Skip to main content
  • Original Article
  • Published:

Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests

Caractéristiques des combustibles de la canopée et comportement du potentiel de feu des couronnes de forêts de Pin d’Alep (Pinus halepensis Mill.)

Abstract

Canopy fuel characteristics that influence the initiation and spread of crown fires were measured in representative Aleppo pine (Pinus halepensis Mill.) stands in Greece. Vertical distribution profiles of canopy fuel load, canopy base height and canopy bulk density are presented. Aleppo pine canopy fuels are characterized by low canopy base height (3.0–6.5 m), while available canopy fuel load (0.96–1.80 kg/m2) and canopy bulk density (0.09–0.22 kg/m3) values are similar to other conifers worldwide. Crown fire behavior (probability of crown fire initiation, crown fire type, rate of spread, fireline intensity and flame length) in Aleppo pine stands with various understory fuel types was simulated with the most updated crown fire models. The probability of crown fire initiation was high even under moderate burning conditions, mainly due to the low canopy base height and the heavy surface fuel load. Passive crown fires resulted mostly in uneven aged stands, while even aged stands gave high intensity active crown fires. Assessment of canopy fuel characteristics and potential crown fire behavior can be useful in fuel management and fire suppression planning.

Résumé

Les caractéristiques des combustibles qui influencent le démarrage et la propagation des feux de couronnes ont été mesurées dans des peuplements représentatifs de Pinus halepensis Mill. en Grèce. Des profils verticaux de la charge en combustible de la canopée, la hauteur de la base de la canopée et la densité volumique de la canopée sont présentés. La charge combustible de la canopée est caractérisée par une faible hauteur de la base de la canopée (3,0–6,5 m), tandis que la charge en combustible disponible (0,96–1,80 kg/m2) et la densité volumique de la canopée (0,09–0,22 kg/m3) sont similaires à celles des autres conifères dans le monde. Le comportement du feu de couronne (probabilité de démarrage du feu dans les couronnes, type de feu de couronne, taux de propagation, intensité de la ligne de feu et longueur des flammes) dans les peuplements de Pinus halepensis avec différents types de combustibles de sous-bois a été simulé avec le maximum de modèles actuels de feux de couronnes. La probabilité de démarrage de feu de couronne était forte même en conditions de faible embrasement, principalement en relation avec la faible hauteur de la base des couronnes et la forte charge en combustible au sol. Des feux passifs de couronnes se produisent principalement dans les peuplements inéquiennes tandis que les peuplements équiennes ont présenté de fortes intensités de feux actifs de couronnes. L’évaluation des caractéristiques des combustibles de la canopée et le comportement du potentiel de feu peuvent être très utiles pour la gestion des combustibles et la planification de la lutte contre les feux.

References

  1. Agee J., The influence of forest structure on fire behavior, in: Proceedings of the 17th Annual Forest Vegetation Management Conference, January 16–18, Redding, California, 1996, pp. 52–68.

    Google Scholar 

  2. Albini F.A., Wildland fires, American Scientist 72 (1984) 590–597.

    Google Scholar 

  3. Albini F.A., A model for fire spread in wildland fuels by radiation, Combust. Sci. Technol. 42 (1985) 229–258.

    Article  Google Scholar 

  4. Albini F.A., Wildland fire spread by radiation — a model including fuel cooling by natural convection, Combust. Sci. Technol. 45 (1985) 101–113.

    Article  Google Scholar 

  5. Albini F.A., Stocks B.J., Predicted and observed rates of spread of crown fires in immature Jack pine, Combust. Sci. Technol. 48 (1986) 65–76.

    Article  CAS  Google Scholar 

  6. Alexander M.E., Help with making crown fire hazard assessments, in: Fischer W.C., Arno S.F. (Eds.), Protecting people and homes from wildfire in the Interior West: Proceedings of the Symposium and Workshop, 1988 October 6–8, Missoula, USDA, Forest Service, Intermountain Research Station, General Technical Report INT-251, 1988, pp. 147–156.

    Google Scholar 

  7. Alexander M.E., Crown fire thresholds in exotic pine plantations in Australasia, Ph.D. thesis, Australian National University, Canberra, Australia, 1998, 228 p.

    Google Scholar 

  8. Alexander M.E., Fire behaviour as a factor in forest and rural fire suppression, Forest Research, Rotorua, in association with the New Zealand Fire Service Commission and National Rural Fire Authority, Wellington, Forest Research Bulletin No. 197, Forest and Rural Fire Scientific and Technical Series, Report No. 5, 2000, 28 p.

  9. Alexander M.E., Stefner C.N., Mason J.A., Stocks B.J., Hartley G.R., Maffey M.E., Wotton B.M., Taylor S.W., Lavoie N., Dalrymple G.N., Characterizing the jack pine-black spruce fuel complex of the International Crown Fire Modelling Experiment (ICFME), Natural Resources Canada, Forestry Service, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-393, 2004, 49 p.

    Google Scholar 

  10. Anderson H.E., Aids to determining fuel models for estimating fire behavior, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-122, Ogden, Utah, 1982, 22 p.

    Google Scholar 

  11. Andrews P.L., BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem part I, USDA, Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report, INT-260, Ogden, Utah, 1986, 130 p.

    Google Scholar 

  12. Andrews P.L., Bevins C.D., Seli R.C., BehavePlus fire modeling system, version 3.0: User’s Guide, USDA, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-106, Ogden, Utah, 2005, 142 p.

    Google Scholar 

  13. Baldwin V.C. Jr., Peterson K.D., Burkhart H.E., Amatais R.L., Dougherty P.M., Equation for estimating loblolly pine branch and foliage weight and surface area distributions, Can. J. For. Res. 27 (1997) 918–927.

    Article  Google Scholar 

  14. Barbero M., Loisel R., Quézel P., Richardson D.M., Romane F., Pines of the Mediterranean Basin, in: Richardson D.M. (Ed.), Ecology and biogeography of Pinus, Cambridge University Press, Cambridge, 1998, pp 153–170.

    Google Scholar 

  15. Brown J.K., Weight and Density of Crowns of Rocky Mountains Conifer, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-197, Ogden, Utah, 1978, 56 p.

    Google Scholar 

  16. Burgan R.E., Rothermel R.C., BEHAVE: Fire prediction and fuel modeling system-FUEL subsystem, USDA Forest Service General Technical Report INT-167, Ogden, Utah, 1984, 126 p.

  17. Butler B.W., Finney M.A., Andrews P.L., Albini F.A., A radiation driven model for crown fire spread, Can. J. For. Res. 34 (2004) 1588–1599.

    Article  Google Scholar 

  18. Byram G.M., Combustion of forest fuels, in: Davis K.P. (Ed.), Forest fire: control and use, New York, McGraw Hill Book Co, 1959, pp. 61–89.

    Google Scholar 

  19. Call P., Albini F.A., Aerial and surface consumption in crown fires, Int. J. Wildl. Fire 7 (1997) 259–264.

    Article  Google Scholar 

  20. Cruz M.G., Modeling the initiation and spread of crown fires, M. Sci. thesis, University of Montana, Missoula, 1999, 162 p.

    Google Scholar 

  21. Cruz M.G., Ignition of crown fuels above a spreading surface fire, Ph.D. dissertation, University of Montana, Missoula, 2004, 126 p.

    Google Scholar 

  22. Cruz M.G., Alexander M.E., Wakimoto R.H., Predicting crown fire behavior to support forest fire management decision making, in: Viegas D.X. (Ed.), Forest fire research and wildland fire safety, Proceedings of the IV International Conference on Forest Fire Research, Millpress Scientific Publications, Rotterdam, 2002, pp. 1–10.

    Google Scholar 

  23. Cruz M.G., Alexander M.E., Wakimoto R.H., Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America, Int. J. Wildl. Fire 12 (2003) 39–50.

    Article  Google Scholar 

  24. Cruz M.G., Alexander M.E., Wakimoto R.H., Modeling the likeli-hood of crown fire occurrence in conifer forest stands, For. Sci. 50 (2004) 640–658.

    Google Scholar 

  25. Cruz M.G., Alexander M.E., Wakimoto R.H., Development and testing of models for predicting crown fire rate of spread in conifer forest stands, Can. J. For. Res. 35 (2005) 1626–1639.

    Article  Google Scholar 

  26. Dimitrakopoulos A.P., PYROSTAT — a computer program for forest fire data inventory and analysis in Mediterranean countries, Environ. Model. Softw. 16 (2001) 351–359.

    Article  Google Scholar 

  27. Dimitrakopoulos A.P., Mediterranean fuel models and potential fire behavior in Greece, Int. J. Wildl. Fire 11 (2002) 127–130.

    Article  Google Scholar 

  28. Dimitrakopoulos A.P., Panov P.I., Pyric properties of some dominant Mediterranean vegetation species, Int. J. Wildl. Fire 10 (2001) 23–27.

    Article  Google Scholar 

  29. Dimitrakopoulos A.P., Dritsa S., Novel nomographs for fire behavior prediction in Mediterranean and submediterranean vegetation types, Forestry 76 (2003) 479–490.

    Article  Google Scholar 

  30. Dupuy J., Morvan D., Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model, Int. J. Wildl. Fire 14 (2005) 141–151.

    Article  Google Scholar 

  31. Finney M.A., FARSITE: Fire area simulator-model development and evaluation, USDA, Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4, Ogden, Utah, 1998, 47 p.

    Google Scholar 

  32. Forestry Canadian Fire Danger Group, Development and Structure of the Canadian Forest Fire Behavior Prediction System, Forestry Canada, Science and Sustainable Development Directorate, Information Report ST-X-3, Ottawa, Canada, 1992, 65 p.

    Google Scholar 

  33. Fule P.Z., Covington W.W., Smith H.B., Springer J.D., Heinlein T.A., Huisinga K.D., Moore M.M., Comparing ecological restoration alternatives: Grand Canyon, Arizona, For. Ecol. Manage. 170 (2002) 19–41.

    Article  Google Scholar 

  34. Gonzalez J.R., Pukkala T., Palahi M., Optimizing the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain), Ann. Sci. For. 62 (2005) 493–501.

    Article  Google Scholar 

  35. Gonzalez J.R., Palahi M., Trasobares A., Pukkala T., A fire probability model for forest stands in Catalonia (north-east Spain), Ann. For. Sci. 63 (2006) 169–176.

    Article  Google Scholar 

  36. Graham R.T., Hayman fire case study, USDA, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-114, Fort Collins, 2003, 396 p.

    Google Scholar 

  37. Grigal D.F., Kernik L.K., Generality of black spruce biomass estimation equations, Can. J. For. Res. 14 (1984) 486–490.

    Article  Google Scholar 

  38. Grishin A.M., Perminov V.A., Mathematical modeling of the ignition of tree crowns, Combust. Explos. Shock Waves 34 (1998) 378–376.

    Article  Google Scholar 

  39. Johnson A., Woodard P., Titus S., Lodgepole pine and white spruce fuel weights predicted from height and crown width, Can. J. For. Res. 19 (1989) 527–530.

    Article  Google Scholar 

  40. Johnson A., Woodard P., Titus S., Lodgepole pine and white spruce crown fuel weights predicted from diameter at breast height, For. Chron. 66 (1990) 596–599.

    Google Scholar 

  41. Johnson E.A., Fire and vegetation dynamics: Studies from the North American boreal forest, Cambridge University Press, 1992, 129 p.

  42. Keane R.E., Burgan R., Wangtendonk J., Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling, Int. J. Wildl. Fire 10 (2001) 301–319.

    Article  Google Scholar 

  43. Keane R.E., Reinhardt E.D., Scott J., Gray K., Reardon J., Estimating forest canopy bulk density using six indirect methods, Can. J. For. Res. 35 (2005) 724–739.

    Article  Google Scholar 

  44. Keyes C.R., O’Hara K.L., Quantifying stand targets for silvicultural prevention of crown fires, West. J. Appl. For. 17 (2002) 101–109.

    Google Scholar 

  45. Kilgore B.M., Sando R.W., Crown fire potential in a sequoia forest after prescribed burning, For. Sci. 21 (1975) 83–87.

    Google Scholar 

  46. Kittredge J., Estimation of the amount of foliage of trees and stands, J. For. 42 (1944) 905–912.

    Google Scholar 

  47. Lemmon P.E., A spherical densiometer for estimating forest overstory density, For. Sci. 1 (1956) 314–320.

    Google Scholar 

  48. Linn R.R., Transport model for prediction of wildfire behavior, Los Alamos National Laboratory, Scientific Report, 1997, 195 p.

  49. Linn R.R., Reisner J., Colman J.J., Winterkamp J., Studying wildfire behavior using FIRETEC, Int. J. Wildland Fire 11 (2002) 233–246

    Article  Google Scholar 

  50. Linn R.R., Winterkamp J., Colman J.J., Edminster C., Bailey J.D., Modeling interactions between fire and atmosphere in discrete element fuel beds, Int. J. Wildl. Fire 14 (2005) 37–48.

    Article  Google Scholar 

  51. Long J.N., Smith F.W., Leaf-area sapwood area relations of lodgepole pine as influenced by stand density and site index, Can. J. For. Res. 18 (1988) 247–250.

    Article  Google Scholar 

  52. McAlpine R.S., Hobbs M.W., Predicting the height to live crown base in plantation of four boreal forest species, Int. J. Wildl. Fire 4 (1994) 103–106.

    Article  Google Scholar 

  53. Mead B.R., Phytomass in southeast Alaska, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Research Paper, PNW-RP-505, Portland, OR, 1998, 48 p.

    Google Scholar 

  54. Mitsopoulos I.D., Crown fire analysis and management in Pinus halepensis forests of Greece, Ph.D. dissertation, Aristotle University of Thessaloniki, 2005, 232 p. (in Greek, with English abstract).

  55. Moeur M., Crown width and foliage weight of northern Rocky Mountain conifers, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, Research Paper INT-283, 1981, 14 p.

    Google Scholar 

  56. Monserud R.A., Marshall J.D., Allometric crown relations in three northern Idaho conifer species, Can. J. For. Res. 29 (1999) 521–535.

    Article  Google Scholar 

  57. Moreno J.M., Oechel W.C., The role of fire in Mediterranean-type ecosystems, Springer-Verlag, New York, NY, 1994.

    Google Scholar 

  58. Norusis M.J., SPSS professional statistics, SPSS Inc., Chicago, 1997, 376 p.

    Google Scholar 

  59. Otrmar R.D., Vilnanek R.E., Wright C.S., Stereo photoseries for quantifying natural fuels, Vol. I: Mixed conifer with mortality, Western Juniper, Sagebrush and grasslands types in the Interior Pacific Northwest, PMS 830, NFES 2580, Boise, Idaho: National Wildfire Coordinating Group, National Interagency Fire Center, 1998, 73 p.

    Google Scholar 

  60. Pastor E., Zarate L., Planas E., Arnaldos J., Mathematical models and calculation systems for the study of wildland fire behavior, Prog. Energy Combust. Sci. 29 (2003) 139–153.

    Article  Google Scholar 

  61. Perez B., Cruz A., Fernandes-Gonzales F., Moreno J.M., Effects of the recent land-use history on the postfire vegetation of an uplands in Cental Spain, For. Ecol. Manage. 182 (2003) 273–283.

    Article  Google Scholar 

  62. Perry D.A., Jing H., Youngblood A., Oetter D.R., Forest structure and fire susceptibility in volcanic landscapes of the eastern high Cascades, Oregon, Conserv. Biol. 18 (2004) 913–926.

    Article  Google Scholar 

  63. Porterie B., Loraud J.C., Bellemare I.O., Consalvi J.L., A physically based model of the onset of crowning, Combust. Sci. Technol. 175 (2003) 1109–1141.

    Article  CAS  Google Scholar 

  64. Quezel P., Taxonomy and biogeography of Mediterranean pine species, in: Ne’eman G., Trabaud L. (Eds.), Ecology, biogeography and management of Pinus halepensis and Pinus brutia forest ecosystems in the Mediterranean Basin, Backhuys Publishers, Leiden, 2000, pp. 1–12.

    Google Scholar 

  65. Riano D., Meier E., Allgower B., Chuevico E., Ustin S., Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling, Remote Sens. Environ. 86 (2003) 177–186.

    Google Scholar 

  66. Riano D., Chuevico E., Condes S., Gonzales-Matesanz J., Ustin S., Generation of crown bulk density for Pinus sylvestris L. from lidar, Remote Sens. Environ. 92 (2004) 345–352.

    Article  Google Scholar 

  67. Rothermel R.C., A mathematical model for predicting fire spread in wildland fuels, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115, Ogden, Utah, 1972, 40 p.

    Google Scholar 

  68. Rothermel R.C., Predicting behavior and size of crown fires in the Northern Rocky Mountains, USDA, Forest Service Intermountain Research Station, Research Paper INT-438, 1991, 46 p.

  69. Sando R., Wick C., A method of evaluating crown fuels in boreal stands, USDA, Forest Service, North Central Forest Experiment Station, Research Paper NC-84, 1972, 26 p.

  70. Scott J.H., Reinhardt E.D., Assessing crown fire potential by linking models of surface and crown fire potential, USDA, Forest Service, Rocky Mountain Research Station, Research Paper RMRS-29, Fort Collins, USA, 2001, 59 p.

    Google Scholar 

  71. Scott J.H., Reinhardt E.D., Estimating canopy fuels in conifer forests, Fire Management Today 62 (2002) 45–50.

    Google Scholar 

  72. Stephens S.L., Evaluation of the effects of silvicultural and fuels treatments on potential fire behavior in Sierra Nevada mixed conifer forests, For. Ecol. Manage. 105 (1998) 21–35.

    Article  Google Scholar 

  73. Stocks B.J., Black spruce fuel weights in northern Ontario, Can. J. For. Res. 10 (1980) 498–501.

    Article  Google Scholar 

  74. Stocks B.J., Fire behavior in immature jack pine, Can. J. For. Res. 17 (1987) 80–86.

    Article  Google Scholar 

  75. Stocks B.J., Fire behavior in mature jack pine, Can. J. For. Res. 19 (1989) 783–790.

    Article  Google Scholar 

  76. Stocks B.J., Alexander M.E., Wotton B.M., Stefner C.N., Flannigan M.D., Taylor S.W., Lavoie N., Mason J.A., Hartley G.R., Maffey M.E., Dalrymple G.N., Blake T.W., Cruz M.G., Lanoville R.A., Crown fire behaviour in a northern jack pine—black spruce forest, Can. J. For. Res. 34 (2004) 1548–1560.

    Article  Google Scholar 

  77. Terradas J., Pinol J., Lloret F., Risk factors in wildfires along the Mediterranean coast of the Iberian Peninsula, in: Trabaud L. (Ed.), Fire management and landscape ecology, International Association of Wildland Fire, Fairfield, Washington, USA, 1998, pp. 297–304.

    Google Scholar 

  78. Thomas P.H., The size of flames from natural fires, in: Proceedings of 9th International Symposium on Combustion Processes, Academic Press, New York, 1963, pp. 844–859.

    Google Scholar 

  79. Van Wagner C.E., Conditions of the start and spread of crown fires, Can. J. For. Res. 7 (1977) 23–34.

    Article  Google Scholar 

  80. Van Wagner C.E., Prediction of crown fire behavior in conifer stands, in: MacIver D.C., Auld H., Whitewood R. (Eds.), Proceedings at the 10th Conference on Fire and Forest Meteorology, Ottawa, Canada, 1989, pp. 207–212

  81. Van Wagner C.E., Prediction of crown fire behavior in two stands of jack pine, Can. J. For. Res. 23 (1993) 442–449.

    Article  Google Scholar 

  82. Williams D.F., Influence of quantity, distribution and moisture content of forest fuels on fire management of radiata pine plantations, Master of Science thesis, University of Melbourne, Victoria, Australia, 1977, 188 p.

    Google Scholar 

  83. Wilson J., Baker P., Mitigating fire risk to late-successional forest reserves on the east slope of the Washington Cascade Range, For. Ecol. Manage. 110 (1998) 59–75.

    Article  Google Scholar 

  84. Xanthopoulos G., Development of a wildland crown fire initiation model, Ph.D. thesis, University of Montana, Missoula, 1990, 152 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis D. Mitsopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsopoulos, I.D., Dimitrakopoulos, A.P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann. For. Sci. 64, 287–299 (2007). https://doi.org/10.1051/forest:2007006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007006