Skip to main content
  • Original Article
  • Published:

Genetic variation in architectural seedling traits of Patagonian cypress natural populations from the extremes of a precipitation range

Variation génétique de traits d’architecture de semis de populations naturelles de cyprès de Patagonie provenant des extrêmes de précipitation de son aire naturelle

Abstract

  • • Species distributed along wide environmental ranges are expected to be either plastic or adapted to local optima. The elucidation of which of these alternatives prevails, is crucial in planning breeding and conservation strategies for not yet domesticated species. Austrocedrus chilensis (Cupressaceae) is the most commercially important conifer of the temperate forests of Argentina and the target of a domestication program. A steep precipitation gradient characterizes its Argentinean range.

  • • Variation within and differentiation among four natural populations of this Patagonian cypress representative of two contrasting precipitation regimes (>1 300 and 330 mm per y) were assessed by analyzing several morpho/architectural traits in one-year-old seedlings grown in a greenhouse.

  • • Progenies from one of the two xeric populations did not differ from those corresponding to both humid-site populations. The two most variable populations in terms of additive genetic variance belonged to contrasting precipitation regimes. Differentiation among populations was low as measured by each and every variable (average Q st = 0.088). Morphological traits related to the main axis size would have a dubious adaptive meaning.

  • • The results suggest that the Patagonian cypress would have not evolved genetic pools adapted to local optima, and thus it appears to be a phenotypically plastic species, at least regarding growth at juvenile age.

Résumé

  • • Les espèces presentant de vastes aires de répartition avec des fortes variations de l’environnement sont soit plastiques, soit adaptées à des optima locaux. Identifier laquelle de ces deux alternatives est celle qui prévaut est une étape cruciale pour planifier des stratégies d’amélioration génétique ou de conservation d’espèces non encore domestiquées. Austrocedrus chilensis (Cupressaceae) est le conifère le plus important du point de vue commercial dans les forêts tempérées d’Argentine et fait l’object d’un programme de domestication. Un fort gradient de précipitations caractérise son aire de répartition en Argentine.

  • • Les variations intra-population et la différenciation entre quatre populations naturelles représentatives de deux régimes contrastés de précipitations (>1 300 mm et 330 mm par an) ont été évaluées en analysant plusieurs traits d’architecture et de morphologie sur des plants âgés de un an cultivés sous serre.

  • • Les descendants de l’une des deux populations xériques ne différaient pas de ceux des deux populations de sites humides. Les deux populations avec la plus forte variance génétique additive provenaient de régimes contrastés de précipitation. La différenciation entre populations était faible tant pour chaque trait que pour l’ensemble des traits (Q st = 0.088). Les caractéristiques morphologiques liées à la taille de l’axe principal n’auraient donc que peu signification en termes d’adaptation.

  • • Les résultats suggèrent que le cyprès de Patagonie n’aurait pas développé de pools génétiques adaptés aux optima locaux. Il semble être une espèce phénotypiquement plastique, au moins en ce qui concerne la croissance au stade juvénile.

References

  • Bower A.D. and Aitken S.N., 2008. Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). Am. J. Bot. 95: 66–76.

    Article  PubMed  Google Scholar 

  • Cavender-Bares J. and Bazzaz F.A., 2002. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8–18.

    Article  Google Scholar 

  • Conifer Specialist Group, 1998. Austrocedrus chilensis. In: IUCN 2006. 2006 IUCN Red List of Threatened Species, www.iucnredlist.org, Downloaded on 31 August 2007.

  • Cordon V., Forquera J., and Gastiazoro J., 1993. Estudio microclimático del área cordillerana del sudoeste de la Provincia de Río Negro “cartas de precipitación”. Universidad Nac. del Comahue, Argentina, 19 p.

    Google Scholar 

  • Cregg B.M., 1994. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiol. 14: 883–898.

    PubMed  Google Scholar 

  • Falconer D.S. and Mackay T.F., 1996. Introduction to Quantitative Genetics. Longman, New York, 464 p.

    Google Scholar 

  • Foster G.S., 1986. Trends in genetic parameters with stand development and their influence on early selection for volume growth in loblolly pine. For. Sci. 32: 944–959.

    Google Scholar 

  • Gallo L., Pastorino M.J., and Donoso C., 2004. Variación en Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri (Ciprés de la Cordillera). In: Donoso C., Ipinza R., Premoli A., and Gallo L. (Eds.), Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Santiago de Chile, pp. 233–252.

    Google Scholar 

  • Grosfeld J., 2002. Análisis de la variabilidad morfológica y arquitectural de Austrocedus chilensis (D. Don) Pic. Serm. et Bizzarri, Fitzroya cupressoides (Molina) I.M. Johnst., Pilgerodendron uviferum (D. Don) Florin y Cupressus sempervirens L. (Cupressaceae). Tesis doctoral, CRUB-UNComahue, Argentina.

    Google Scholar 

  • Grosfeld J. and Barthélémy D., 2004. Primary growth and morphological markers of interannual growth limits in Cupressaceae from Patagonia. Bot. J. Linn. Soc. 146: 285–293.

    Article  Google Scholar 

  • Gyenge J.E., Fernández M.E., Dalla-Salda G., and Schlichter T., 2005. Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri: implications on its drought resistance capacity. Ann. For. Sci. 62: 297–302.

    Article  Google Scholar 

  • Houle D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.

    PubMed  CAS  Google Scholar 

  • King D.A., 1990. The adaptive significance of tree height. Amer. Nat. 135: 809–828.

    Article  Google Scholar 

  • Lauteri M., Pliura A., Monteverdi M.C., Brugnoli E., Villani F., and Eriksson G., 2004. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J. Evol. Biol. 17: 1286–1296.

    Article  PubMed  CAS  Google Scholar 

  • Leinonen T., O’Hara R.B., Cano J.M., and Merilä J., 2008. Comparative studies of quantitative trait and neutral marker divergence: a metaanalysis. J. Evol. Biol. 21: 1–17.

    PubMed  CAS  Google Scholar 

  • López R., Zehavi A., Climent J., and Gil L., 2007. Contrasting ecotypic differentiation for growth and survival in Pinus canariensis. Aust. J. Bot. 55: 759–769.

    Article  Google Scholar 

  • Lynch M. and Walsh B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland Massachusetts, 980 p.

    Google Scholar 

  • McKay J.K. and Latta R.G., 2002. Adaptive population divergence: markers, QTL and traits. Trends Ecol. Evol. 17: 285–291.

    Article  Google Scholar 

  • Merilä J. and Crnokrak P., 2001. Comparison of genetic differentiation at marker loci and quantitative traits. J. Evol. Biol. 14: 892–903.

    Article  Google Scholar 

  • Moles A.T. and Westoby M., 2004. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92: 372–383.

    Article  Google Scholar 

  • Namkoong G., Usanis R.A., and Silen R.R., 1972. Age-related variation in genetic control of height growth in Douglas-fir. Theor. Appl. Genet. 42: 151–159.

    Article  Google Scholar 

  • Namkoong G. and Conkle M.T., 1976. Time trends in genetic control over height growth in ponderosa pine. For. Sci. 22: 2–12.

    Google Scholar 

  • Notivol E., García-Gil M.R., Alía R., and Savolainen O., 2007. Genetic variation of growth rhythm traits in the limits of latitudinal cline in Scots pine. Can. J. For. Res. 37: 540–551.

    Article  Google Scholar 

  • O’Neill G., Adams T.W., and Aitken S.N., 2001. Quantitative genetics of spring and fall cold hardiness in seedlings from two Oregon populations of coastal Douglas-fir. For. Ecol. Manage. 149: 305–318.

    Article  Google Scholar 

  • Pastorino M.J. and Gallo L.A., 2002. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian Forest. J. Biogeogr. 29: 1167–1178.

    Article  Google Scholar 

  • Pastorino M.J., Gallo L.A., and Hattemer H.H., 2004. Genetic variation in natural populations of Austrocedrus chilensis, a cypress of the Andean-Patagonian Forest. Bioch. Syst. Ecol. 32: 993–1008.

    Article  CAS  Google Scholar 

  • Pastorino M.J. and Gallo L.A., 2006. Mating system in a low-density natural population of the dioecious wind-pollinated Patagonian Cypress. Genetica 126: 315–321.

    Article  PubMed  Google Scholar 

  • Pastorino M.J. and Gallo L.A., 2009. Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For. Ecol. Manage. 257: 2350–2358.

    Article  Google Scholar 

  • Puntieri J., Barthélémy D., Martinez P., Raffaele E., and Brion C., 1998. Annual-shoot growth and branching patterns in Nothofagus dombeyi (Fagaceae). Can. J. Bot. 76: 673–685.

    Google Scholar 

  • R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

    Google Scholar 

  • Reich P.B., Wright I.J., Cavender-Bares J., Craine J.M., Oleksyn J., Westoby M., and Walters M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164: 143–164.

    Article  Google Scholar 

  • Roach D.A. and Wulff R.D., 1987. Maternal effects in plants. Ann. Rev. Ecol. Syst. 18: 209–235.

    Article  Google Scholar 

  • SAS Institute Inc., 1989. SAS/STAT® User’s Guide, Version 6, SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Seiwa K. and Kikuzawa K., 1991. Phenology of tree seedlings in relation to seed size. Can. J. Bot. 69: 532–538.

    Article  Google Scholar 

  • Squillace A.E., 1974. Average genetic correlation among offspring from open-pollinated forest trees. Silvae Genet. 23: 149–156.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J., 1981. Biometry: the principles and practice of statistics in biological research. Freeman, 2nd ed., San Francisco, 875 p.

    Google Scholar 

  • Spitze K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135: 367–374.

    PubMed  CAS  Google Scholar 

  • Via S. and Lande R., 1987. Genotype — environment interaction and the evolution of plasticity. Evolution 39: 505–522.

    Article  Google Scholar 

  • Visscher P.M., 1998. On the sampling variance of intraclass correlations and genetic correlations. Genetics 149: 1605–1614.

    PubMed  CAS  Google Scholar 

  • Whiteley R.E., Black-Samuelsson S., and Jansson G., 2003. Within and between population variation in adaptive traits in Ulmus laevis, the European white elm. For. Genet. 10: 309–319.

    Google Scholar 

  • Wright S., 1978. Evolution and the genetics of populations, Vol. 4, Variability within and among natural populations. University of Chicago Press, Chicago, 590 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario J. Pastorino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastorino, M.J., Ghirardi, S., Grosfeld, J. et al. Genetic variation in architectural seedling traits of Patagonian cypress natural populations from the extremes of a precipitation range. Ann. For. Sci. 67, 508 (2010). https://doi.org/10.1051/forest/2010010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010010

Keywords

Mots-clés