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can J. For. Res. 37: 2652–2662.

    Article  CAS  Google Scholar 

  • McCauley D.E., 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol. Evol. 10: 198–202.

    PubMed  Article  CAS  Google Scholar 

  • Nason A., 2001. The new OECD scheme for the certification of forest reproductive material. Silvae Genet. 50: 177–280.

    Google Scholar 

  • Navascués M. and Emerson B.C., 2007. Natural recovery of genetic diversity by gene flow in reforested areas of the endemic Canary Island pine, Pinus canariensis. For. Ecol. Manage. 244: 122–128.

    Article  Google Scholar 

  • Nei M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    PubMed  CAS  Google Scholar 

  • Nei M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Article  Google Scholar 

  • Nei M., 1975. Molecular population genetics and evolution. In: Neuberger A., Tatum E.L. (Eds.), Frontier of biology Vol. 40, American Elsevier, New York.

    Google Scholar 

  • Pandey M., Gailing O., Leinemann L., and Finkeldey R., 2004. Molecular markers provide evidence for long-distance planting material transfer during plantation establishment of Dalbergia sissoo Roxb. in Nepal. Ann. For. Sci. 61: 603–606.

    Article  CAS  Google Scholar 

  • Peakall R. and Smouse P.E., 2005. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288–295.

    Article  Google Scholar 

  • Rohlf F.J., 1998. NTSYS-pc version 2.0. Numerical taxonomy and multivariate analysis system, Exeter Software, Setauket, New York.

    Google Scholar 

  • Rungis D., Berube Y., Zhang J., Ralph S., Ritland C.E., Ellis B.E., Douglas C., Bohlmann J., and Ritland K., 2004. Robust simple sequence repeats markers for spruce (Picea spp.) from expressed sequence tags. Theor. Appl. Genet. 109: 1283–1294.

    PubMed  Article  CAS  Google Scholar 

  • Sharma K., Degen B., Wuehlisch G.V., and Singh N.B., 2002. Allozyme variation in eight natural populations of Pinus roxburghii Sarg. in India. Silvae Genet. 51: 246–253.

    Google Scholar 

  • Siregar I.Z., 2000. Genetic aspects of the reproductive system of Pinus merkusii. Jungh. et de Vriese in Indonesia. Thesis for the degree of doctor of forestry science at the Faculty of Forestry Sciences and Forest Ecology, Georg-August University of Göttingen, Germany, Cuvillier Verlag Göttingen.

    Google Scholar 

  • Stefenon V.M., Gailing O., and Finkeldey R., 2008. Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia). For. Ecol. Manage. 255: 2718–2725.

    Article  Google Scholar 

  • Thomas B.R., Macdonald S.E., Hicks M., Adams D.L., and Hodgetts R.B., 1999. Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theor. Appl. Genet. 98: 793–801.

    Article  Google Scholar 

  • Vekemans X., 2002. AFLP-SURV version 1.0. Laboratoire de génétique et écologie végétale, Université Libre de Bruxelles, Belgium.

    Google Scholar 

  • Vendramin G., Lelli L., Rossi P., and Morgante M., 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol. Ecol. 5: 595–598.

    PubMed  Article  CAS  Google Scholar 

  • Wang X.-R. and Szmidt A.E., 2001. Molecular Markers in Population Genetics of Forest Trees. Scand. J. For. Res. 16: 199–220.

    Google Scholar 

  • Weir B.S. and Cockerham C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Weising K., Nybom H., Wolff K., and Kahl G., 2005. DNA Fingerprinting in Plants. Principles, methods, and applications, Taylor & Francis, Boca Raton.

    Book  Google Scholar 

  • Wright S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395–420.

    Article  Google Scholar 

  • Yi W.Z. and Raven P.H., 1999. Flora of China, Vol. 4, Science Press, St. Louis, Missouri Botanical Garden, Beijing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Finkeldey.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Gauli, A., Gailing, O., Stefenon, V.M. et al. Genetic similarity of natural populations and plantations of Pinus roxburghii Sarg. in Nepal. Ann. For. Sci. 66, 703 (2009). https://doi.org/10.1051/forest/2009053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009053

Keywords

  • genetic diversity
  • genetic differentiation
  • forest reproductive material
  • nuclear microsatellites
  • chloroplast microsatellites

Mots-clés

  • diversité génétique
  • différenciation génétique
  • matériels forestiers reproducteurs
  • microsatellites nucléaires
  • microsatellites chloroplastiques