Skip to main content

Integrating functional diversity into tropical forest plantation designs to study ecosystem processes

Diversité fonctionnelle et processus écosystémiques dans des assemblages synthétiques d’espèces d’arbres de forêt tropicale

Abstract

  • • The elucidation of relationships between biodiversity and ecosystem processes has been limited by the definition of metrics of biodiversity and their integration into experimental design. Functional trait screening can strengthen the performance of these designs.

  • • We suggest the use of Rao’s quadratic entropy to measure both functional diversity and phylogenetic diversity of species mixtures proposed for an experimental design, and demonstrate how they can provide complementary information.

  • • We also present an index assessing the statistical performance of these independent variables in different experimental designs. Measurement of independent variables as continuous vs. discrete variables reduces statistical performance, but improves the model by quantifying species differences masked by group assignments.

  • • To illustrate these advances, we present an example from a tropical forest tree community in which we screened 38 species for nine functional traits. The proposed TropiDEP design is based on the relative orthogonality of two multivariate trait axes defined using principal component analysis.

  • • We propose that independent variables describing functional diversity might be grouped to calculate independent variables describing suites of different traits with potentially different effects on particular ecosystem processes. In other systems these axes may differ from those reported here, yet the methods of analysis integrating functional and phylogenetic diversity into experimental design could be universal.

Résumé

  • • La compréhension des relations pouvant exister entre biodiversité et fonctionnement des écosystèmes a été longtemps limitée par la définition de méthodes de quantification de la diversité biologique et la mise en œuvre de dispositifs expérimentaux permettant sa mesure. L’identification de syndromes de traits fonctionnels clefs influençant des fonctions écosystémiques particulières peut renforcer la performance de ces dispositifs.

  • • Nous suggérons l’utilisation de l’entropie quadratique de Rao pour mesurer la diversité fonctionnelle et phylogénétique dans des assemblages synthétiques d’espèces, et montrons comment ces mesures de diversité sont complémentaires.

  • • Nous présentons également un indice permettant de tester la performance statistique de ces variables indépendantes dans différents modèles expérimentaux. L’utilisation de variables indépendantes continues plutôt que discrètes réduit la performance statistique mais améliore le modèle en quantifiant les différences fonctionnelles entre espèces ; différences généralement masquées lors de leur assignation en groupes fonctionnels.

  • • Pour illustrer ces avancées, nous présentons un exemple d’assemblages synthétiques à partir de 38 espèces d’arbres de forêt tropicale sélectionnées pour 9 traits fonctionnels (TropiDEP). Le plan d’expérience de TropiDEP est basé sur l’orthogonalité relative de deux axes multivariés de traits fonctionnels définis par analyse en composantes principales.

  • • Nous proposons que les variables décrivant la diversité fonctionnelle soient groupées pour calculer des variables indépendantes, divisées en plusieurs axes décrivant des combinaisons de différents traits pouvant influencer des processus différents de l’écosystème (e.g. processus du N et du C). Dans d’autres systèmes, ces axes peuvent différer de ceux présentés ici, mais les méthodes d’analyse peuvent être universelles.

References

  • Bonal D., Sabatier D., Montpied P., Tremeaux D., and Guehl J.M., 2000. Interspecific variability of δ13C among canopy trees in rainforests of French Guiana: Functional groups and canopy integration. Oecologia 124: 454–468.

    Article  Google Scholar 

  • Botta-Dukát Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16: 533–540.

    Article  Google Scholar 

  • Cardinale B.J., Wrigh J.P., Cadotte M.W., Carroll I.T., Hector A., Srivastava D.S. et al., 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci., USA, 104: 18123–18128.

    PubMed  Article  CAS  Google Scholar 

  • Chapin F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L., Hooper D.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M.C., and Diaz S., 2000. Consequences of changing biodiversity. Nature 405: 234–242.

    PubMed  Article  CAS  Google Scholar 

  • Chave J., Muller-Landau H.C., Baker T.R., Easdale T.A., Ter Steege, H., and Webb C.O., 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16: 2356–2367.

    PubMed  Article  Google Scholar 

  • Chessel D., Dufour, A.B., and Thioulouse, J., 2004. The ade4 package-I-One-table methods. R News. 4: 5–10.

    Google Scholar 

  • Cochran W.G. and Cox G.M., 1992. Experimental Designs, John Wiley and Sons, New York, 428 p.

    Google Scholar 

  • Cornelissen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., and Poorter H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51: 335–380.

    Article  Google Scholar 

  • Craine J.M., Tilman D., Wedin D., Reich P., Tjolker M., and Knops J., 2002. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct. Ecol. 16: 563–574.

    Article  Google Scholar 

  • Davies T.J., Barraclough T.G., Chase M.W., Soltis P.S., Soltis D.E., and Savolainen V., 2004. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl. Acad. Sci. USA 101: 1904–1909.

    PubMed  Article  CAS  Google Scholar 

  • Diaz S. and Cabido M., 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16: 646–655.

    Article  Google Scholar 

  • Ewel J.J., 2006. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities. Ecol. Appl. 16: 490–502.

    PubMed  Article  Google Scholar 

  • Faith D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 1–10.

    Article  Google Scholar 

  • Fargione J., Tilman D., Dybzinski R., Lambers J.H.R., Clark C., Harpole W.S. et al., 2007. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. Roy. Soc. B. 274: 871–876.

    Article  Google Scholar 

  • Forest F., Grenyer R., Rouget M. et al., 2006. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757–760.

    Article  Google Scholar 

  • Gamfeldt L., Hillebrand H., and Jonsson P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89: 1223–1231.

    PubMed  Article  Google Scholar 

  • Gotelli N.J. and Graves G.R., 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, 368 p.

    Google Scholar 

  • Grime J.P., Thompson K., Hunt R., Hodgson J.G., Cornelissen J.H.C., Rorison I.H. et al., 1997. Integrated screening validates primary axes of specialization in plants. Oikos 79: 259–281.

    Article  Google Scholar 

  • Hector A. and Bagchi R., 2007. Biodiversity and ecosystem multifunctionality. Nature 448: 188–190.

    PubMed  Article  CAS  Google Scholar 

  • Hillebrand H., Bennett D.M., and Cadotte M.W., 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89: 1510–1520.

    PubMed  Article  Google Scholar 

  • Hooper D.U. and Dukes J.S., 2004. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7: 95–105.

    Article  Google Scholar 

  • Hooper D.U., Chapin F.S., Ewel J.J., Hector A., Inchausti P., Lavorel S., Lawton J.H., Lodge D.M., Loreau M., Naeem S., Schmid B., Setala H., Symstad A.J., Vandermeer J., and Wardle D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol. Monogr. 75: 3–36.

    Article  Google Scholar 

  • Huston M.A., Aarssen L.W., Austin M.P., Cade B.S., Fridley J.D., Garnier E., Grime J.P., Hodgson J., Lauenroth W.K., Thompson K., Vandermeer J.H., and Wardle D.A., 2000. No consistent effect of plant diversity on productivity. Science 289: 1255.

    PubMed  Article  CAS  Google Scholar 

  • Isbell F.I., Polley H.W., and Wilsey, B.J., 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01299.x.

  • Lamb D., Erskine P.D., and Parotta J., 2005. Restoration of degraded tropical forest landscapes. Science 310: 1628–1632.

    PubMed  Article  CAS  Google Scholar 

  • Loreau M. and Hector A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    PubMed  Article  CAS  Google Scholar 

  • Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J.P., Hector A. et al., 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.

    PubMed  Article  CAS  Google Scholar 

  • Mason N.W.H., MacGillivray K., Steel J.B., and Wilson J.B., 2003. An index of functional diversity. J. Veg. Sci. 14: 571–578.

    Article  Google Scholar 

  • Moles A.T., Ackerly D.D., Webb C.O., Tweddle J.C., Dickie J.B., and Westoby M., 2005. A brief history of seed size. Science 307: 576–580

    PubMed  Article  CAS  Google Scholar 

  • Naeem S. and Wright J.P., 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol. Lett. 6: 567–579.

    Article  Google Scholar 

  • Parotta J.A. and Knowles O.H., 1999. Restoration of tropical moist forest on bauxite-mined lands in the Brazilian Amazon. Restor. Ecol. 7: 103–116.

    Article  Google Scholar 

  • Pavoine S., Ollier S., and Dufour A.-B., 2005. Is the originality of a species measurable? Ecol. Lett. 8: 579–586.

    Article  Google Scholar 

  • Petchey O.L. and Gaston K.J., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9: 741–758.

    PubMed  Article  Google Scholar 

  • Petchey O.L., Hector A., and Gaston K.J., 2004. How do different measures of functional diversity perform? Ecology 85: 847–857.

    Article  Google Scholar 

  • Phillips O.L., Malhi Y., Higuchi N., Laurance W.F., Núñez P.V., Vásquez R.M., Laurance S.G., Ferreira L.V., Stern M., Brown S., and Grace J., 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282: 439–442.

    PubMed  Article  CAS  Google Scholar 

  • Polley H.W., Wilsey B.J., and Derner J.D., 2007. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos 116: 2044–2052.

    Article  Google Scholar 

  • Rao C.R., 1982. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21: 24–43.

    Article  Google Scholar 

  • Reich P., Tilman D., Naeem S., Ellsworth D., Knops J., Craine J. et al., 2004. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc. Natl. Acad. Sci. USA 101: 10101–10106.

    PubMed  Article  CAS  Google Scholar 

  • Ricotta C., 2005. A note on functional diversity measures. Basic Appl. Ecol. 6: 479–486.

    Article  Google Scholar 

  • Roggy J.C., Prévost M.F., Gourbière F., Casabianca H., and Garbaye J., 1999. Leaf natural 15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120: 171–182.

    Article  Google Scholar 

  • Roscher C., Schumacher J., Baade J., Wilcke W., Gleixner G., Weisser W.W. et al., 2004. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5: 107–121.

    Article  Google Scholar 

  • Scherer-Lorenzen M., Potvin C., Koricheva J., Schmid B., Hecto, A., Bornik Z., Reynolds G., and Schulze E.-D., 2005. The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M., Korner C., and Schulze E.-D. (Eds.), Forest Diversity and Function: Temperate and Boreal Systems, Springer-Verlag, Berlin, pp. 347–376.

    Google Scholar 

  • Schimann H., Ponton S., Hattenschwiler S., Ferry B., Lensi R., Domenach A.M., and Roggy J.C., 2008. Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: Evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40: 487–494.

    Article  CAS  Google Scholar 

  • Schwartz M.W., Brigha, C.A., Hoeksema J.D., Lyons K.G., Mills M.H., and van Mantgem P.J., 2000. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122: 297–305.

    Article  Google Scholar 

  • Simpson E.H., 1949. Measurement of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Tilman D., Reich P.B., Knops J., Wedin D., Mielke T., and Lehman C., 2001. Diversity and productivity in a long-term grassland experiment. Science 294: 843–845.

    PubMed  Article  CAS  Google Scholar 

  • Wojciechowski M.F., Lavin M., and Sanderson M.J., 2005. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot. 91: 1846–1862.

    Article  Google Scholar 

  • Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F. et al., 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.

    PubMed  Article  CAS  Google Scholar 

  • Wright J.P., Naeem S., Hector A., Lehma, C., Reich P.B., Schmid B., and Tilman D., 2006. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol. Lett. 9: 111–120.

    PubMed  Article  Google Scholar 

  • Zhang Q.G. and Zhang D.Y., 2007. Colonization sequence influences selection and complementarity effects on biomass production in experimental algal microcosms. Oikos 116: 1748–1758.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Baraloto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baraloto, C., Marcon, E., Morneau, F. et al. Integrating functional diversity into tropical forest plantation designs to study ecosystem processes. Ann. For. Sci. 67, 303 (2010). https://doi.org/10.1051/forest/2009110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009110

Keywords

  • complementarity
  • ecosystem function
  • functional groups
  • leaf economics spectrum
  • nitrogen fixation
  • quadratic entropy

Mots-clés

  • complémentarité
  • fonctions de l’écosystème
  • groupes fonctionnels
  • schéma universel de fonctionnement foliaire des végétaux
  • fixation biologique du N
  • entropie quadratique