Skip to main content
  • Original Article
  • Published:

Variations in water use by a mature mangrove of Avicennia germinans, French Guiana

Variations de la consommation d’eau d’une mangrove adulte à Avicennia germinans, en Guyane française

Abstract

  • • In the tropical intertidal zones, little is known on water uptake by mangroves. Transpiration rates are generally measured at leaf level, but few studies exist on water use at tree or stand levels.

  • • The objective of this study was to measure sap flow in trees of different sizes to appreciate the range of variation in water use that may exist in a site dominated by 80% mature Avicennia germinans.

  • • The results showed that from the dry to the wet season the mean water use increased from 3.2 to 5.3 dm3 d−1 in small trees (DBH 13 cm), from 11.5 to 30.8 dm3 d−1 in medium trees (24 cm) and from 40.8 to 64.1 dm3 d−1 in large ones (45 cm).

  • • Sapwood remained active up to a depth of 8 cm with radial variations within the stem. Weak correlations were obtained with VPD and net radiation.

  • • This study confirmed that transpiration was larger under low levels of salinity. Water use at stand level (1900 living stems ha−1) was estimated to be in the range of 5.8 to 11.8 m3 ha−1 d−1 according to the season.

Résumé

  • • Dans les zones intertidales tropicales, des taux de transpiration sont généralement mesurés au niveau des feuilles, mais il existe peu d’études sur la consommation d’eau à l’échelle de l’arbre ou de la parcelle.

  • • L’objectif de cette étude était de mesurer les flux de sève dans des arbres de différentes tailles pour apprécier la gamme de variation de la consommation d’eau qui peut exister dans un site dominé à 80 % par des Avicennia germinans adultes.

  • • Les résultats montrent que la consommation moyenne d’eau, entre une saison sèche et humide, augmente de 3.2 à 5.3 dmha3 jour−1 chez les petits arbres (DHP 13 cm), de 11.5 à 30.8 dm3 jour−1 chez les arbres moyens (24 cm) et de 40.8 à 64.1 dm3 jour−1 chez les plus gros (45 cm).

  • • L’aubier restait actif jusqu’à une profondeur de 8 cm avec des variations radiales dans le tronc. Les corrélations avec le DPV ou le rayonnement se sont révélées globalement faibles.

  • • Cette étude confirme que les mangroves transpirent plus avec des salinités faibles et indique qu’au niveau de la parcelle (1900 pieds vivants ha−1) la consommation d’eau varie de 5.8 à 11.8 m3 ha−1 jour−1 selon la saison.

References

  • Allison M.A., Lee M.T., Ogston A.S., and Aller R.C., 2000. Origin of Amazon mudbanks along the northeastern coast of South America. Mar. Geol. 163: 241–256.

    Article  Google Scholar 

  • Allison M.A. and Lee M.T., 2004. Sediment exchange between Amazon mudbanks and shore-fringing mangroves in French Guiana. Mar. Geol. 208: 169–190.

    Article  CAS  Google Scholar 

  • Augustinus P., 2004. The influence of the trade winds on the coastal development of the Guianas at various scale levels: a synthesis. Mar. Geol. 208: 145–151.

    Article  Google Scholar 

  • Balzer F., Allison M., and Fromard F., 2004. Material exchange between the continental shelf and mangrove-ged coasts with special reference to the Amazon-Guianas coast. Mar. Geol. 208: 115–126.

    Article  Google Scholar 

  • Becker P., Asman A., Julaihi M., Misli M., and Tyree M.T., 1997. Sap flow rates of mangrove trees are not usually low. Trees 11: 432–435.

    Article  Google Scholar 

  • Dodd R.S., Afzal-Rafil Z., Kashani N., and Budrick J., 2002. Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol. Ecol. 11: 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  • Ewers F.W., Lopez-Portillo J., Angeles G., and Fisher J.B., 2004. Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa. Tree Physiol. 24: 1057–1062.

    PubMed  Google Scholar 

  • Fromard F., Puig H., Mougin E., Marty G., Betoulle J.L., and Cadamuro L., 1998. Structure and above-ground biomass of mangrove ecosystems: New data from French Guiana. Oecologia 115: 39–53.

    Article  Google Scholar 

  • Fromard F., Vega C., and Proisy C., 2004. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar. Geol. 208: 265–280.

    Article  Google Scholar 

  • Froidefond J.M., Lahet F., Hu C., Doxaran D., Guiral D., Prost M.T., and Ternon J.-F., 2004. Mudflats and mud suspension observed from satellite data in French Guiana. Mar. Geol. 205: 153–168.

    Article  Google Scholar 

  • Granier A., 1985. A new method to measure the raw sap flux in the trunk of trees. Ann. For. Sci. 42: 193–200.

    Article  Google Scholar 

  • Granier A., Huc R., and Barigah S.T., 1996. Transpiration of natural rain forest an its dependence on climatic factors, Agric. For. Meteorol. 78: 19–29.

    Article  Google Scholar 

  • Köcher P., Gebauer T., Horna V., and Leuschner C., 2009. Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann. For. Sci. 66: 101.

    Article  Google Scholar 

  • Lambs L. and Berthelot M., 2002. Monitoring water from the underground to the tree: first results with a new sap extractor on a riparian woodland. Plant. Soil. 242: 197–207.

    Article  Google Scholar 

  • Lambs L., 2004. Interactions between groundwater and surface water at river banks and the confluence of rivers. J. Hydrol. 288: 312–326.

    Article  Google Scholar 

  • Lambs L., Muller E., and Fromard F., 2007. The guianese paradox: How can the freswater outflow from the Amazon increase the salinity of the Guianan shore? J. Hydrol. 342: 88–96.

    Article  Google Scholar 

  • Lambs L., Muller E., and Fromard F., 2008. Mangrove trees growing in a very saline condition but not using seawater. Rapid Commun. Mass Spectrom. 22: 2835–2843.

    Article  PubMed  CAS  Google Scholar 

  • Lescure J.P. and Tostain O., 1978. Les mangroves guyanaises. Bois et Forêts des Tropiques 220: 35–42.

    Google Scholar 

  • Lin G. and Sternberg L. da S.L., 1992. Comparative study of water uptake and photosynthetic gas exchange and plant growth of the red mangrove Rhizophora mangle L. Oecologia 90: 399–403.

    Article  Google Scholar 

  • Lüttschwager D. and Remus R., 2007. Radial distribution of sap flux density in trunks of a mature beech stand. Ann. For. Sci. 64: 431–438.

    Article  Google Scholar 

  • Ma L., Lu P., Zhao P., Rao X., Cai X., and Zeng X., 2008. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in South China. Ann. For. Sci. 65: 402.

    Article  Google Scholar 

  • Marchand C., Balzer F., Lallier-Vergès E., and Albéric P., 2004. Porewater chemistry in mangrove sediments: relationship with species composition and developmental stages (French Guiana). Mar. Geol. 208: 361–381.

    Article  CAS  Google Scholar 

  • Marchand C., Albéric P., Lallier-Vergès E., and Balzer F., 2006. Distribution and characteristics of dissolved organic matter in mangrove sediment pore waters along the coastline of French Guiana. Biogeochimistry 81: 59–75.

    Article  Google Scholar 

  • Medina E. and Francisco M., 1997. Osmolality and ?13C of leaf tissue of mangrove species from environments of contrasting rainfall and salinity. Estuar. Coast. Shelf S. 45: 337–344.

    Article  CAS  Google Scholar 

  • Passioura J.B., Ball M.C., and Knight J.H., 1992. Mangroves may salinize the soil and in doing so limit their transpiration rate. Funct. Ecol. 6: 476–481.

    Article  Google Scholar 

  • Popp M., 1995. Salt resistance in herbaceous halophytes and mangroves. Prog. Bot. 56: 416–429.

    CAS  Google Scholar 

  • Plaziat J.C. and Augustinus P.G.E.F., 2004. Evolution of progradation/erosion along the French Guiana mangrove coast: a comparison of mapped shorelines since the 18th century with Holocene data. Mar. Geol. 208: 127–143.

    Article  Google Scholar 

  • Saenger P., 2002. Mangrove ecology, silviculture and conservation. Kluwer Academic Publishers, Dordrecht, 372 p.

    Google Scholar 

  • Snedecker S.C. and Ajuro R.J., 1998. Stomatal conductance and gas exchange in four species of Caribbean mangroves exposed to ambient and increased CO2. Mar. Freshwater Res. 49: 325–327.

    Article  Google Scholar 

  • Scholander P.F., 1968. How mangrove desalinate seawater. Plant Physiol. 21: 251–261.

    Article  CAS  Google Scholar 

  • Sobrado M.A., 1999. Drought effect on photosynthesis of the mangrove Avicennia germinans under contrasting salinities. Trees 13: 125–130.

    Google Scholar 

  • Sobrado M.A., 2000. Relation of water transport to leaf gas exchange properties in the mangrove species. Trees-Struct. Funct. 14: 258–262.

    Google Scholar 

  • Sobrado M.A. and Ewe S.L., 2006. Ecophysiological characteristics of Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon, Florida. Trees 20: 679–687.

    Google Scholar 

  • Sternberg L.S.L. and Sternberg P.K., 1987. Utilization of freshwater and ocean water by coastal plants of southern Florida. Ecology 68: 1998–1905.

    Google Scholar 

  • Suarez N., Sobrado, M.A., and Medina E., 1998. Salinity effects on the leaf water relations components and ion accumulation patterns in Avicennia germinans (L.) seedlings. Oecologia 114: 299–304.

    Article  Google Scholar 

  • Tomlinson P.B., 1986. The botany of mangroves. Cambridge University Press, Cambridge, 436 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, E., Lambs, L. & Fromard, F. Variations in water use by a mature mangrove of Avicennia germinans, French Guiana. Ann. For. Sci. 66, 803 (2009). https://doi.org/10.1051/forest/2009079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009079

Keywords

Mots-clés