Skip to main content
  • Letter to the Editor
  • Open access
  • Published:

A leap forward in geographic scale for forest ectomycorrhizal fungi

Conclusion

The functionally critical role of mycorrhizal fungi in forest ecosystems, and the imminent threat of climate change that may act to alter mycorrhizal functional biodiversity, means there is an urgent need for a regional to continental-scale assessment of mycorrhizal distributions. Until recently, it had not been possible to cost-effectively assess mycorrhizas precisely and accurately. A large-scale survey of ICP Forests plots would be only the first stage in answering many of the questions outlined above, but it is essential if future studies are going to address these questions with hypothesis-driven research in a cohesive manner, rather than remain independent for lack of a unified approach. The chance to utilise the vast network of biomonitoring plots at this time is a remarkable opportunity because it minimises the logistics and costs associated with achieving such an enormous effort and provides a rare stable — past and future — ground for forest ecosystem scientific investigation. In the face of rapid global change, we finally have an opportunity to accurately integrate mycorrhizal distribution data with long-term environmental monitoring, providing a basic understanding of functionally crucial organisms, and at the same time creating an invaluable resource for future research.

References

  • Alberton O. and Kuyper T.W., 2009. Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: Implications for ecosystem responses to global change. Glob. Change Biol. 15: 166–175.

    Article  Google Scholar 

  • Arnolds E., 1991. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35: 209–244.

    Article  Google Scholar 

  • Avis P.G., Branco S., Tang Y., and Mueller G.M., 2009. Pooled samples bias fungal community descriptions. Mol. Ecol. Resour. Doi: 10.1111/j.1755-0998.2009.02743.x.

  • Baxter J.W. and Dighton J., 2005. Diversity-functioning relationships in ectomycorrhizal fungal communities. In: Dighton J., White J.F., and Oudemans P. (Eds.) The fungal community: Its organization and role in the ecosystem, Marcel Dekker, New York, pp. 383–398.

    Google Scholar 

  • Bidartondo M.I., Ek H., Wallander H., and Söderström B., 2001. Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytol. 151: 543–550.

    Article  CAS  Google Scholar 

  • Børja I. and Nilsen P., 2009. Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old scots pine (Pinus sylvestris L.) stands. Plant Soil 314: 109–119.

    Article  Google Scholar 

  • Brock P.M., Döring H., and Bidartondo M.I., 2009. How to know unknown fungi: the role of a herbarium. New Phytol. 181: 719–724.

    Article  PubMed  Google Scholar 

  • Buee M., Reich M., Murat C., Morin E., Nilsson R.H., Uroz S., and Martin F., 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184: 438–448.

    Article  Google Scholar 

  • Chapela I.H., Osher L.J., Horton T.R., and Henn M.R., 2001. Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol. Biochem. 33: 1733–1740.

    Article  CAS  Google Scholar 

  • Courtecuisse R., Moreau P.-A., and Daillant O., 2008. Suivi de la flore fongique : une énorme diversité difficile à mesurer — Partenariat avec les sociétés mycologiques de France. In: 15 Ans de suivi des écosystèmes forestiers, Hors Série no. 4, Rendez-Vous Techniques, Office National des Forêts, pp. 99–102.

  • Ellis C.J., Coppins B.J., Dawson T.P., and Seaward M.R.D., 2007. Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol. Conserv. 140: 217–235.

    Article  Google Scholar 

  • Fransson P.M.A., Anderson I.C., and Alexander I.J., 2007. Does carbon partitioning in ectomycorrhizal pine seedlings under elevated CO2 vary with fungal species? Plant Soil 291: 323–333.

    Article  CAS  Google Scholar 

  • Gardes M. and Bruns T.D., 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Above- and below-ground views. Can. J. Bot. 74: 1572–1583.

    Article  Google Scholar 

  • Gehring C.A., Theimer T.C., Whitham T.G., and Keim P., 1998. Ectomycorrhizal fungal community structure of pinyon pines growing in environmental extremes. Ecology 79: 1562–1572.

    Article  Google Scholar 

  • Gorissen A. and Kuyper T.W., 2000. Fungal species-specific responses of ectomycorrhizal scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol. 146: 163–168.

    Article  CAS  Google Scholar 

  • Hedh J., Samson P., Erland S., and Tunlid A., 2008. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus. Mycol. Res. 112: 965–975.

    Article  PubMed  CAS  Google Scholar 

  • Hobbie J.E. and Hobbie E.A., 2006. N15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87: 816–822.

    Article  PubMed  Google Scholar 

  • Högberg P., Nordgren A., Buchmann N., Taylor A.F.S., Ekblad A., Högberg M.N., Nyberg G., Ottosson-Löfvenius M., and Read D.J., 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789–792.

    Article  PubMed  Google Scholar 

  • Horton T.R. and Bruns T.D., 2001. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Mol. Ecol. 10: 1855–1871.

    Article  PubMed  CAS  Google Scholar 

  • Johnson N.C., Graham J.H., and Smith F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575–586.

    Article  Google Scholar 

  • Kauserud H., Sige L.C., Vik J.O., Økland R.H., Høiland K., and Stenseth N.C., 2008. Mushroom fruiting and climate change. Proc. Natl. Acad. Sci. USA 105: 3811–3814.

    Article  PubMed  CAS  Google Scholar 

  • Koide R.T., Xu B., and Sharda J., 2005. Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol. 166: 251–262.

    Article  PubMed  Google Scholar 

  • Kretzer A., Dunham S., Molina R., and Spatafora J.W., 2004. Microsatellite markers reveal the below ground distribution of genets in two species of rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161: 313–320.

    Article  CAS  Google Scholar 

  • Lilleskov E.A., Fahey T.J., Horton T.R., and Lovett G.M., 2002a. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83: 104–115.

    Article  Google Scholar 

  • Lilleskov E.A., Hobbie E.A., and Fahey T.J., 2002b. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol. 154: 219–231.

    Article  CAS  Google Scholar 

  • Lilleskov E.A. and Parrent J.L., 2007. Can we develop general predictive models of mycorrhizal fungal community-environment relationships? New Phytol. 174: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Molina R., Massicotte H., and Trappe J.M., 1992. Specificity phenomena in mycorrhizal symbioses: Community-ecological consequences and practical implications. In: Allen M.F. (Ed.), Mycorrhizal functioning: an integrative plant-fungal process, New York, Chapman and Hall, pp. 357–423.

    Google Scholar 

  • Nilsson R.H., Kristiansson E., Ryberg M., Hallenberg N., and Larsson K.H., 2008. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4: 193–201.

    PubMed  Google Scholar 

  • Peay K.G., Kennedy P.G., and Bruns T.D., 2008. Fungal community ecology: A hybrid beast with a molecular master. Bioscience 58: 799–810.

    Article  Google Scholar 

  • Rinaldi A.C., Comandini O., and Kuyper T.W., 2008. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 33: 1–45.

    Google Scholar 

  • Smith S.E. and Read D.J., 2008. Mycorrhizal symbiosis. Academic Press, London.

    Google Scholar 

  • Taylor A.F.S., 2002. Fungal diversity in ectomycorrhizal communities: Sampling effort and species detection. Plant Soil 244: 19–28.

    Article  CAS  Google Scholar 

  • Wang B. and Qiu Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa Cox.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Cox, F., Barsoum, N., Bidartondo, M.I. et al. A leap forward in geographic scale for forest ectomycorrhizal fungi. Ann. For. Sci. 67, 200 (2010). https://doi.org/10.1051/forest/2009107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009107

Keywords