Skip to main content
  • Original Article
  • Published:

Heartwood and sapwood allometry of seven Chinese temperate tree species

Allométrie du bois de cœur et de l’aubier pour sept espèces d’arbres tempérées chinoises


  • • Allometry of sapwood/heartwood is essential for understanding tree growth, water transport and carbon allocation, timber production and use, but such an allometry is lacking for Chinese temperate tree species.

  • • We studied the allometry and development of heartwood and sapwood for seven Chinese temperate tree species: Korean pine (Pinus koraiensis Sieb. et Zucc), Dahurian larch (Larix gmelinii Rupr.), Japanese elm (Ulmus davidiana Planch var. japonica (Rehd.) Nakai), Manchurian ash (Fraxinus mandshurica Rupr.), Manchurian walnut (Juglans mandshurica Maxim.), Amur cork-tree (Phellodendron amurense Rupr.), and Mongolian oak (Quercus mongolica Fisch.).

  • • All heartwood parameters investigated, including heartwood radius (HR), heartwood formation rate (HFR), heartwood ring number (HRN), heartwood initiation age (HIA), and heartwood volume ratio (HVR), were positively correlated with tree cambial age (CA). The HR, sapwood width (SW), sapwood area (SA), heartwood and sapwood volumes were significantly related to stem diameter at breast height (DBH) or xylem diameter. There was a polynomial relationship between the sapwood ring longevity (SRL) and sapwood ring number (SRN). However, most of the allometric relationships were species-dependent. The hardwood formation patterns were different between coniferous and broadleaved tree species. A power function was suitable to scale SA from DBH, but the exponent varied from 1.32 for the larch to 2.19 for the cork-tree.

  • • Our allometry provided a practical means to assess wood development and related physiology for the temperate tree species.


  • • L’allométrie de l’aubier/bois de cœur est essentielle pour comprendre la croissance de l’arbre, le transport de l’eau et l’allocation, la production et l’usage du bois, mais cette allométrie est manquante pour les espèces d’arbres chinoises de milieu tempéré.

  • • Nous avons étudié l’allométrie et le développement du bois de coeur et de l’aubier pour sept espèces d’arbres tempérées chinoises : le pin de Corée (Pinus koraiensis Sieb. et Zucc), le mélèze de Dahurie (Larix gmelinii Rupr.), l’orme du Japon (Ulmus davidiana Planch var. japonica (Rehd.) Nakai), le frêne de Mandchourie (Fraxinus mandshurica Rupr.), le noyer de Mandchourie (Juglans mandshurica Maxim.), le phellodendron de l’Amur (Phellodendron amurense Rupr.), et le chêne de Mongolie (Quercus mongolica Fisch.).

  • • Les paramètres du bois de coeur étudiés sont le rayon (HR), le taux de formation (HFR), l’âge d’initiation (HIA) et le ratio du volume (HVR) : ils sont corrélés positivement à l’âge cambial (CA). Le rayon du bois de cœur (HR), la largeur d’aubier (SW), la surface d’aubier (SA), les volumes de bois de cœur et d’aubier sont significativement liés au diamètre à hauteur de poitrine (DBH). Il y a une relation polynomiale entre la durée de vie des cernes d’aubier (SRL) et le nombre de cernes (SRN). Cependant la plus part des relations allométriques dépendent des espèces. Le patron de formation du bois de cœur diffère entre résineux et feuillus. Une fonction puissance est adaptée pour calibrer les variations de SA à partir de DBH mais l’exposant varie de 1,32 pour le mélèze à 2,19 pour le phellodendron de l’Amur.

  • • Pour les essences d’arbres tempérées, notre allométrie fournit un moyen pratique pour estimer le développement du bois en tenant compte de la physiologie qui y est associée.


  • Björklund L., 1999. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva. Fenn. 33: 119–129.

    Google Scholar 

  • Carrodus B.B., 1972. Variability in proportion of heartwood formed in woody stems. New Phytol. 71: 713–718.

    Article  Google Scholar 

  • Climent J., Chambel M.R., Gil L., and Pardos J.A., 2003. Vertical heart-wood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For. Ecol. Manage. 174: 203–211.

    Article  Google Scholar 

  • Damesin C., Ceschia E., Le Goff N., Ottorini J.M., and Dufrene E., 2002. Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytol. 153: 159–172.

    Article  Google Scholar 

  • Enquist B.J., 2002. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22: 1045–1064.

    PubMed  Google Scholar 

  • Hacke U.G. and Sperry J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4: 97–115.

    Article  Google Scholar 

  • Hacke U.G., Sperry J.S., Wheeler J.K., and Castro L., 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26: 689–701.

    PubMed  Google Scholar 

  • Hazenberg G. and Yang K.C., 1991. The relationship of tree age with sapwood and heartwood width in black spruce, Picea mariana (Mill) B.S.P. Holzforschung 45: 317–320.

    Article  Google Scholar 

  • Hoch G., Richter A., and Körner C., 2003. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26: 1067–1081.

    Article  CAS  Google Scholar 

  • Knapic S. and Pereira H., 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 210: 81–89.

    Article  Google Scholar 

  • Knapic S., Tavares F., and Pereira H., 2006. Heartwood and sapwood variation in Acacia melanoxylon R. Br. trees in Portugal. Forestry 79: 371–380.

    Article  Google Scholar 

  • Longuetaud F., Mothe F., Leban J.-M., and Mäkelä A., 2006. Picea abies sapwood width: Variations within and between trees. Scand. J. For. Res. 21: 41–53.

    Article  Google Scholar 

  • Mäkelä A., 2002. Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol. 22: 891–905.

    PubMed  Google Scholar 

  • Meinzer F.C., Bond B.J., Warren J.M., and Woodruff D.R., 2005. Does water transport scale universally with tree size? Funct. Ecol. 19: 558–565.

    Article  Google Scholar 

  • Meinzer F.C., Clearwater M.J., and Goldstein G., 2001. Water transport in trees: current perspectives, new insights and some controversies. Environ. Exp. Bot. 45: 239–262.

    Article  PubMed  Google Scholar 

  • Miranda I., Gominho J., Lourenço A., and Pereira H., 2006. The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Can. J. For. Res. 36: 2675–2683.

    Article  Google Scholar 

  • Morais M.C. and Pereira H., 2007. Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulpwood production. Ann. For. Sci. 64: 665–671.

    Article  Google Scholar 

  • Nawrot M., Pazdrowski W., and Szymanski M., 2008. Dynamics of heart-wood formation and axial and radial distribution of sapwood and heartwood in stems of European larch (Larix decidua Mill.). J. For. Sci. 54: 409–417.

    Google Scholar 

  • Ogle K. and Pacala S.W., 2009. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiol. 29: 587–605.

    Article  PubMed  CAS  Google Scholar 

  • Pérez Cordero L.D. and Kanninen M., 2003. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva. Fenn. 37: 45–54.

    Google Scholar 

  • Pinto I., Pereira H., and Usenius A., 2004. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees — Struct. Funct. 18: 284–294.

    Article  Google Scholar 

  • Pruyn M.L., Harmon M.E., and Gartner B.L., 2003. Stem respiratory potential in six softwood and four hardwood tree species in the central cascades of Oregon. Oecologia 137: 10–21.

    Article  PubMed  Google Scholar 

  • Sellin A., 1994. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies. Can. J. For. Res. 24: 1022–1028.

    Article  Google Scholar 

  • Sprugel D.G., 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210.

    Article  Google Scholar 

  • Taylor A.M., Gartner B.L., and Morrell J.J., 2002. Heartwood formation and natural durability — A review. Wood Fiber Sci. 34: 587–611.

    CAS  Google Scholar 

  • Wang C.K., 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manage. 222: 9–16.

    Article  Google Scholar 

  • Wullschleger S.D., Meinzer F.C., and Vertessy R.A., 1998. A review of whole-plant water use studies in trees. Tree Physiol. 18: 499–512.

    PubMed  Google Scholar 

  • Yang K.C. and Hazenberg G., 1991a. Relationship between tree age and sapwood/heartwood width in Populus tremuloides Michx. Wood Fiber Sci. 23: 247–252.

    Google Scholar 

  • Yang K.C. and Hazenberg G., 1991b. Sapwood and heartwood width relationship to tree age in Pinus banksiana. Can. J. For. Res. 21: 521–525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chuankuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, C., Zhang, Q. et al. Heartwood and sapwood allometry of seven Chinese temperate tree species. Ann. For. Sci. 67, 410 (2010).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: