Skip to main content

Physico-chemical indicators of inter-specific variability in vibration damping of wood

Abstract

  • • The vibration damping coefficient (tanδ) of wood is an important property for acoustical uses, including musical instruments. Current difficulties in the availability of some of the preferred species call for diversification, but this comes up against the lack of systematic damping coefficient data.

  • • Keeping in mind the possible factors affecting tanδ, could we predict its variations between species, by using indicators that are either easily measured and/or readily available for many species?

  • • Vibrational properties, equilibrium moisture content and colorimetric parameters were assessed on 94 wood types belonging to 76 species. Experimental results were then related to data on chemical contents and physical properties from the CIRAD database. The “standard” relationship between tanδ and specific modulus of elasticity (E’/ρ) explained only half of the variations. Deviations from this trend were correlated to extractives content, yet effects were not directly quantitative. Damping deviations were also correlated to colour and moisture-related properties, especially so with fibre saturation point.

  • • By taking into account a combination of moisture-related properties, colour — or extractives content, and the “standard” relationship between tanδ and E’/ρ, we could propose simple predictive models which explain up to 89% of observed variations in tanδ between 48 species.

References

  • Amusant N., Beauchêne J., Fournier M., Janin G., and Thévenon M.-F., 2004. Decay resistance in Dicorynia guianensis Amsh.: analysis of inter-tree and intra-tree variability and relations with wood colour. Ann. For. Sci. 61: 373–380.

    Article  Google Scholar 

  • Amusant N., Fournier M., and Beauchêne J., 2008. Colour and decay resistance and its relationships in Eperua grandiflora. Ann. For. Sci. 65: 806.

    Article  Google Scholar 

  • Aramaki M., Baillères H., Brancheriau L., Kronland-Martinet R., and Ystad S., 2007. Sound quality assessment of wood for xylophone bars. J. Acoust. Soc. Am. 121: 2407–2421.

    Article  PubMed  Google Scholar 

  • Brancheriau L., Baillères H., and Guitard D., 2002. Comparison between modulus of elasticity values calculated using 3 and 4 point bending tests on wooden samples. Wood Sci. Technol. 36: 367–383.

    Article  CAS  Google Scholar 

  • Brémaud I., 2006. Diversité des bois utilisés ou utilisables en facture d’instruments de musique. Thèse de doctorat, Université Montpellier II, 302 p.

  • Brémaud I. and Poidevin N., 2009. Approches culturelles et mécaniques dans le choix des bois en facture: cas des archets anciens, 5th Conference on Interdisciplinary Musicology, CIM09, 26–29 Octobre 2009, Paris, France.

  • Brémaud I., Cabrolier P., Minato K., Gérard J., and Thibaut B., 2008. Vibrational properties of tropical woods with historical uses in musical instruments. COST IE0601+ESWM Conference “Wood science for the preservation of cultural heritage”: Braga (Portugal), 5–7 November 2008.

  • Brémaud I., Amusant N., Minato K., Gril J., and Thibaut B., 2010. Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.). Wood Sci. Technol. Doi: 10.1007/s0026-010-0337-3

  • Bucur V. 2006. Acoustics of wood, Springer Series in Wood Science, Berlin Heidelberg New York, 393 p.

  • Chafe C., 1987. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and others species, Part II: The influence of wood extractives. Wood Sci. Technol. 21: 27–41.

    Article  CAS  Google Scholar 

  • Gierlinger N., Jacques D., Grabner M., Wimmer R., Schwanninger M., Rozenberg P., and Pâques L.E., 2004. Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees 18: 102–108.

    Google Scholar 

  • Hase N., 1987. A comparison between acoustic physical factors of Honduras rosewood for marimbas and xylophones and a sensory evaluation of these instruments (in Japanese). Mokuzai Gakkaishi 33: 762–768.

    Google Scholar 

  • Hernandez R.E., 2007a. Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci. 39: 132–145.

    CAS  Google Scholar 

  • Hernandez R.E., 2007b. Effects of extraneous substances, wood density and interlocked grain on fiber saturation point of hardwoods. Wood Mat. Sci. Eng. 2: 45–53.

    Article  Google Scholar 

  • Hernandez R.E., 2007c. Swelling properties of hardwoods as affected by their extraneous substances, wood density and interlocked grain. Wood Fiber Sci. 39: 146–158.

    CAS  Google Scholar 

  • Hillis W.E., 1987. Heartwood and tree exudates, Springer-Verlag, Berlin, 268 p.

    Google Scholar 

  • Matsunaga M., Sugiyama M., Minato K., and Norimoto M., 1996. Physical and mechanical properties required for violin bow materials. Holzforschung 50: 511–517.

    Article  CAS  Google Scholar 

  • Matsunaga M., Minato K., and Nakatsubo F., 1999. Vibrational property changes of spruce wood by impregnation with water-soluble extractives of pernambuco (Guilandina echinata Spreng.). J. Wood Sci. 45: 470–474.

    Article  CAS  Google Scholar 

  • Minato K., Konaka Y., Brémaud I., Suzuki S., and Obataya E., 2010. Extractives of muirapiranga (Brosimun sp.) and its effects on the vibrational properties of wood. J. Wood Sci. 56: 41–46.

    Article  CAS  Google Scholar 

  • Nishino Y., Janin G., Chanson B., Détienne P., Gril J., and Thibaut B., 1998. Colorimetry of wood specimens from French Guiana. J. Wood Sci. 44: 3–8.

    Article  Google Scholar 

  • Norimoto M., Tanaka F., Ohogama T., and Ikimune R., 1986. Specific dynamic Young’s modulus and internal friction of wood in the longitudinal direction (in Japanese). Wood Res. Tech. Notes 22: 53–65.

    Google Scholar 

  • Obataya E., Norimoto M., and Gril J., 1998. The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39: 3059–3064.

    Article  CAS  Google Scholar 

  • Obataya E. and Norimoto M., 1999. Acoustic properties of a reed (Arundo donax L.) used for the vibrating plate of a clarinet. J. Acoust. Soc. Am. 106: 1106–1110.

    Article  Google Scholar 

  • Obataya E., Ono T., and Norimoto M., 2000. Vibrational properties of wood along the grain. J. Mater. Sci. 35: 2993–3001.

    Article  CAS  Google Scholar 

  • Obataya E., Minato K., and Tomita B., 2001. Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood. J. Wood Sci. 47: 317–321.

    Article  CAS  Google Scholar 

  • Ono T. and Norimoto M., 1983. Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn. J. Appl. Phys. 22: 611–614.

    Article  Google Scholar 

  • Ono T. and Norimoto M., 1984. On physical criteria for the selection of wood for soundboards of musical instruments. Rheol. Acta 23: 652–656.

    Article  Google Scholar 

  • Skaar C., 1988. Wood-water relations, Springer-Verlag, 279 p.

  • Wangaard F.F. and Granados L.A., 1967. The effect of extractives on water-vapor sorption by wood. Wood Sci. Technol. 1: 253–277.

    Article  CAS  Google Scholar 

  • Wegst U.G.K. (2006). Wood for sound. Am. J. Bot. 93: 1439–1448.

    Article  PubMed  Google Scholar 

  • Wegst U.G.K., Oberhoff S., Weller M., and Ashby M.F., 2007. Materials for violin bows. Int. J. Mat. Res. 98: 1230–1237.

    CAS  Google Scholar 

  • Yano H., 1994. The changes in the acoustic properties of Western Red Cedar due to methanol extraction. Holzforschung 48: 491–495.

    Article  CAS  Google Scholar 

  • Yano H., Kyou K., Furuta Y., and Kajita H., 1995. Acoustic properties of Brazilian rosewood used for guitar back plate (in Japanese). Mokuzai Gakkaishi 41: 17–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Brémaud.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brémaud, I., Minato, K., Langbour, P. et al. Physico-chemical indicators of inter-specific variability in vibration damping of wood. Ann. For. Sci. 67, 707 (2010). https://doi.org/10.1051/forest/2010032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010032

Keywords

  • damping coefficient
  • diversity of woods
  • extractives
  • physical properties
  • vibrational properties