Skip to main content
  • Original Article
  • Published:

Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests

Évaluation de la compétition et indices d’éclairement pour la prédiction de la croissance radiale dans des forêts boréales mixtes adultes

Abstract

A series of conventional distance-independent and distance-dependent competition indices, a highly flexible distance-dependent crowding index, and two light resource estimation indices were compared to predict individual tree diameter growth of five species of mature trees from natural-origin boreal mixed forests. The crowding index was the superior index for most species and ecosites. However, distance-independent indices, such as basal area of competing trees, were also effective. Distance-dependent light estimation indices, which estimate the fraction of seasonal photosynthetically-active radiation available to each tree, ranked intermediate to low. Determining separate competition indices for each competitor species accounted for more variation than ignoring species or classifying by ecological groups. Species’ competitive ability ranked (most competitive to least): paper birch ≈ white spruce ≈> trembling aspen > lodgepole pine > balsam poplar. Stratification by ecosite further improved model performance. However, the overall impact of competition on mature trees in these forests appears to be small.

Résumé

Ce travail a évalué la capacité d’indices de compétition à prédire la croissance radiale individuelle d’arbres adultes de cinq espèces de forêts mixtes boréales. Ont ainsi été comparés : (1) une série d’indices conventionnels de compétition indépendants ou dépendants de la distance, (2) un indice très flexible d’encombrement dépendant de la distance et (3) deux indices d’estimation de l’éclairement. L’indice d’encombrement a été le plus efficace dans la plupart des stations et des espèces. Cependant, les indices indépendants de la distance tels que la surface terrière des arbres en compétition, ont été également efficaces. Les indices dépendants de la distance, d’estimation de l’éclairement, qui estiment la fraction saisonnière du rayonnement photosynthétiquement actif disponible pour chaque arbre, se sont classés en position intermédiaire. L’identification d’indices de compétition spécifiques de chaque espèce compétitrice a mieux rendu compte de la diversité des stations qu’un indice non spécifique ou qu’un classement des espèces par groupes écologiques. L’aptitude à la compétition des espèces a été classée de la manière suivante (de la plus à la moins compétitive) : Betula papyrifera, Picea glauca, Populus tremuloides, Pinus contorta, Populus balsamifera. La stratification par station améliore encore la performance du modèle. Cependant, l’impact général de la compétition sur les arbres adultes dans ces forêts semble être faible.

References

  1. Alberta Land and Forest Services, Land and Forest Services Permanent Sample Plot Field Procedures Manual, For. Manage. Div., Edmonton, Alberta, 2002.

    Google Scholar 

  2. Alemdag I.S., Evaluation of some competition indices for the prediction of diameter increment in planted white spruce, Can. For. Serv. Inf. Rep. FMR-X-108, 1978.

  3. Bartelink H.H., Effects of stand composition and thinning in mixed-species forests: a modeling approach applied to Douglas-fir and beech, Tree Physiol. 20 (2000) 399–406.

    PubMed  Google Scholar 

  4. Beckingham J.D., Archibald J.H., Field guide to ecosites of northern Alberta, University of British Columbia Press, Vancouver, BC, 1996.

    Google Scholar 

  5. Beckingham J.D., Corns I.G.W., Archibald J.H., Field guide to ecosites of west-central Alberta. University of British Columbia Press, Vancouver, BC, 1996.

    Google Scholar 

  6. Biging G.S., Dobbertin M., A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees, For. Sci. 38 (1992) 695–720.

    Google Scholar 

  7. Biging G.S., Dobbertin M., Evaluation of competition indices in individual tree growth models, For. Sci. 41 (1995) 360–377.

    Google Scholar 

  8. Brunner A., A light model for spatially explicit forest stand models, For. Ecol. Manage. 107 (1998) 19–46.

    Article  Google Scholar 

  9. Burton P.J., Some limitations inherent to static indices of plant competition, Can. J. For. Res. 23 (1993) 2141–2151.

    Article  Google Scholar 

  10. Canham C.D., Finzi A.C., Pacala S.W., Burbank D.H., Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees, Can. J. For. Res. 24 (1994) 337–349.

    Article  Google Scholar 

  11. Canham C.D., Coates K.D., Bartemucci P., Quaglia S., Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia, Can. J. For. Res. 29 (1999) 1775–1783.

    Article  Google Scholar 

  12. Canham C.D., LePage P.T., Coates K.D., A neighborhood analysis of canopy tree competition: effects of shading versus crowding, Can. J. For. Res. 34 (2004) 778–787.

    Article  Google Scholar 

  13. Coates K.D., Canham C.D., Beaudet M., Sachs D.L., Messier C., Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests, For. Ecol. Manage. 186 (2003) 297–310.

    Article  Google Scholar 

  14. Comeau P.G., Braumandl T.F., Xie C.Y., Effects of overtopping vegetation on light availability and growth of Engelmann spruce (Picea engelmannii) seedlings, Can. J. For. Res. 23 (1993) 2044–2048.

    Article  Google Scholar 

  15. Connell J.H., Apparent versus “real” competition in plants, in: Grace J.B., Tilman D. (Eds.), Perspectives on Plant Competition, Academic Press, San Diego, CA, 1990, pp. 9–26.

    Google Scholar 

  16. Corona P., Ferrara A., Individual competition indices for conifer plantations, Agric. Ecosyst. Environ. 27 (1989) 429–437.

    Article  Google Scholar 

  17. Cumming S.G., Schmiegelow F.K.A., Burton P.J., Gap dynamics in boreal aspen stands: is the forest older than we think? Ecol. Appl. 10 (2000) 744–759.

    Google Scholar 

  18. Dang Q.L., Lieffers V.J., Assessment of patterns of response of tree ring growth of black spruce following peatland drainage, Can. J. For. Res. 19 (1989) 924–929.

    Article  Google Scholar 

  19. Daniels R.F., Simple competition indices and their correlation with annual loblolly pine tree growth, For. Sci. 22 (1976) 454–460.

    Google Scholar 

  20. Daniels R.F., Burkhart H.E., Clason T.R., A comparison of competition measures for predicting growth of loblolly pine trees, Can. J. For. Res. 16 (1986) 1230–1237.

    Article  Google Scholar 

  21. Hegyi F., A simulation model for managing jack pine stands, in: Fries J. (Ed.), Growth models for tree and stand simulation, Royal Coll. For., Stockholm, 1974, pp. 74–90.

  22. Holmes M.J., Reed D.D., Competition indices for mixed species northern hardwoods, For. Sci. 37 (1991) 1338–1349.

    Google Scholar 

  23. Huang S., Titus S.J., Lakusta T.W., Held, R.J., Ecologically-based individual tree height-diameter models for major Alberta tree species, Alberta Environ. Prot., Land For. Serv., For. Manage. Div., 1994.

  24. Jones J.R., Review and comparison of site evaluation methods, USDA For. Serv. Res. Pap. RM-51, 1969.

  25. Kelty M., Cameron I.R., Plot designs for the analysis of species interactions in mixed stands, Commonw. For. Rev. 74 (1995) 322–332.

    Google Scholar 

  26. Kucharik C.J., Norman J.M., Gower S.T., Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach, Tree Physiol. 19 (1999) 695–706.

    PubMed  Google Scholar 

  27. Larocque G.R., Examining different concepts for the development of a distance-dependent competition model for red pine diameter growth using long-term stand data differing in initial stand density, For. Sci. 48 (2002) 24–34.

    Google Scholar 

  28. Lazaruk L.W., Kernaghan G., Macdonald S.E., Khasa D., Effects of partial cutting on the ectomycorrhizae of Picea glauca forests in northwestern Alberta, Can. J. For. Res. 35 (2005) 1442–1454.

    Article  Google Scholar 

  29. Lieffers V.J., Beck J.A., A seminatural approach to mixedwood management in the prairie provinces, For. Chron. 70 (1994) 260–264.

    Google Scholar 

  30. Lieffers V.J., Macmillan R.B., MacPherson D., Branter K., Stewart J.D., Semi-natural and intensive silvicultural systems for the boreal mixedwood forest, For. Chron. 72 (1996) 286–292.

    Google Scholar 

  31. Lieffers V.J., Stadt K.J., Growth of understory Picea glauca, Calamagrostis canadensis, and Epilobium angustifolium in relation to overstory light transmission, Can. J. For. Res. 24 (1994) 1193–1198.

    Article  Google Scholar 

  32. Lin J.Y., Stand growth simulation models for Douglas-fir and western hemlock in the northwestern United States, in: Fries J. (Ed.), Growth Models for Tree and Stand Simulation, Royal Coll. For., Stockholm, 1974, pp. 102–118.

  33. Lorimer C.G., Tests of age-independent competition indices for individual trees in natural hardwood stands, For. Ecol. Manage. 6 (1983) 343–360.

    Article  Google Scholar 

  34. MacPherson D.M., Lieffers V.J., Blenis P.V., Productivity of aspen stands with and without a spruce understory in Alberta’s boreal mixedwood forests, For. Chron. 77 (2001) 351–356.

    Google Scholar 

  35. Man R.Z., Lieffers V.J., Effects of shelterwood and site preparation on microclimate and establishment of white spruce seedlings in a boreal mixedwood forest, For Chron. 75 (1999) 837–844.

    Google Scholar 

  36. Martin G.L., Ek A.R., A comparison of competition measures and growth models for predicting plantation red pine diameter and height growth, For. Sci. 30 (1984) 731–743.

    Google Scholar 

  37. Navratil S., MacIsaac D.A., Juvenile growth of white spruce and deciduous competition on mixedwood sites in Alberta, Can. For. Serv., PAF Rep. 141, 1996.

  38. Peters V.S., MacDonald S.E., Dale M.R.T., The interaction between masting and fire is key to white spruce regeneration, Ecology 86 (2005) 1744–1750.

    Article  Google Scholar 

  39. Rawlings J.O., Pantula S.G., Dickey D.A., Applied regression analysis: a research tool, 2nd ed., Springer-Verlag, New York, 1998.

    Book  Google Scholar 

  40. Robinson A.P., Ek A.R., The consequences of hierarchy for modeling in forest ecosystems, Can. J. For. Res. 30 (2000) 1837–1846.

    Article  Google Scholar 

  41. Rowe J.S., Forest Regions of Canada, Can. Forestry Serv. Pub. No. 1300, Information Canada, Ottawa, 1972.

  42. Simard S.W., Perry D.A., Jones M.D., Myrold D.D., Durall D.M., and Molina R., Net transfer of carbon between trees species with shared ectomycorrhizal fungi, Nature 388 (1997) 579–582.

    Article  CAS  Google Scholar 

  43. Smolander S., Stenberg P., A method for estimating light interception by a conifer shoot, Tree Physiol. 21 (2001) 797–803.

    PubMed  CAS  Google Scholar 

  44. Soares P., Tomé M., Distance-dependent competition measures for eucalyptus plantations in Portugal, Ann. For. Sci. 56 (1999) 307–319.

    Article  Google Scholar 

  45. Stadt K.J., Modeling light for regeneration planning in mixed-species boreal forests, Ph.D. thesis, University of Alberta, Edmonton, Alberta, 2002.

    Google Scholar 

  46. Stadt K.J., Lieffers V.J., MIXLIGHT: A flexible light transmission model for mixed-species forest stands, Agric. For. Meteorol. 102 (2000) 235–252.

    Article  Google Scholar 

  47. Stadt K.J., Lieffers V.J., Hall R.J., Messier C., Spatially explicit modeling of PAR transmission and growth of Picea glauca and Abies balsamea in the boreal forests of Alberta and Quebec, Can. J. For. Res. 35 (2005) 1–12.

    Article  Google Scholar 

  48. Ter-Mikaelian M.T., Wagner R.G., Bell F.W., Shropshire C., Comparison of photosynthetically active radiation and cover estimation for measuring the effects of interspecific competition on jack pine seedlings, Can. J. For. Res. 29 (1999) 883–889.

    Article  Google Scholar 

  49. Tomé M., Burkhart H.E., Distance-dependent competition measures for predicting growth of individual trees, For. Sci. 35 (1989) 816–831.

    Google Scholar 

  50. Vettenranta J., Distance-dependent models for predicting the development of mixed coniferous forests in Finland, Silva Fenn. 33 (1999): 51–72.

    Google Scholar 

  51. Wimberly M., Bare B.B., Distance-dependent and distance-independent models of Douglas-fir and western hemlock basal area growth following silvicultural treatment, For. Ecol. Manage. 89 (1996) 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Stadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadt, K.J., Huston, C., Coates, K.D. et al. Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Ann. For. Sci. 64, 477–490 (2007). https://doi.org/10.1051/forest:2007025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007025