Skip to main content
  • Original Article
  • Published:

Efficiency of early selection for rotation-aged wood quality traits in radiata pine

Efficacité d’une sélection précoce pour les propriétés du bois adulte chez le pin radiata

Abstract

A total of 360 bark-to-bark-through-pith wood strips were sampled at breast height from 180 trees in 30 open-pollinated families from two rotation-aged genetic trials to study inheritance, age-age genetic correlation, and early selection efficiency for wood quality traits in radiata pine. Wood strips were evaluated by SilviScan® and annual pattern and genetic parameters for growth, wood density, microfibril angle (MFA), and stiffness (modulus of elasticity: MOE) for early to rotation ages were estimated. Annual ring growth was the largest between ages 2–5 years from pith, and decreased linearly to ages 9–10. Annual growth was similar and consistent at later ages. Wood density was the lowest near the pith, increased steadily to age 11–15 years, then was relatively stable after these ages. MFA was highest (35°) near the pith and reduced to about 10° at age 10–15 years. MFA was almost unchanged at later ages. MOE increased from about 2.5 GPa near the pith to about 20 GPa at ages 11–15 years. MOE was relatively unchanged at later ages. Wood density and MOE were inversely related to MFA. Heritability increased from zero near the pith and stabilised at ages 4 or 5 for all four growth and wood quality traits (DBH, density, MFA and MOE). Across age classes, heritability was the highest for area-weighted density and MFA, lowest for DBH, and intermediate for MOE. Age-age genetic correlations were high for the four traits studied. The genetic correlation reached 0.8 after age 7 for most traits. Early selection for density, MFA and MOE were very effective. Selection at age 7–8 has similar effectiveness as selection conducted at rotation age for MFA and MOE and at least 80% effective for wood density.

Résumé

Cette étude a pour objectif d’estimer les paramètres génétiques (héritabilités et corrélations juvéniles-adultes) pour différentes propriétés du bois chez le pin radiata et d’évaluer l’efficacité d’une sélection précoce. Trois cent soixante échantillons diamétraux de bois ont été prélevés dans deux dispositifs génétiques adultes sur trente familles de pin radiata issues de pollinisation libre, puis analysés avec le SilviScan®. Les caractéristiques annuelles de la croissance, de la densité du bois, de l’angle des microfibrilles (MFA) et de la rigidité (module d’élasticité : MOE) ont été analysées et les paramètres génétiques de ces caractères ont été estimés du stade juvénile à l’âge de la révolution. La croissance radiale est la plus forte entre 2 et 5 ans (depuis la moelle) puis décroît linéairement jusqu’à neuf—dix ans et se stabilise ensuite. La densité du bois est la plus faible près de la moelle; elle augmente fortement jusqu’à 11–15 ans puis se stabilise. MFA est le plus élevé (35°) près de la moelle; il diminue ensuite pour atteindre environ 10° vers 10–15 ans. MFA ne varie pratiquement plus au-delà de cet âge. MOE passe de 2.5 GPa près de la moelle à environ 20 GPa à 11–15 ans. Il se stabilise ensuite. L’évolution de la densité du bois et de MOE au cours du temps est donc inverse de celle de MFA. L’héritabilité, égale à 0 près du cœur, augmente ensuite et se stabilise vers 4–5 ans pour tous les caractères de croissance et les propriétés du bois (diamètre, densité, MFA, MOE). Quel que soit l’âge, l’héritabilité est la plus élevée pour la densité et MFA, la plus faible pour le diamètre et intermédiaire pour MOE. Les corrélations âge-âge sont fortes pour tous les caractères étudiés. Les corrélations génétiques atteignent 0.8 après 7 ans pour la plupart des caractères. Une sélection précoce pour la densité, MFA et MOE apparaît très efficace : en effet, une sélection vers 7–8 ans a la même efficacité qu’une sélection réalisée à la révolution pour MFA et MOE et cette efficacité est d’au moins 80 % pour la densité du bois.

References

  1. Anonymous, Australian forest and wood product statistics, ABARE, Canberra, 2004.

  2. Bastien J.C.H., Roman-Amat B., Predicting Douglas-fir (Pseudotsuga menziesii Mirb.) Franco) volume at age 15 with early traits, Silvae Genet. 39 (1990) 29–34.

    Google Scholar 

  3. Brown A.G., Experience in management of a radiata pine seed orchard at Tallaganda State Forest, New South Wales, Aust. For. Res. 5, (1971) 15–30.

    Google Scholar 

  4. Burdon R.D., Harris J.M., Wood density in radiata pine clones on four different sites, N.Z. J. For. Sci. 3, (1973) 286–303.

    Google Scholar 

  5. Cave I.D., Walker J.C.W., Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle, For. Prod. J. 44 (1994) 43–48.

    Google Scholar 

  6. Cotterill P.P., Dean C.A., Changes in the genetic control of growth of radiata pine to 6-years and efficiencies of early selection, Silvae Genet. 37 (1988) 138–146.

    Google Scholar 

  7. Cown D.J., McConchie D.L., Effects of thinning and fertilizer application on wood properties of Pinus radiata, N.Z. J. For. Sci. 11 (1981) 79–91.

    Google Scholar 

  8. Cown D.J., McConchie D.L., Young G.D., Radiata pine: wood properties survey, FRI Bulletin No. 50, Forest research Institute, Rotorua, New Zealand, 1991, 50 p.

    Google Scholar 

  9. Cown D.J., Young G.D., Burdon R.D., Variation in wood characteristics of 20-year-old half-sib families of Pinus radiata, N.Z. J. For. Sci. 22 (1992) 63–76.

    Google Scholar 

  10. Danjon F., Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine, Theor. Appl. Genet. 89 (1994) 911–921.

    Article  Google Scholar 

  11. DeBell J.D., Tappeiner J.C., Krahmer R.L., Wood density of western hemlock: effect of ring width, Can. J. For. Res. 24 (1994) 638–641.

    Article  Google Scholar 

  12. Donaldson L.A., Burdon R.D., Clonal variation and repeatability of microfibril angle in Pinus radiata, N.Z. J. For. Sci. 25 (1995) 164–174.

    Google Scholar 

  13. Downes G.M., Wimmer R., Evans R., Understanding wood formation: Gains to commercial forestry through tree ring research, Dendrochronologia 20 (2002) 37–51.

    Article  Google Scholar 

  14. Dutilleul P., Herman M., Avella Shaw T., Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies), Can. J. For. Res. 28 (1998) 56–68.

    Article  Google Scholar 

  15. Evans R., Hughes M.A., Menz D.J., Microfibril angle variation by scanning x-ray diffractometry, Appita J. 52 (1999) 363–367.

    Google Scholar 

  16. Evans R., Ilic J., Rapid prediction of wood stiffness from microfibril angle and density, For. Prod. J. 51 (2001) 53–57

    Google Scholar 

  17. Eriksson G., Jonsson A., Dormling I., Norell L., Stener L.G., Retrospective early tests of Pinus sylvestris L. seedlings grown under five nutrient regimes, For. Sci. 39 (199) 95–117.

  18. Falconer D.S., Mackay T.F.C., Introduction to Quantitative Genetics. Addison Wesley Longman Group Ltd, UK, 4th ed., 1996, 464 p.

    Google Scholar 

  19. Gwaze D.P., Bridgwater F.E., Byram T.D., Woolliams J.A., Williams C.G., Predicting age-age genetic correlations in tree-breeding programs: a case study of Pinus taeda L., Theor. Appl. Genet. 100 (2000) 199–206.

    Article  Google Scholar 

  20. Hannrup B., Ekberg I., Age-age correlations for tracheid length and wood density in Pinus sylvestris, Can. J. For. Res. 28 (1998) 1373–1379.

    Article  Google Scholar 

  21. Hodge G.R., White T.L., Genetic parameter estimates for growth traits at different ages in slash pine and some implications for breeding, Silvae Genet. 41 (1992) 252–261.

    Google Scholar 

  22. Hylen G., Age trends in genetic parameters of wood density in young Norway spruce, Can. J. For. Res. 29 (1999) 135–143.

    Article  Google Scholar 

  23. Johnson G.R., Sniezko R.A., Mandel N.L., Age trends in Douglas-fir genetic parameters and implications for optimum selection age, Silvae Genet. 46 (1997) 349–358.

    Google Scholar 

  24. King J.N., Burdon R.D., Time trends in inheritance and projected efficiencies of early selection in a large 17-year-old progeny test of Pinus radiata, Can. J. For. Res. 21 (1991) 1200–1207.

    Article  Google Scholar 

  25. Kumar S., Lee J., Age-age correlations and early selection for end-of-rotation wood density in radiata pine, For. Gen. 9 (2002) 323–330.

    Google Scholar 

  26. Lambeth C.C., Juvenile-mature correlations in Pinaceae and implications for early selection, For. Sci. 26 (1983) 571–580.

    Google Scholar 

  27. Lambeth C.C., van Buijtenen J.P., Duke S.D., McCullough R.B., Early selection is effective in 20-year-old genetic tests of loblolly pine, Silvae Genet. 32 (1983) 210–215.

    Google Scholar 

  28. Li B., Mckeand S.E., Allen H.L., Seedling shoot growth of loblolly pine families under two nitrogen levels as related to 12-year height. Can. J. For. Res. 21 (1991) 842–847.

    Article  CAS  Google Scholar 

  29. Li L., Wu H.X., Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata, Can. J. For. Res. 35 (2005) 1–11.

    Article  Google Scholar 

  30. Magnussen S., Growth differentiation in white spruce crop tree progenies, Silvae Genet. 42 (1993) 258–266.

    Google Scholar 

  31. Matheson A.C., Raymond C.A., The impact of genotype × environment interactions on Australian Pinus radiata breeding programs, Aust. For. Res. 14 (1984) 11–25.

    Google Scholar 

  32. Matheson A.C., Spencer D.J., Magnussen D., Optimum age for selection in Pinus radiata basal area under bark for age:age correlations, Silvae Genet. 43 (1994) 352–357.

    Google Scholar 

  33. Matheson A.C., Yang J.L., Spencer D.J., Breeding radiata pine for improvement of sawn product value, CTIA/IUFRO Wood quality Workshop IV. 1997, pp. 19–26.

  34. McKinley R., Klitscher K., Factors affecting wood density of radiata pine — an update, FRI Bulletin No. 201, Forest research Institute, Rotorua, New Zealand, 1995, pp. 46–53.

    Google Scholar 

  35. Nyakuengama J.G., Matheson A.C., Evans R., Spencer D., Vinden P., Time trends in the genetic control of wood microstructure traits in Pinus radiata, Appita 50 (2002) 486–494.

    Google Scholar 

  36. Nyakuengama J.G., Downes G.M., Ng J., Growth and density responses to later-age fertilizer application in Pinus radiata D. Don, IAWA J. 23 (2002) 431–448.

    Google Scholar 

  37. Pharis R.P., Yeh F.C., Dancik B.P., Superior growth potential in trees: what is its basis, and can it be tested for at an early age? Can. J. For. Res. 21 (1991) 368–374.

    Article  Google Scholar 

  38. SAS Institute Inc., SAS/STAT® software: changes and enhancements through release 6.12. SAS Institute Inc., Cary, N.C., 1997.

    Google Scholar 

  39. Shelbourne C.J.A., Genetics of adding value to the end-products of radiata pine. IUFRO ’97 Genetics of radiata pine, FRI bulletin No. 203, 1997, pp. 129–141.

  40. Siemon G.R., Effects of thinning on crown structure, stem form and wood density of radiata pine. Ph.D. thesis, Australian National University, Australia, 1973.

    Google Scholar 

  41. Tasissa G., Burkhart H.E., Modelling thinning effects on ring specific gravity of loblolly pine (Pinus taeda), For. Sci. 44 (1998) 212–223.

    Google Scholar 

  42. Walker J.C.F., Butterfield B.G., The importance of microfibril angle for the processing industries, N.Z. Forestry 40 (1995) 34–40.

    Google Scholar 

  43. Walker J.F.C., Nakada R., Understanding corewood in some softwoods: a selective review on stiffness and acoustics, Int. For. Rev. 1 (1999) 251–259.

    Google Scholar 

  44. Williams C.G., The influence of shoot ontogeny on juvenile-mature correlation in Loblolly pine, For. Sci. 33 (1987) 441–422.

    Google Scholar 

  45. Wimmer R., Downes G.M., Temporal variation of the ring width — wood density relationship in spruce stands affected by air pollution, IAWA J. 24 (2003) 53–61.

    Google Scholar 

  46. Williams C.G., Accelerated short-term genetic testing for loblolly pine families, Can. J. For. Res. 18 (1988) 1085–1089.

    Article  Google Scholar 

  47. Wood M., Stephens N., Allison B., Howell C., Plantations of Australia — A report from the National Plantation Inventory and the National Farm Forest Inventory, National Forest Inventory, Bureau of Rural Science, Canberra, 2001.

    Google Scholar 

  48. Wu H.X., Study of early selection in tree breeding: 2. Advantage of early selection through shortening of breeding cycle, Silvae Genet. 79–83, 1999.

  49. Wu H.X., Yang J., McRae T.A., Li L., Powell M.B., Genetic relationship between breeding objective and early selection criterion traits in Australia radiata pine population, CSIRO CFFP Technical Report 1402 and STBA Technical Report TR04-01, 2004, 51 p.

  50. Ying C.C., Morgenstern E.K., Correlations of height growth and heritabilities at different ages in white spruce. Silvae Genet. 28 (1979) 181–185.

    Google Scholar 

  51. Zas R., Merlo E., Fernandez-Lopez L., Juvenile-mature genetic correlations in Pinus pinaster under different nutrient × water regimes, Silvae Genet. 53 (2004) 124–129.

    Google Scholar 

  52. Zobel B.J., van Buijtenen J.P., Wood variation: its causes and control, Springer Series in Wood Science, Springer-Verlag, Berlin, 1989, 363 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry X. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H.X., Powell, M.B., Yang, J.L. et al. Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64, 1–9 (2007). https://doi.org/10.1051/forest:2006082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2006082