Skip to main content

A generic model of thinning and stand density effects on forest growth, mortality and net increment

Un modèle générique des effets de l’éclaircie et de la densité des peuplements sur la croissance des forêts, la mortalité et l’accroissement net

Abstract

  • • For assessing forest thinning effects at large (i.e. continental) scale, data scarcity and technical limitations prevent the application of localized or individual-based thinning models.

  • • Here we present a simple general framework to analyze and predict the effects of thinning on growth and mortality, including the following stand density development. The effects are modeled in relative terms so that the model can be parameterized based on any thinning experiment that includes an unthinned control, regardless of site conditions and stand age.

  • • The model was tested against observed thinning effects on growth and mortality from five temperate and boreal species (all species pooled r 2 = 0.51). It predicted a maximum increase in net stem biomass increment of 16% and a reduction in density-related mortality of 75% compared to un-thinned conditions at stand densities of around 70% of the maximum (increment optimal density).

  • • A sensitivity analysis revealed overlapping ranges of near optimal density (net increment within 95% of optimal) among all tested species, suggesting that one thinning scenario can be used for many species. The simple and general formulation of thinning effects based on only five parameters allows easy integration with a wide range of generic forest growth models.

Résumé

  • • Pour évaluer les effets de l’éclaircie en forêt à une large échelle (c’est-à-dire continentale), la rareté des données et des limitations techniques empêchent l’application de modèles d’éclaircie localisés ou individuels.

  • • Ici, nous présentons un simple cadre général pour analyser et prédire les effets de l’éclaircie sur la croissance et la mortalité, y compris le développement suivant de la densité du peuplement. Les effets sont modélisés en termes relatifs, de sorte que le modèle peut être paramétré sur la base de n’importe quelle expérience d’éclaircie qui inclut un témoin non éclairci, indépendamment des conditions du site et de l’âge du peuplement.

  • • Le modèle a été testé contre les effets de l’éclaircie observés sur la croissance et la mortalité de cinq espèces tempérées et boréales (r 2 = 0,51) pour toutes les espèces mises en pool). Il a prédit une augmentation maximale de l’accroissement net de la biomasse des troncs de 16 % et une réduction de la mortalité liée à la densité de 75 % par rapport aux conditions de non éclaircie de densité de peuplement de l’ordre de 70 % du maximum (densité de l’accroissement optimal).

  • • Une analyse de sensibilité a révélé des écarts de chevauchements près de la densité optimale (accroissement net dans 95 % de l’optimal) entre toutes les espèces testées, suggérant que un scénario d’éclaircie peut être utilisé pour de nombreuses espèces. La simple et générale formulation des effets de l’éclaircie basée sur seulement cinq paramètres permet une intégration facile avec une large gamme de modèles génériques de croissance des forêts.

References

  • Asai T., 1997. Effect of varying thinning densities on tree growth in a Japanese birch forest. Hokkaido Branch Journal of Japanese Forest Research 45: 50–52.

    Google Scholar 

  • Assmann F., 1961. Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, München, 490 p.

    Google Scholar 

  • Böttcher H., Freibauer A., Obersteiner M., and Schulze E.D., 2008. Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model. Ecol. Model. 213: 45–62.

    Article  Google Scholar 

  • Cochran P.H. and Dahms W.G., 2000. Growth of lodgepole pine thinned to various densities on two sites with differing productivities in central Oregon. USDA Forest Service, Research Papers RMRS, pp. 1–59.

  • Coomes D.A. and Allen R.B., 2007. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 95: 27–40.

    Article  Google Scholar 

  • Crookston N.L. and Dixon G.E., 2005. The forest vegetation simulator: A review of its structure, content, and applications. Comput. Electron. Agric. 49: 60–80.

    Article  Google Scholar 

  • Dewar R.C. and Porte A., 2008. Statistical mechanics unifies different ecological patterns. J. Theor. Biol. 251: 389–403.

    PubMed  Article  Google Scholar 

  • Franklin O., Moltchanova E., Obersteiner M., Kraxner F., Seidl R., Böttcher H., and Rokityianskiy D., 2009. A European scale forest growth and thinning model-deducing productivity and stand density from inventory data manuscript.

  • Garcia O., 1990. Growth of Thinned and Pruned Stands. In New approaches to spacing and thinning in plantation forestry. Proceedings of a IUFRO symposium, Rotorua, New Zealand, April 1989, James R.N., Tarlton G.L. (Eds.)., New Zealand Ministry of Forestry, Forest Research Institute.

  • Hara T., 1993. Model of competition and size-structure dynamics in plant communities. Plant Species Biol. 8: 75–84.

    Article  Google Scholar 

  • Hasenauer H., 2006. Concepts within tree growth modeling. In: Hasenauer H. (Ed.), Sustainable Forest Management. Growth Models for Europe, Berlin, pp. 3–17.

    Chapter  Google Scholar 

  • Hynynen J., Ahtikoski A., Siitonen J., Sievänen R., and Liski J., 2005. Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For. Ecol. Manage. 207: 5–18.

    Article  Google Scholar 

  • Hyytiäinen K., Hari P., Kokkila T., Maäkela A., Tahvonen O., and Taipale J., 2004. Connecting a process-based forest growth model to standlevel economic optimization. Can. J. For. Res. 34: 2060–2073.

    Article  Google Scholar 

  • Johnstone W.D., 2002. Thinning Lodgepole Pine in Southeastern British Columbia: 46-year Results. Res. Br., B.C. Min. For., Victoria, B.C., Work. Pap. 63.

    Google Scholar 

  • Keane R.E., Austin M., Field C., Huth A., Lexer M.J., Peters D., Solomon A., et al., 2001. Tree mortality in gap models: Application to climate change. Clim. Change 51: 509–540.

    Article  Google Scholar 

  • Kurz W.A. and Apps M.J., 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian Forest Sector. Ecol. Appl. 9: 526–547.

    Article  Google Scholar 

  • Long J.N., Dean T.J., and Roberts S.D., 2004. Linkages between silviculture and ecology: Examination of several important conceptual models. For. Ecol. Manage. 200: 249–261.

    Article  Google Scholar 

  • Mäkinen H. and Isomäki A., 2004. Thinning intensity and growth of Scots pine stands in Finland. For. Ecol. Manage. 201: 311–325.

    Article  Google Scholar 

  • Mason E.G. and Dzierzon H., 2006. Applications of modeling to vegetation management. Can. J. For. Res. 36: 2505–2514.

    Article  Google Scholar 

  • Medhurst J.L. and Beadle C.L., 2005. Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high-intensity thinning. Tree Physiol. 25: 981–991.

    PubMed  CAS  Google Scholar 

  • Monserud R.A. and Sterba H., 1999. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manage. 113: 109–123.

    Article  Google Scholar 

  • Montero G., Canellas I., Ortega C., and Del Rio M., 2001. Results from a thinning experiment in a Scots pine (Pinus sylvestris L.) natural regeneration stand in the Sistema Iberico Mountain Range (Spain). For. Ecol. Manage. 145: 151–161.

    Article  Google Scholar 

  • Newnham R.M., 1964. The development of a stand model for Douglas fir. Ph.D. thesis, University of British Columbia, Vancouver, 201 p.

    Google Scholar 

  • Norgrove L. and Hauser S., 2002. Measured growth and tree biomass estimates of Terminalia ivorensis in the 3 years after thinning to different stand densities in an agrisilvicultural system in southern Cameroon. For. Ecol. Manage. 166: 261–270.

    Article  Google Scholar 

  • Omule S.A.Y., 1988. Growth and yield 35 years after commercially thinning 50-year-old Douglas-fir. Can. For. Serv. and B.C. Min. For., Victoria, B.C., FRDA Rep. 021: 7.

    Google Scholar 

  • Petritsch R., Hasenauer H., and Pietsch S.A., 2007. Incorporating forest growth response to thinning within biome-BGC. For. Ecol. Manage. 242: 324–336.

    Article  Google Scholar 

  • Pretzsch H., 2005. Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.): Evidence from long-term experimental plots. Eur. J. For. Res. 124: 193–205.

    Google Scholar 

  • Pukkala T., Miina J., and Palahi M., 2002. Thinning response and thinning bias in a young Scots pine stand. Silva Fenn. 36: 827–840.

    Google Scholar 

  • Reineke L.H., 1933. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46: 627–638.

    Google Scholar 

  • Schelhaas M.J., Eggers J., Lindner M., Nabuurs G.J., Pussinen A., Päivinen R., Schuck A., et al., 2007. Model documentation for the European Forest Information Scenario model (EFISCEN 3.1.3), EFI Technical Report.

  • Seidl R., Lexer M.J., Jäger D., and Hönninger K., 2005. Evaluating the accuracy and generality of a hybrid patch model. Tree Physiol. 25: 939–951.

    PubMed  Google Scholar 

  • Seidl R., Rammer W., Lasch P., Badeck F.W., and Lexer M.J., 2008. Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fenn. 42: 369–386.

    Google Scholar 

  • Seidl R., Rammer W., and Lexer M., 2009. Schätzung von Bodenmerkmalen und Modellparametern für die Waldökosystemsimulation auf Basis einer Großrauminventur. Allg. Forst-Jagdztg 180: 35–44.

    Google Scholar 

  • Siitonen M., Härkönen K., Kilpeläinen H., and Salminen O., 1999. MELA Handbook — 1999 edition. The Finnish Forest Research Institute. 492 p.

  • Söderbergh I. and Ledermann T., 2003. Algorithms for simulating thinning and harvesting in five european individual-tree growth simulators: A review. Comput. Electron. Agric. 39: 115–140.

    Article  Google Scholar 

  • Sterba H. and Monserud R.A., 1997. Applicability of the forest stand growth simulator PROGNAUS for the Austrian part of the Bohemian Massif. Ecol. Model. 98: 23–34.

    Article  Google Scholar 

  • Tang S., Meng Chao H., Meng Fan R., and Wang Young H., 1994. A growth and self-thinning model for pure even-age stands: Theory and applications. For. Ecol. Manage. 70: 67–73.

    Article  Google Scholar 

  • Watanabe I., 2002. Thinning effect and crown dieback in a mature secondary stand of Betula maximowicziana established after fire. Bulletin of Hokkaido Forestry Research Institute, 39 p.

  • Weller D.E., 1987. A re-evaluation of the −3/2 power rule of plant selfthinning. Ecol. Monogr. 57: 23–43.

    Article  Google Scholar 

  • Wyckoff P.H. and Clark J.S., 2002. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90: 604–615.

    Article  Google Scholar 

  • Zaehle S., Sitch S., Prentice I.C., Liski J., Cramer W., Erhard M., Hickler T., et al., 2006. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol. Appl. 16: 1555–1574.

    PubMed  Article  Google Scholar 

  • Zeide B., 2001. Natural thinning and environmental change: An ecological process model. For. Ecol. Manage. 154: 165–177.

    Article  Google Scholar 

  • Zeide B., 2004. Optimal stand density: A solution. Can. J. For. Res. 34: 846–854.

    Article  Google Scholar 

  • Zeide B., 2005. How to measure stand density. Trees 19: 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Franklin.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Franklin, O., Aoki, K. & Seidl, R. A generic model of thinning and stand density effects on forest growth, mortality and net increment. Ann. For. Sci. 66, 815 (2009). https://doi.org/10.1051/forest/2009073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009073

Keywords

  • dead wood
  • optimal density
  • forest model
  • closure
  • forestry

Mots-clés

  • bois mort
  • densité optimale
  • modèles de forêts
  • fermeture
  • foresterie