Skip to main content

Genetic variation of Prunus avium in susceptibility to cherry leaf spot (Blumeriella jaapii) in spatially heterogeneous infected seed orchards

Variabilité génétique de la susceptibilité de Prunus avium à Blumeriella jaapii dans des vergers à graines infectés spatialement de manière hétérogène

Abstract

Cherry leaf spot (Blumeriella jaapii (Rehm) Arx.) is a very serious disease of wild cherry (Prunus avium L.), which produces premature leaf defoliation and vigor decrease. In two clonal seed orchards of P. avium naturally infected by B. jaapii, spatial heterogeneity and autocorrelation of neighbor damage caused by cherry leaf spot impeded proper analysis of the fungus incidence. The iterative spatial analysis (ISA), based on variography and kriging, was successfully used to eliminate the effect of this spatial heterogeneity in analysis of genetic variation in susceptibility to B. jaapii. Significant differences among P. avium clones were found, with moderate to high broad-sense heritability estimates. Genetic by environment interactions, although significant, were not quantitatively important. A strong relationship between leaf spot susceptibility and bud burst was found. However, other factors must be affecting the genetic variation in leaf spot susceptibility, as differences among clones remained highly significant when considering the bud burst as a covariate in the genetic model.

Résumé

Blumeriella jaapii (Rehm) Arx. est une des causes principales du dépérissement du merisier (Prunus avium L.) : il produit une défoliation prématurée et réduit la vigueur des arbres. Dans deux vergers à graines de clones de merisier naturellement infectés par B. jaapii, l’hétérogénité spatiale des dégâts et l’autocorrélation entre voisins empêchent une analyse correcte de l’incidence du champignon. Afin d’éliminer ces effets et d’étudier correctement la variabilité génétique de la susceptibilité au champignon, on a utilisé avec succès l’analyse itérative spatiale (ISA), basée sur la variographie et le krigeage. Des différences significatives entre clones existent pour la sensibilité au champignon. L’héritabilité clonale pour ce caractère est modérée à forte. Bien que l’interaction clone × site soit significative, elle n’est pas quantitativement importante. Par ailleurs, on a trouvé une relation étroite entre la susceptibilité au champignon et le débourrement végétatif. Néanmoins, d’autres facteurs doivent affecter la variabilité génétique à la susceptibilité, car les différences entre clones restent très significatives même quand on utilise le débourrement comme covariable dans le modèle statistique.

References

  1. Annesi T., Motta E., Forti E., First report of Blumeriella jaapii teleomorph on wild cherry in Italy, Plant Dis. 81 (1997) 1214.

    Article  Google Scholar 

  2. Curnel Y., Jacques D., Nanson A., First multisite clonal test of wild cherry (Prunus avium L.) in Belgium, Silvae Genet. 52 (2003) 45–52.

    Google Scholar 

  3. Deflorio G., Sicoli G., Lerario P., Luisi N., Assessment of plant health conditions in young forest plantations of southern Italy, Monti e Boschi 52 (2001) 37–44.

    Google Scholar 

  4. Desprez-Loustau M.L., Wagner K., Influence of silvicultural practices on twisting rust infection and damage in maritime pine, as related to growth, For. Ecol. Manage. 98 (1997) 135–147.

    Article  Google Scholar 

  5. Desprez-Loustau M.L., Wagner K., Components of maritime pine susceptibility to twisting rust — A path coefficient analysis, Eur. J. Plant Pathol. 103 (1997) 653–665.

    Article  Google Scholar 

  6. Dutkowski G.W, Silva J.C.E., Gilmour A.R., Lopez G.A., Spatial analysis methods for forest genetic trials, Can. J. For. Res. 32 (2002) 2201–2214.

    Article  Google Scholar 

  7. Fritz R.S., Resistance of hybrid plants to herbivores: Genes, environment, or both? Ecology 80 (1999) 382–391.

    Article  Google Scholar 

  8. Fu Y.B., Yanchuk A.D., Namkoong G., Spatial patterns of tree height variations in a series of Douglas-fir progeny trials: implications for genetic testing, Can. J. For. Res. 29 (1999) 714–723.

    Article  Google Scholar 

  9. Hamann A., Namkoong G., Koshy M.P., Improving precision of breeding values by removing spatially autocorrelated variation in forestry field experiments, Silvae Genet. 51 (2002) 210–215.

    Google Scholar 

  10. Heald F.D., Manual of Plant Diseases, McGraw-Hill, New York, 1933.

    Google Scholar 

  11. Higgins B.B., Contribution to the life history and physiology of Cylindrosporium on stone fruits, Am. J. Bot. 1 (1914) 145–173.

    Article  Google Scholar 

  12. Hünh M., Beiträge zur Erfassung der phänotypischen Stabilität. I. Vorschlag einiger auf Ranginformationen beruhenden Stabilitätsparameter, EDV in Medizin und Biologie 10 (1979) 112–117.

    Google Scholar 

  13. Ito T., Kumazawa K., Precursors of antifungal substances from cherry leaves (Prunus yedoensis Matsumura), Biosci. Biotechnol. Biochem. 59 (1995) 1944–1945.

    Article  CAS  Google Scholar 

  14. Jaime-Garcia R., Orum T.V., Felix-Gastelum R., Trinidad-Correa R., VanEtten H.D., Nelson M.R., Spatial analysis of Phytophthora infestans genotypes and late blight severity on tomato and potato in the Del Fuerte Valley using geostatistics and geographic information systems, Phytopathology 91 (2001) 1156–1165.

    Article  PubMed  CAS  Google Scholar 

  15. Keitt G.W., Blodgett E.C., Wilson E.E., Magie R.O., The epidemiology and control of cherry leafspot, Wisc. Agric. Exp. Stn. Res. Bull. 132 (1937) 117.

    Google Scholar 

  16. Lombardero M.J., Ayres M.P., Lorio P.L., Ruel J.J., Environmental effects on constitutive and inducible resin defences of Pinus taeda, Ecol. Lett. 3 (2000) 329–339.

    Article  Google Scholar 

  17. Lynch M., Walsh B., Genetics and analysis of quantitative traits, Sinauer Associates, Inc, 1998.

  18. Mo Y.Y., Geibel M., Bonsall R.F., Gross D.C., Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrb gene required for synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv syringae, Plant Physiol. 107 (1995) 603–612.

    PubMed  CAS  Google Scholar 

  19. Motta E., Scortichini M., Biocca M., Serious wild cherry (grown for timber) diseases in central Italy, Ann. Ist. Sper. Selvicoltura 25–26 (1994) 373–390.

    Google Scholar 

  20. Muranty H., Schermann N., Santi F., Dufour J., Genetic parameters estimated from a wild cherry diallel: consequences for breeding, Silvae Genet. 47 (1998) 249–257.

    Google Scholar 

  21. Nac C., Statistics for spatial data, John Willey & Sons, New York, 1993.

    Google Scholar 

  22. Nanson A., L’héritabilité et le gain d’origine génétique dans quelques types d’expérience, Silvae Genet. 19 (1970) 113–121.

    Google Scholar 

  23. Niederleitner S., Knoppik D., Effects of the cherry leaf spot pathogen Blumeriella jaapii on gas exchange before and after expression of symptoms on cherry leaves, Physiol. Mol. Plant Pathol. 51 (1997) 145–153.

    Article  Google Scholar 

  24. Raudenbush S.W., Bryk A.S., Hierarchical linear models. Applications and data analysis methods, Sage Publications, Inc., Thousand Oaks, 2002.

    Google Scholar 

  25. Rekah Y., Shtienberg D., Katan J., Spatial distribution and temporal development of Fusarium crown and root rot of tomato and pathogen dissemination in field soil, Phytopathology 89 (1999) 831–839.

    Article  PubMed  CAS  Google Scholar 

  26. Santi F., Muranty H., Dufour J., Paques L.E., Genetic parameters and selection in a multisite wild cherry clonal test, Silvae Genet. 47 (1998) 61–67.

    Google Scholar 

  27. Santi F., Russell K., Menard M., Dufour J., Screening wild cherry (Prunus avium) for resistance to bacterial canker by laboratory and field tests, For. Pathol. 34 (2004) 349–362.

    Google Scholar 

  28. SAS, SAS/STAT, User’s guide, version 8., SAS Institute Inc., Cary, NC, 1999.

    Google Scholar 

  29. Singer J.D., Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models, J. Educ. Behav. Stat. 23 (1998) 323–355.

    Google Scholar 

  30. Sjulin T.M., Jones A.L., Andersen R.L., Expression of partial resistance to cherry leaf-spot in cultivars of sweet, sour, duke, and European ground cherry, Plant Dis. 73 (1989) 56–61.

    Article  Google Scholar 

  31. Solla A., Camarero J.J., Spatial patterns and environmental factors affecting the presence of Mellampsorella caryophyllacearum infections in an Abies alba forest in NE Spain, For. Pathol. 36 (2006) 165–175.

    Google Scholar 

  32. Stanosz G.R., Effect of cherry leaf-spot on nursery black-cherry seedlings and potential benefits from control, Plant Dis. 76 (1992) 602–604.

    Article  Google Scholar 

  33. Wharton P.S., Iezzoni A., Jones A.L., Screening cherry germ plasm for resistance to leaf spot, Plant Dis. 87 (2003) 471–477.

    Article  Google Scholar 

  34. Zas R., Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials, Tree Genet. Genomes 2 (2006) 177–185.

    Article  Google Scholar 

  35. Zas R., Sampedro L., Prada E., Fernández-López J., Genetic variation of Pinus pinaster Ait. seedlings in susceptibility to Hylobius abietis L., Ann. For. Sci. 62 (2005) 681–688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Díaz, R., Zas, R. & Fernández-López, J. Genetic variation of Prunus avium in susceptibility to cherry leaf spot (Blumeriella jaapii) in spatially heterogeneous infected seed orchards. Ann. For. Sci. 64, 21–30 (2007). https://doi.org/10.1051/forest:2006084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2006084