Skip to main content

Relationships of climate and cell features in stems and roots of black spruce and balsam fir

Relations entre climat et caractéristiques cellulaires dans la tige et les racines de l’épinette noire et du sapin baumier

Abstract

  • • The anatomical differences of mature black spruces and balsam firs were examined at stem and root level in order to characterize their wood properties at cellular level and link these differences to climate.

  • • Anatomical variability of these species was evaluated in relation to climate data gathered from 2001 to 2004 during the cell enlargement (CE) and wall thickening and lignification (WTL) phases. Lumen area, single cell wall thickness and total tracheid radial diameter were analyzed and regrouped into earlywood and latewood.

  • • Results from a principal component analysis (PCA) indicated that both first eigenvectors account for 82% and 90% of total variance for CE and WTL respectively. These component factors revealed that precipitation, humidity and number of days with precipitation significantly influence the lumen area (p = 0.0168) and radial cell diameter (p = 0.0222) in earlywood. Significant differences were registered between species and tree parts (stem and root) for the lumen area, radial cell diameter and cell wall thickness in both earlywood and latewood.

  • • In our study, black spruce exhibited smaller tracheid size in both stem and roots compared to balsam fir. Furthermore, the lower amount of tracheids produced during the growing season and higher proportion of latewood ensure a higher wood density of black spruce. The influence of temperature on earlywood formation is significant, whereas no influence was observed on latewood.

Résumé

  • • Les différences anatomiques au niveau de la tige et du système racinaire d’épinettes noires et de pins gris matures ont été examinées afin de caractériser la qualité de leur bois au niveau cellulaire et de le relier aux conditions climatiques.

  • • Les propriétés anatomiques de ces espèces ont été évaluées en relation avec des variables climatiques compilées au cours des années 2001 à 2004 durant la phase d’élargissement des cellules (CE) et celle de l’épaississement et de la lignification des parois (WTL). L’aire du lumen, l’épaisseur des parois ainsi que le nombre total de trachéides au niveau du diamètre radial des cellules ont été analysés et regroupés selon le bois final et le bois initial.

  • • Les résultats issus d’une analyse en composantes principales (PCA) ont révélé que les deux premiers facteurs (eigenvector) représentent 82 % et 90 % de la variance totale de CE et de WTL respectivement. Ces composantes ont indiqué que la précipitation, l’humidité et le nombre de jours avec pluie influencent significativement la formation de l’aire du lumen (p = 0.0168) et le diamètre radial des cellules (p = 0.0222) dans le bois initial. Des différences significatives ont aussi été enregistrées entre les espèces et les parties de l’arbre pour l’aire du lumen, le diamètre radial des cellules et l’épaisseur des parois dans le bois initial comme dans le bois final.

  • • Dans notre étude, l’épinette noire a présenté dans les tiges et les racines des trachéides de plus petite dimension contrairement au sapin baumier. De plus, la faible quantité de trachéides produite durant la saison de croissance combinée à une proportion plus grande de bois final confère à l’épinette noire une densité de bois plus élevée. Une influence significative de la température a été enregistrée sur la formation du bois initial.

References

  • Alteyrac J., Cloutier A., and Zhang S.Y., 2006. Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill.) B.S.P.) at different stand densities and sampling heights. Wood Sci. Technol. 40: 124–138.

    Article  CAS  Google Scholar 

  • Antal M. and Micko M.M., 1994. Variation and field estimation of wood quality parameters for black spruce. Holzforsch. Holzverw. 46: 70–72.

    Google Scholar 

  • Bosshard H.H., 1961. The structure of spruce wood from different sites. Schweizer Zeitung für Forstwesen 112: 317–332.

    Google Scholar 

  • Cown D., 2005. Understanding and managing wood quality for improving product value in New Zealand. N. Z. J. For. Sci. 35: 205–220.

    Google Scholar 

  • Denne M.P., 1988. Definition of latewood according to Mork (1928). IAWA Bull. 10: 59–62.

    Google Scholar 

  • Deslauriers A. and Morin H., 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19: 402–408.

    Article  Google Scholar 

  • Deslauriers A., Morin H., and Begin Y., 2003. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33: 190–200.

    Article  Google Scholar 

  • Downes G.M. and Drew D.M., 2008. Climate and growth influences on wood formation and utilisation. Southern Forests 70: 155–167.

    Article  Google Scholar 

  • Downes G.M., Wimmer R., and Evans R., 2002. Understanding wood formation: gains to commercial forestry through tree-ring research. Dendrochronologia 20: 37–51.

    Article  Google Scholar 

  • Drew D.M. and Downes G.M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27: 159–172.

    Article  Google Scholar 

  • Farrar J.L. and Barnfield C.R., 1969. Localized heating and cooling effects on wood development of White Spruce (Picea glauca (Moench) Voss., Extr. From Rep. Res. For. Bot. Glendon Hall Fac. For. Univ., Toronto.

    Google Scholar 

  • Fayle D.C.F., 1968. Radial growth in tree roots-distribution, timing, anatomy. Faculty of Forestry, Technical Report No. 9, Toronto, 183 p.

    Google Scholar 

  • Fritts H.C., Shashkin S., and Downes G.M., 1999. A simulation model of conifer ring growth and cell structure. In: Wimmer R., Vetter R.E. (Eds.), Tree-ring analysis: biological, methodological and environmental aspects, CABI Publishing, New York.

    Google Scholar 

  • Gagnon R., 1989. Maintien après feu de limites abruptes entre des peuplements d’épinettes noires (Picea mariana) et des formations de feuillus intolérants (Populus tremuloides et Betula papyrifera) dans la région du Saguenay-Lac St-Jean (Québec). Nat. Can. 116: 117–124.

    Google Scholar 

  • Gartner B.L., 1997. Trees have higher longitudinal growth strains in their stems than in their roots. Int. J. Plant Sci. 158: 418–423.

    Article  Google Scholar 

  • Hughes M.K., 2002. Dendrochronology in climatology — the state of the art. Dendrochronologia 20: 95–116.

    Article  Google Scholar 

  • Ivkovich M., Namkoong G., and Koshy M., 2002. Genetic variation in wood properties of interior spruce. II. Tracheid characteristics. Can. J. For. Res. 32: 2128–2139.

    Article  Google Scholar 

  • Krause C. and Eckstein D., 1993. Dendrochronology of roots. Dendrochronologia 11.

  • Krause C. and Morin H., 1995. Impact of spruce budworm defoliation on the number of latewood tracheids in balsam fir and black spruce. Can. J. For. Res. 25: 2029–2034.

    Article  Google Scholar 

  • Krause C. and Morin H., 1999. Tree-ring patterns in stems and root systems of black spruce (Picea mariana) caused by spruce budworms. Can. J. For. Res. 29: 1583–1591.

    Google Scholar 

  • Mitchell M.D. and Denne M.P., 1997. Variation in density of Picea sitchensis in relation to within-tree trends in tracheid diameter and wall thickness. Forestry 70: 47–60.

    Article  Google Scholar 

  • Richardson S.D. and Dinwoodie J.M., 1964. Studies on the physiology of xylem development. I. The effect of night temperature on tracheid size and wood density in conifers. J. I. Wood Sci. 6: 3–13.

    Google Scholar 

  • Riedl H., 1937. Bau und Leistung des Wurzelholzes. Jahrbücher für wissenschaftliche Botanik 85: 1–75.

    Google Scholar 

  • Rossi S., Anfodillo T., and Menardi R., 2006a. Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27: 89–97.

    Google Scholar 

  • Rossi S., Deslauriers A., and Anfodillo T., 2006b. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J. 27: 383–394.

    Google Scholar 

  • Rossi S., Deslauriers A., Anfodillo T., Morin H., Saracino A., Motta R., and Borghetti M., 2006c. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170: 301–310.

    Article  PubMed  Google Scholar 

  • Rossi S., Deslauriers A., Gricar J., Seo J.-W., Rathgeber C.B.K., Anfodillo T., Morin H., Levanic T., Oven P., and Jalkanen R., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17: 696–707.

    Article  Google Scholar 

  • SAS, 2003. SAS System, version 9.1.3. SAS Institute Inc., Cary, N.C.

    Google Scholar 

  • Schulman E., 1945. Root growth-ring and chronology. Tree-Ring Bull. 12: 2–5.

    Google Scholar 

  • Stevens C.L., 1931. Root growth of white pine (Pinus strobus L.). Yale University School Forest Bull. 32: 1–32.

    Google Scholar 

  • St-Germain J.L. and Krause C., 2008. Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec. Can. J. For. Res. 38: 1397–1405.

    Article  Google Scholar 

  • Thibeault-Martel M., 2007. L’activité cambiale et la xylogenèse entre les tiges et les racines de l’épinette noire (Picea mariana (Mill.) BSP) et du sapin baumier (Abies balsamea (L.) Mill.). M.S. thesis, Université du Québec à Chicoutimi, 83 p.

  • Thibeault-Martel M., Krause C., Morin H., and Rossi S., 2008. Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann. Bot. 102: 667–674.

    Article  PubMed  Google Scholar 

  • Trendelenburg R. and Mayer-Wegelin H., 1955. Das Holz als Rohstoff [Wood as a raw material], 2nd ed. Carlttanser Verlag, München, 541p.

    Google Scholar 

  • Turcotte A., Morin H., Krause C., Deslauriers A., and Thibeault-Martel M., 2009. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric. For. Meteorol. 149: 1403–1409.

    Article  Google Scholar 

  • Vaganov E.A., Sviderskaya I.V., and Kondratyeva E.N., 1990. Weather conditions and structure of the annual rings of tree: simulation model of tracheidogram. Lesovedenie 2: 37–45.

    Google Scholar 

  • Wimmer R., Downes G.M., and Evans R., 2008. Effects of site on fibre, kraft pulp and handsheet properties of Eucalyptus globulus. Ann. For. Sci. 65: 602.

    Article  Google Scholar 

  • Wisniewki M. and Ashoworth E.N., 1986. A comparison of seasonal ultrastructural changes in stem tissue of peach (Prunus persica) that exhibit contrasting mechanisms of cold hardiness. Bot. Gaz. 147: 407–417.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Krause.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Krause, C., Rossi, S., Thibeault-Martel, M. et al. Relationships of climate and cell features in stems and roots of black spruce and balsam fir. Ann. For. Sci. 67, 402 (2010). https://doi.org/10.1051/forest/2009122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009122

Keywords

Mots-clés