Skip to main content
  • Original Article
  • Published:

Pollination dynamics in a Douglas-fir seed orchard as revealed by pedigree reconstruction

Abstract

  • • Pollination dynamics was studied in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed orchard using 8 nuclear microsatellite markers and pedigree reconstruction.

  • • The seed orchard consisted of 49 parents (clones). Cone-crop management included bloom delay and supplemental mass pollination (SMP) using 12 internal and 4 external pollen donors.

  • • A random sample of 801 bulk seeds was genotyped for both haploid megagametophyte and corresponding diploid embryo.

  • • Using the parental population’s multilocus genotypes, full pedigree reconstruction generated all the information needed to estimate the maternal, paternal, and parental reproductive success, selfing, pollen contamination, and pollination success of the 4 external pollen donors.

  • • Maternal, paternal, and parental reproductive success varied with 80% of gametes being produced by 23, 45, and 37% of the orchard’s parents, respectively, resulting in a drastically reduced effective population size as compared to the census number (14 vs. 53).

  • • Selfing, pollen contamination, and aggregate SMP success (internal and external) were estimated to be 15.2, 10.4, and 15.0%, respectively.

  • • Full pedigree reconstruction was effective in unraveling the orchard’s pollination dynamics and both female and male reproductive success.

References

  • Adams W.T., Neale D.B., and Lopstra C.A., 1988. Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet. 37: 147–152.

    Google Scholar 

  • Adams W.T., Hipkins V.D., Burczyk J., and Randall W.K., 1997. Pollen contamination trends in a maturing Douglas-fir seed orchard. Can. J. For. Res. 27: 131–134.

    Article  Google Scholar 

  • Allen G.S. and Owens J.N., 1972. The Life History of Douglas-fir, Ottawa, Canada, Can. For. Serv. 139 p.

  • Anonymous, 1976. Twentieth annual report on cooperative tree improvement and hardwood research program, North Carolina State University, Raleigh, USA.

  • Askew G.R., 1992. Potential genetic improvement due to supplemental mass pollination management in conifer seed orchards. For. Ecol. Manage. 47: 135–147.

    Article  Google Scholar 

  • Bell G.D. and Fletcher A.M., 1978. Computer organised orchard layouts (COOL) based on the permutated neighbourhood design concept, Silvae Genet. 27: 223–225.

    Google Scholar 

  • Bridgwater F.E., Bramlett D.L., and Matthews F.R., 1987. Supplemental mass pollination is feasible on an operational scale. In: Proc. 19th South. For. Tree Improv. Conf., College Sta, TX, pp. 216–222.

  • Cockerham C., 1967. Group inbreeding and coancestry. Genetics 56: 89–104.

    PubMed  CAS  Google Scholar 

  • Daniels J.D., 1978. Efficacy of supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genet. 27: 52–58.

    Google Scholar 

  • Denti D., Schoen D.J., 1988. Self-fertilization rates in white spruce: effect of pollen and seed production. J. Hered. 79: 284–288.

    Google Scholar 

  • Doyle J.J. and Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Edwards D.G.W. and El-Kassaby Y.A., 1995. Douglas-fir genotypic response to seed stratification. Seed Sci Tech. 23: 771–778.

    Google Scholar 

  • El-Kassaby Y.A., 1992. Domestication and genetic diversity — should we be concerned? For. Chron. 68: 687–700.

    Google Scholar 

  • El-Kassaby Y.A. and Askew G.R., 1998. Seed orchards and their genetics. In: Mandal A.K., Gibson G.L. (Ed.), Forest genetics and tree breeding, CBS Publishers and Distributors, Daryaganj, New Delhi, India, pp. 103–111.

    Google Scholar 

  • El-Kassaby Y.A. and Davidson R., 1990. Impact of crop management practices on the seed crop genetic quality in a Douglas-fir seed orchard. Silvae Genet. 39: 230–237.

    Google Scholar 

  • El-Kassaby Y.A. and Davidson R. 1991. Impact of pollination environment manipulation on the apparent outcrossing rate in a Douglas-fir seed orchard. Heredity 66: 55–59.

    Article  Google Scholar 

  • El-Kassaby Y.A. and Ritland K., 1986. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genet. 35: 240–244.

    Google Scholar 

  • El-Kassaby Y.A., Parkinson J., and Devitt W.J.B., 1986. The effect of crown segment on the mating system in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed orchard. Silvae Genet. 35: 149–155.

    Google Scholar 

  • El-Kassaby Y.A., Ritland K., Fashler A.M.K., and Devitt W.J.B., 1988. The role of reproductive phenology upon the mating structure of a Douglas-fir seed orchard. Silvae Genet. 37: 76–82.

    Google Scholar 

  • El-Kassaby Y.A., Edwards D.G.W., and Cook C., 1990. Impact of crop management practices on seed yield in a Douglas-fir seed orchard. Silvae Genet. 39: 226–230.

    Google Scholar 

  • El-Kassaby Y.A., Barnes S., Cook C., and MacLeod D.A., 1993. Supplemental mass pollination success rate in a mature Douglas-fir seed orchard. Can. J. For. Res. 23: 1069–1099.

    Article  Google Scholar 

  • El-Kassaby Y.A., Stoehr M.U., Reid D., Walsh C.G., and Lee T.E., 2007. Clonal-row versus random seed orchard designs: interior spruce mating system evaluation. Can. J. For. Res. 37: 690–696.

    Article  CAS  Google Scholar 

  • Erickson V.J. and Adams W.T., 1990. Mating system variation among individual ramets in a Douglas-fir seed orchard. Can. J. For. Res. 20: 1672–1675.

    Article  Google Scholar 

  • Eriksson G., Jonsson A., and Lindgren D., 1973. Flowering in a clonal trial of Picea abies Karst. Stud. For. Suec. 110: 3–45.

    Google Scholar 

  • Fashler A.M.K. and Devitt W.J.B., 1980. A practical solution to Douglasfir seed orchard pollen contamination. For. Chron. 56: 237–240.

    Google Scholar 

  • Fashler A.M.K. and El-Kassaby Y.A., 1987. The effect of water spray cooling treatment on reproductive phenology in a Douglas-fir seed orchard. Silvae Genet. 36: 245–249.

    Google Scholar 

  • Fast W., Dancik B.P., and Bower R.C., 1986. Mating system and pollen contamination in a Douglas-fir clone bank. Can. J. For. Res. 16: 1314–1319.

    Article  Google Scholar 

  • Franklin E.C., 1974. Pollination in slash pine: first come, first served. In: Proceedings of a Colloquium, Seed yield from southern pine seed orchards In: Kraus J. (Ed.), Georgia Forestry Center, Macon, GA, pp. 15–20.

    Google Scholar 

  • Funda T., Chen C., Liewlaksaneeyanawin C., Kenawy A., and El-Kassaby Y.A., 2008. Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Ann. For. Sci. 65: 705.

    Article  Google Scholar 

  • Griffin A.R., 1982. Clonal variation in radiata pine seed orchards. I. Some flowering, cone and seed production traits. Aust. For. Res. 12: 295–302.

    Google Scholar 

  • Hansen O.K. and Kjaer E.D., 2006. Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions. Can. J. For. Res. 36: 1054–1058.

    Article  Google Scholar 

  • Kalinowski S.T., Taper M.L., and Marshall T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099–1106.

    Article  PubMed  Google Scholar 

  • Krutovskii K.V., Vollmer S.S., Sorensen F.C., Adams W.T., and Strauss S.H., 1997. Effects of megagametophyte removal on DNA yield and early seedling growth in coastal Douglas-fir. Can. J. For. Res. 27: 964–968.

    Article  Google Scholar 

  • Lindgren D. and Mullin T.J., 1998. Relatedness and status number in seed orchard crops. Can. J. For. Res. 28: 276–283.

    Article  Google Scholar 

  • Moriguchi Y., Taira H., Tani N., and Tsumura Y., 2004. Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can. J. For. Res. 34: 1683–1690.

    Article  Google Scholar 

  • Moriguchi Y., Tani N., Itoo S., Kanehira F., Tanaka K., Yomogida H., Taira H., and Tsumura Y., 2005. Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genet. Genomes. 1: 174–183.

    Article  Google Scholar 

  • Nakamura R.R. and Wheeler N.C., 1992. Pollen competition and paternal success in Douglas-fir. Evolution 46: 846–851.

    Article  Google Scholar 

  • Namkoong G., Kang H.C., and Brouard J.S., 1988. Tree breeding: principles and strategies, Monographs on theoretical and applied genetics. II, Springer-Verlag, New York, USA.

    Google Scholar 

  • Orr-Ewing A.L., 1954. Inbreeding experiments with the Douglas-fir. For. Chron. 30: 7–21.

    Google Scholar 

  • Orr-Ewing A.L., 1965. Inbreeding and single-crossing in Douglas-fir. For. Sci. 11: 279–290.

    Google Scholar 

  • Owens J.N. and Simpson S.J., 1982. Further observations on the pollination mechanism and seed production of Douglas-fir. Can. J. For. Res. 12: 431–434.

    Article  Google Scholar 

  • Owens J.N., Simpson S.J., and Molder M., 1981. The pollination mechanism and the optimal time of pollination in Douglas-fir (Pseudotsuga menziesii). Can. J. For. Res. 11: 36–50.

    Article  Google Scholar 

  • Ritland K. and El-Kassaby Y.A., 1985. The nature of inbreeding in a seed orchard of Douglas-fir as shown by an efficient multilocus model. Theor. Appl. Genet. 71: 375–384.

    Article  Google Scholar 

  • Shaw D.V. and Allard R.W., 1982. Estimation of outcrossing rates in Douglas-fir using isozyme markers. Theor. Appl. Genet. 62: 113–120.

    Article  Google Scholar 

  • Silen R.R. and Keane G., 1969. Cooling a Douglas-fir seed orchard to avoid pollen contamination, USDA For. Serv. Res. Note PNW-101.

  • Slavov G.T., Howe G.T., and Adams W.T., 2005. Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can. J. For. Res. 35: 1592–1603.

    Article  CAS  Google Scholar 

  • Slavov G.T., Howe G.T., Yakovlev I., Edwards K.J., Krutovskii K.V., Tuskan G.A., Carlson J.E., Strauss S.H., and Adams W.T., 2004. Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theor. Appl. Genet. 108: 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen F.C., 1971. Estimate of self-fertility in coastal Douglas-fir from inbreeding studies. Silvae Genet. 20: 115–120.

    Google Scholar 

  • Sorensen F.C., 1982. The roles of polyembryony and embryo viability in the genetic system of conifers. Evolution 36: 725–733.

    Article  Google Scholar 

  • Stoehr M.U. and Newton C.H., 2002. Evaluation of mating dynamics in a lodgepole pine seed orchard using chloroplast DNA markers. Can. J. For. Res. 32: 469–476.

    Article  CAS  Google Scholar 

  • Stoehr M.U., Orvar B.L., Vo T.M., Gawley J.R., Webber J.E., and Newton C.H., 1998. Application of a chloroplast DNA marker in seed orchard management evaluations of Douglas-fir. Can. J. For. Res. 28: 187–195.

    Article  CAS  Google Scholar 

  • Stoehr M.U., Webber J.E., and Woods J.H., 2004. Protocol for rating seed orchard seedlots in British Columbia: quantifying genetic gain and diversity. Forestry 77: 297–303.

    Article  Google Scholar 

  • Stoehr M.U., Mehl H., Nicholson G., Pieper G., and Newton C.H., 2006. Evaluating supplemental mass pollination efficacy in a lodgepole pine orchard in British Columbia using chloroplast DNA markers. New For. 31: 83–90.

    Article  Google Scholar 

  • Wakeley P.C., Wells O.O., and Campbell T.E., 1966. Mass production of shortleaf × slash pine hybrids by pollinating unbagged female flowers. In: Joint Proceedings of the Second Genetics Workshop of the Society of American Foresters and the Seventh Lake States Forest Tree Improvement Conference, USDA Forest Service, St. Paul, USA, Res. Pap. NC-6, pp. 78–79.

    Google Scholar 

  • Webber J.E. and Painter R.A., 1996. Douglas-fir pollen management manual. Second edition, Res. Program WP 02/96. B.C. Ministry of Forests, Victoria, Canada.

    Google Scholar 

  • Woods J.H., 2005. Methods for estimating gamete contributions to orchard seed crops and vegetative lots in British Columbia. B.C. Ministry of Forests and Range, Research Branch, Victoria, B.C. Tech Rep 25.

  • Woods J.H. and Heaman J.C., 1989. Effect of different inbreeding levels on filled seed production in Douglas-fir. Can. J. For. Res. 19: 54–59.

    Article  Google Scholar 

  • Wright S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    PubMed  CAS  Google Scholar 

  • Yazdani R., Hadders G., and Szmidt A., 1986. Supplemental mass pollination in a seed orchard of Pinus sylvestris L. investigated by isozyme analyses. Scand. J. For. Res. 1: 309–315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousry A. El-Kassaby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sk Lai, B., Funda, T., Liewlaksaneeyanawin, C. et al. Pollination dynamics in a Douglas-fir seed orchard as revealed by pedigree reconstruction. Ann. For. Sci. 67, 808 (2010). https://doi.org/10.1051/forest/2010044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010044

Keywords