Skip to main content

The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe

Le genre Acacia comme envahisseur : caractéristiques du cas Acacia dealbata Link en Europe

Abstract

  • • We review current knowledge about the biology of the genus Acacia, and Acacia dealbata Link (silver wattle) in particular, as an invader in Europe, focusing on (i) the biology of the genus Acacia; (ii) biological attributes that are important for the invasiveness of the genus and A. dealbata; (iii) possible hypotheses for the invasion success; and (iv) control methods.

  • • Several Australian wattles have been recorded as naturalized in Europe. Acacia has attained pest proportions in certain habitats and protected sites (notably coastal dunes, river courses, natural parks and biosphere reserves).

  • • The spread of Acacia dealbata seems to be assisted by human interference such as soil disturbance and severe fires. The biological attributes favoring invasion by A. dealbata include tolerance of changing soil conditions, the ability to take advantage of environmental disturbance, phenotypic plasticity, vegetative reproduction, fire tolerance and allelopathic potential.

  • • Different hypotheses explaining invasiveness and transition between invasion steps related to biological attributes as the key factor for A. dealbata invasion are discussed. Effects on the biodiversity of native flora are little understood and studies of suppression of autochthonous species are needed. It is desirable that further studies comparing Acacia at field sites in their native and exotic range should be done.

  • • Understanding the biology of invasive wattles in Europe is the first step to an effective control method. Studies comparing plant invaders at field sites in their native and invaded areas seem to be most appropriate in order to be able to attack the most vulnerable stages.

Résumé

  • • Nous passons en revue les connaissances actuelles sur la biologie du genre Acacia et de Acacia dealbata Link, en particulier comme un envahisseur en Europe, en mettant l’accent sur : (i) la biologie du genre Acacia ; (ii) les attributs biologiques qui sont importants pour le caractère envahissant du genre et d’A. dealbata; (iii) les hypothèses possibles pour la réussite de l’invasion et (iv) les méthodes de contrôle.

  • • Plusieurs acacias australiens ont été enregistrés comme naturalisés en Europe. Acacia a atteint la proportion de nuisible dans certains habitats et sites protégés (notamment des dunes côtières, des cours d’eau, des parcs naturels et des réserves de la biosphère).

  • • La propagation de l’Acacia dealbata semble avoir été aidée par l’intervention humaine, telle que la perturbation des sols et de graves incendies. Les attributs biologiques favorisant l’invasion par A. dealbata incluent la tolérance aux changements des conditions du sol, la capacité à tirer profit des perturbations de l’environnement, la plasticité phénotypique, la reproduction végétative, la tolérance au feu, et le potentiel allélopathique.

  • • Différentes hypothèses expliquant le caractère invasif et la transition entre les phases de l’invasion en relation avec les attributs biologiques comme facteur clé pour l’invasion d’A. dealbata sont discutées. Les effets sur la biodiversité de la flore sont mal compris et des études sur la suppression des espèces autochtones sont nécessaires. Il est souhaitable que d’autres études comparant Acacia sur le terrain dans leurs sites et dans des régions exotiques soient faites.

  • • Comprendre la biologie des espèces d’Acacia invasives en Europe est la première étape d’une méthode de contrôle efficace. Les études comparant les envahisseurs végétaux sur le terrain dans leurs sites et dans les zones envahies semblent être plus appropriées afin d’être en mesure d’attaquer les étapes les plus vulnérables.

References

  • Adams M.A. and Attiwill P.M., 1982. Nitrogen mineralization and nitrate reduction in forest. Soil. Biol. Biochem. 14: 197–202.

    Article  CAS  Google Scholar 

  • Aguiar F.C., Moreira I., and Ferreira M.T., 2001. Exotic and native vegetation establishment following channelization of a western Iberian river. Regul. Rivers. Res. Manage. 17: 509–526.

    Article  Google Scholar 

  • Almeida J.D. and Freitas H., 2006. Exotic flora of continental Portugal — a reassessment. Botanica Compluteusis 30: 117–130.

    Google Scholar 

  • Alpert P., Bone E., and Holzapfel C., 2000. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants. Perspective Plant Ecol. Evol. Systematics 3: 52–66.

    Article  Google Scholar 

  • Anwar C., 1992. The growth of shorea seedlings on soil media of several age levels of Acacia mangium stands. Bul. Penelit. Hutan 544: 9–16.

    Google Scholar 

  • Austin D.F., 1978. Exotic plants and their effects in southeastern Florida. Environ. Conserv. 5: 25–34.

    Article  Google Scholar 

  • Ball M.C., Butterworth J., Roden J.S., Christian R., and Egerton J.J.G., 1995. Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiol. 22: 311–319.

    Article  Google Scholar 

  • Bashir Hussain S., 1991. Some observations on the effect of forest tree species on ground vegetation at Pabbi Forest, Kharian. Pak. J. For. 41: 173–177.

    Google Scholar 

  • Bauhus J., van Winden A.P., and Nicotra A.B., 2004. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can. J. For. Res. 34: 686–694.

    Article  Google Scholar 

  • Bernhard-Reversat F., 1999. The leaching of Eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in Congolese tree plantations. Appl. Soil Ecol. 12: 251–261.

    Article  Google Scholar 

  • Blakesley D., Allen A., Pellny T.K., and Roberts A.V., 2002. Natural and induced polyploidy in Acacia dealbata Link and Acacia mangium Wild. Ann. Bot. 90: 391–398.

    Article  CAS  Google Scholar 

  • Blossey B. and Nötzold R., 1995. Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis. J. Ecol. 83: 887–889.

    Article  Google Scholar 

  • Broadhurst L.M. and Young A.G., 2006. Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in southeast Australia. Biol. Conserv. 133: 512–526.

    Article  Google Scholar 

  • Brown J., Enright N.J., and Miller B.P., 2003. Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia. Austral Ecol. 28: 271–280.

    Article  Google Scholar 

  • Brown J.R. and Carter J., 1998. Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland. Landsc. Ecol. 13: 93–102.

    Article  Google Scholar 

  • Bruno J.F., Stachowicz J.J., and Bertness, 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18: 119–125.

    Article  Google Scholar 

  • Callaway R.M. and Aschehoug E.T., 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Callaway R.M. and Ridenour W.M., 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2: 436–443.

    Article  Google Scholar 

  • Callaway R.M., Pennings S.C., and Richards C.L., 2003. Phenotypic plasticity and interactions among plants. Ecol. 84: 1115–1128.

    Article  Google Scholar 

  • Carballeira A. and Reigosa M.J., 1999. Effects of natural leachates of Acacia dealbata Link in Galicia (NW Spain). Bot. Bull. Acad. Sin. 40: 87–92.

    Google Scholar 

  • Carr G.W., 2001. Australian plants as weeds in Victoria. Plant Prot. Q. 16: 124–125.

    Google Scholar 

  • Cheal D., 2002. Acacia obtusifolia — introduction and spread in native bush. Vic. Nat. 119: 231–232.

    Google Scholar 

  • Chou C.H., Fu C.Y., Li S.Y., and Wang Y.F., 1998. Allelopathic potential of Acacia confusa and related species in Taiwan. J. Chem. Ecol. 24: 2131–2150.

    Article  CAS  Google Scholar 

  • Chytrý M., PyÄ›k P., Wild J., Pino J., Maskell L.C., and Vilà M., 2009. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15: 98–107.

    Article  Google Scholar 

  • Coetzee B.W.T., van Rensburg B.J., and Robertson M.P., 2007. Invasion of grasslands by silver wattle, Acacia dealbata (Mimosaceae), alters beetle (Coleoptera) assemblage structure. Afric. Entomol. 15: 328–339.

    Article  Google Scholar 

  • Colautti R.I., Grigorovich I.A., and MacIsaac H.J., 2006. Propagule pressure: a null model for biological invasions Biol. Invasions 8: 1023–1037.

    Article  Google Scholar 

  • Cronk Q.B. and Fuller J.L., 1995. Plant invaders, Chapman and Hall, London, UK.

    Google Scholar 

  • Danthu P., Ndongo M., Diaou M., Thiam O., Sarr A., Dedhiou B., and et al., 2003. Impact of bush fire on germination of some West African acacias. For. Ecol. Manage. 173: 1–10.

    Article  Google Scholar 

  • Davidson D.W. and Morton S.R., 1984. Dispersal adaptations of some Acacia species in the Australian arid zone. Ecology 65: 1038–1051.

    Article  Google Scholar 

  • Davis M.A., Grime J.P., and Thompson K., 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88: 528–534.

    Article  Google Scholar 

  • De Neergaard A., Saarnak C., Hill T., Khanyile M., Berzosa A.M., and Birch-Thomsen T., 2005. Australian wattle species in the Drakensberg region of South Africa — an invasive alien or a natural resource? Agric. Syst. 85: 216–233.

    Article  Google Scholar 

  • Dennill G.B. and Donnelly D., 1991. Biological control of Acacia longifolia and related weed species (Fabaceae) in South Africa. Agric. Ecosyst. Environ. 37: 115–135.

    Article  Google Scholar 

  • Di Castri F., 1989. History of biological invasions with special emphasis on the Old World. In: Drake J.A., Mooney H.A., di Castri F., Groves R.H., Kruger F.J., Rejmánek M., and Williamson M. (Eds.), Biological invasions: a global perspective, John Wiley & Sons, New York, USA.

    Google Scholar 

  • Dudley J.P., 1999. Seed dispersal of Acacia erioloba by African bush elephants in Hawange National Park, Zimbabwe. Afr. J. Ecol. 37: 375–385.

    Article  Google Scholar 

  • Edwards W. and Westoby M., 1996. Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrasts. J. Biogeogr. 23: 329–338.

    Article  Google Scholar 

  • Elton C.S., 1958. The ecology of invasions by animals and plants, Methuen, London, UK.

    Google Scholar 

  • Freire C.S., Coelho D.S., Santos N.M., Silvestre A.J., and Pascoal Neto C., 2005. Identification of Δ7-phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 40: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Freire C.S.R., Silvestre A.J.D., and Pascoal Neto C., 2007. Demonstration of long-chain n—alkyl caffeates and Δ7-steryl glucosides in the bark of Acacia species by gas chromatography-mass spectrometry. Phytochem. Anal. 18: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • French K. and Major R.E., 2001. Effect of an exotic Acacia (Fabaceae) on ant assemblages in South African fynbos. Austral Ecol. 26: 303–310.

    Article  Google Scholar 

  • Gerald E. and Obua J., 2005. Tree condition and natural regeneration in disturbed sites of Bwindi Impenetrable Forest National Park, southwestern Uganda. Trop. Ecol. 46: 99–111.

    Google Scholar 

  • Gómez C. and Espadaler X., 1998. Myrmecochorous dispersal distances: a world survey. J. Biogeogr. 25: 573–580.

    Article  Google Scholar 

  • González L., Souto X.C., and Reigosa M.J., 1995. Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition. Forest Ecol. Manage. 77: 53–63.

    Article  Google Scholar 

  • Gray A., 1879. The predominance and pertinacity of weeds. Am. J. Sci. Arts 118: 161–167.

    Google Scholar 

  • Hadacek F., 2002. Secondary metabolites as plant traits: current assessment and future perspectives. Crit. Rev. Plant Sci. 21: 273–322.

    Article  CAS  Google Scholar 

  • Heil M., Delsinne T., Hilpert A., Schürkens S., Andary C., Linsenmair K.E. et al., 2002. Reduced chemical defense in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos 99: 457–468.

    Article  CAS  Google Scholar 

  • Hickey J.E., 1994. A floristic comparison of vascular species in Tasmanian oldgrowth mixed forest with regeneration resulting from logging and wildfire. Aust. J. Bot. 42: 383–404.

    Article  Google Scholar 

  • Hierro J.L., Maron J.L., and Callaway R.M., 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93: 5–15.

    Article  Google Scholar 

  • Hoffmann J.H., Impson F.A.C., Moran V.C., and Donnelly D., 2002. Biological control of invasive golden wattle trees (Acacia pycantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae), in South Africa. Biol. Control 25: 64–73.

    Article  Google Scholar 

  • Horvitz C.C. and Beattie A.J., 1980. Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. Am. J. Bot. 67: 321–326.

    Article  Google Scholar 

  • Hunt A.M., Unwin G.L., and Beadle C.L., 1999. Effects of naturally regenerated Acacia dealbata on the productivity of a Eucalyptus nitens plantation in Tasmania, Australia. For. Ecol. Manage. 117: 75–85.

    Article  Google Scholar 

  • Imperato F., 1982. A chalcone glycoside from Acacia dealbata. Phytochemistry 21: 480–481.

    Article  CAS  Google Scholar 

  • Inderjit, Callaway R.M., and Vivanco J.M. 2006. Plant biochemistry helps to understand invasion ecology. Trends Plant Sci. 11: 574–580.

    Article  PubMed  CAS  Google Scholar 

  • Jadhav B.B. and Gaynar D.G., 1992. Allelopathic effects of Acacia auriculiformis A. Cunn on germination of rice and cowpea. Indian J. Plant. Physiol. 35: 86–89.

    Google Scholar 

  • Keane R.M. and Crawley M.J., 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17: 164–170.

    Article  Google Scholar 

  • Kenrick J., 2003. Review of pollen-pistil interactions and their relevance to reproductive biology of Acacia. Aust. Syst. Bot. 16: 119–130.

    Article  Google Scholar 

  • Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W., and Maywald G.F., 2003b. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40: 111–124.

    Article  Google Scholar 

  • Kulkarni M.G., Sparg S.G., and Van Staden J., 2007. Germination and post-germination response of Acacia seeds to smoke-water and butenolide, a smoke-derived compound. J. Arid Environ. 69: 177–187.

    Article  Google Scholar 

  • Kunii Y., Otsuka M., Kashino S., Takeuchi H., and Ohmori S., 1996. 4-Hydroxypipecolic acid and pipecolic acid in Acacia species: their determination by High-Performance Liquid Chromatography, its application to leguminous plants, and configuration of 4-hydroxypipecolic acid. J. Agric. Food. Chem. 44: 483–487.

    Article  CAS  Google Scholar 

  • Lake J.C. and Leishman M.R., 2004. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol. Conserv. 117: 215–226.

    Article  Google Scholar 

  • Lambers H., Chapin III F.S., and Pons T.L., 1998. Plant physiological ecology, Springer, Berlin, Germany.

    Google Scholar 

  • Lamprey H.F., 1967. Notes on the dispersal and germination of some tree seeds through the agency of mammals and birds. East Afr. Wildl. J. 5: 179–180.

    Google Scholar 

  • Lamprey H.F., Halevy G., and Makacho S., 1974. Interactions between Acacia, bruchid seed beetles and large herbivores. East Afr. Wildl. J. 12: 81–85.

    Google Scholar 

  • Lonsdale W.M., 1999. Global patterns of plant invasions and the concept of invisibility. Ecology 80: 1522–1536.

    Article  Google Scholar 

  • Lorenzo P., Pazos-Malvido E., González L., and Reigosa M.J., 2008. Allelopathic interference of invasive Acacia dealbata: physiological effects. Allelopathy J. 22: 452–462.

    Google Scholar 

  • Lortie C.J., Brooker R.W., Choler P., Kikvidze Z., Michalet R., Pugnaire F.I., and Callaway R.M., 2004. Rethinking plant community theory. Oikos 107: 433–438.

    Article  Google Scholar 

  • Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M., and Bazzaz F.A., 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10: 689–710.

    Article  Google Scholar 

  • Marchante H., Marchante E., Buscardo E., Maia J., and Freitas H., 2004. Recovery potential of dune ecosystems invaded by the exotic species Acacia longifolia. Weed Technol. 18: 1427–1433.

    Article  Google Scholar 

  • Martínez J., Vega-Garcia, C., and Chuvieco, E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 90: 1241–1252.

    Article  Google Scholar 

  • Maslin B.R., Miller J.T., and Seigler D.S., 2003. Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust. Syst. Bot. 16: 1–18.

    Article  Google Scholar 

  • Maslin R. and McDonald M.W., 2004. Acacia Search. Evaluation of Acacia as a woody crop option for southern Australia, RIRDC. Union Offset Printers, Canberra, Australia.

    Google Scholar 

  • May B.M. and Attiwill P.M., 2003. Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For. Ecol. Manage. 181: 339–355.

    Article  Google Scholar 

  • Midgley J.J. and Bond W.J., 2001. A synthesis of the demography of African acacias. J. Trop. Ecol. 17: 871–886.

    Article  Google Scholar 

  • Murphy H.T., Van der Wal, J., Lovett-Doust L., and Lovett-Doust J., 2006. Invasiveness in exotic plants: immigration and naturalization in an ecological continuum. In: Cadotte M.W., McMahon S.M., and Fukami T. (Eds.), Conceptual ecology and invasion biology: reciprocal approaches to nature, Dordrecht, Netherlands.

  • Or K. and Ward, 2003. Three-way interactions between Acacia, large herbivores and bruchid beetles: a review. Afr. J. Ecol. 41: 257–265.

    Article  Google Scholar 

  • Orchard A.E. and Maslin B.R., 2003. Proposal to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type. Taxon 52: 362–363.

    Article  Google Scholar 

  • Osunkoya O.O., Bujang D., Moksin H., Wimmer F.L., and Holige T.M., 2004. Leaf properties and construction costs of common, cooccurring plant species of disturbed heath forest in Borneo. Aust. J. Bot. 52: 499–507.

    Article  Google Scholar 

  • Osunkoya O.O., Othman F.E., and Kahar R.S., 2005. Growth and competition between seedlings of an invasive plantation tree, Acacia mangium, and those of a native Borneo heath-forest species, Nelastoma beccarianum. Ecol. Res. 20: 205–214.

    Article  Google Scholar 

  • Pereira F.B.M., Domingues F.M.J., and Silva A.M.S., 1996. Triterpenes from Acacia dealbata. Nat. Prod. Lett. 8: 97–103.

    CAS  Google Scholar 

  • Pohlman C.L., Nicotra A.B., and Murray B.R., 2005. Geographic range size, seedling ecophysiology and phenotypic plasticity in Australian Acacia species. J. Biogeogr. 32: 351.

    Article  Google Scholar 

  • ProcheÅŸ Åž., Wilson J.R.U., Richardson D.M., and Chown S.L., 2008. Herbivores, but not other insects, are scarce on alien plants. Austral Ecol. 33: 691–700.

    Article  Google Scholar 

  • Rafiqul Hoque A.T.M., Ahmed R., Uddin M.B., and Hossain M.K., 2003. Allelopathic effect of different concentration of water extracts of Acacia auriculiformis leaf on some initial growth parameters of five common agricultural crops. Pak. J. Agron. 2: 92–100.

    Google Scholar 

  • Rama Devi S. and Prasad M.N.V., 1991. Tannins and related polyphenols from ten common Acacia species of India. Bioresour. Technol. 36: 189–192.

    Article  Google Scholar 

  • Razanamandranto S., Tigabu M., Neya S., and Oden P.C., 2004. Effects of gut treatment on recovery and germinability of bovine and ovine ingested seeds of four woody species from the Sudanian savanna in West Africa. Flora 199: 389–397.

    Google Scholar 

  • Reigosa M.J., 1987. Estudio del potencial alelopático de Acacia dealbata Link. Ph.D. thesis, Universidad de SantiagoSantiago de Compostela, Spain.

    Google Scholar 

  • Reigosa M.J., Souto X.C., and Gonzalez L., 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28: 83–88.

    Article  CAS  Google Scholar 

  • Rice E.L., 1984. Allelopathy, Acacemic Press, Orlando, Florida.

    Google Scholar 

  • Rouget M. and Richardson D.M., 2003. Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environment factors. Am. Nat. 162: 713–724.

    Article  PubMed  Google Scholar 

  • Schumann W., Little K.M., and Eccles N.S., 1995. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12: 170–172.

    Google Scholar 

  • Sedgley M. and Harbard J., 1993. Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae, Mimosoideae). Aust. J. Bot. 40: 601–609.

    Article  Google Scholar 

  • Seigler D.S., 2002. Economic potential from Western Australian Acacia species: secondary plant products. Conserv. Sci. W. Aust. 4: 109–116.

    Google Scholar 

  • Seigler D.S., 2003. Phytochemistry of Acacia-sensu lato. Biochem. Syst. Ecol. 31: 845–873.

    Article  CAS  Google Scholar 

  • Sharma G.P., Raghubanshi A.S., and Singh J.S., 2005a. Lantana invasion: An overview. Weed Biol. Manag. 5: 157–165.

    Article  Google Scholar 

  • Sharma G.P., Singh J.S., and Raghubanshi A.S., 2005b. Plant invasions: emerging trends and future implications. Curr. Sci. India 88: 726–734.

    Google Scholar 

  • Sheppard A.W., Shaw R.H., and Sforza R., 2006. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res. 46: 93–117.

    Article  Google Scholar 

  • Snyder R.E. and Chesson, P., 2004. How the scales of dispersal, competition, and environmental heterogeneity interact of affect coexistence. Am. Nat. 164: 633–650.

    Article  PubMed  Google Scholar 

  • Souto X.C., Bolano J.C., Gonzalez L., and Reigosa M.J., 2001. Allelopathic effects of tree species on some soil microbial populations and herbaceous plants. Biol. Plant. 44: 269–275.

    Article  Google Scholar 

  • Spooner P.G., 2005. Response of Acacia species to disturbance by road-works in roadside environments in southern New Wales, Australia. Biol. Conserv. 122: 231–242.

    Article  Google Scholar 

  • Stone G.N., Raine N.E., Prescott M., and Willmer P.G., 2003. Pollination ecology of acacias (Fabaceae, Mimosoideae). Aust. Syst. Bot. 16: 103–118.

    Article  Google Scholar 

  • Sultan S.E., 1995. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44: 363–383.

    Google Scholar 

  • Theoharides K.A. and Dukes J.S., 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176: 256–273.

    Article  PubMed  Google Scholar 

  • Tutin T.G., Burger N.A., Chater A.O., Edmonsen J.R., Heywood V.H., Moore D.M. et al., 2001. Flora Europaea V, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Tybirk K., 1993. Pollination, breeding system and seed abortion in some African acacias. Bot. J. Linn. Soc. 112: 107–137.

    Article  Google Scholar 

  • Varela O. and Bucher E.H., 2006. Passage time, viability, and germination of seeds ingested by foxes. J. Arid Environ. 67: 566–578.

    Article  Google Scholar 

  • Whitney K.D., 2002. Dispersal for distance? Acacia ligulata seeds and meat ants Iridomyrmex viridiaeneus. Austral Ecol. 27: 589–595.

    Article  Google Scholar 

  • Wilcock C. and Neiland R., 2002. Pollination failure in plants: why it happens and when it matters. Trends Ecol. Evol. 7: 270–277.

    CAS  Google Scholar 

  • Wright I.J., Reich P.B., and Westoby M., 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Funct. Ecol. 15: 423–434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís González.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Lorenzo, P., González, L. & Reigosa, M.J. The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann. For. Sci. 67, 101 (2010). https://doi.org/10.1051/forest/2009082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009082

Keywords

Mots-clés