Skip to main content
  • Original Article
  • Published:

Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily

Une base génétique étroite dans les forêts de restauration de Quercus ilex L. en Sicile

Abstract

In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nf e ≈ 2–4) and estimates accounting for both seed and pollen donors gave also low values (N e ≈ 35–50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees.

Résumé

De manière à évaluer empiriquement l’effet sur la diversité génétique de la stratégie couramment utilisée pour échantillonner des graines en forêts de chêne vert en Sicile, nous avons analysé la composition génétique de deux lots de semis (en pépinière et en plantation) et de leur peuplement naturel d’origine à l’aide de six marqueurs nucléaires microsatellites. Une réduction significative de la diversité génétique et des différences significatives dans la composition génétique des lots de semis comparés à leur peuplement d’origine ont été détectées. Le nombre de mères efficace et le nombre d’ascendants total efficace ont été quantifiés en recherchant l’origine maternelle des semis et par une quantification temporelle des fréquences alléliques. Des nombres efficaces extrêmement faibles ont été estimés pour les mères (Nf e ≈ 2–4) et les estimations concernant les deux parents sont aussi faibles (N e ≈ 35–50). Ces valeurs peuvent s’expliquer par une stratégie de récolte de graines inappropriée, se limitant à un très petit nombre de géniteurs spatiallement proches.

References

  1. Abrahamson W.G., Layne J.N., Relation of ramet size to acorn production in five oak species of xeric upland habitats in south-central Florida, Am. J. Bot. 89 (2002) 124–131.

    Article  PubMed  Google Scholar 

  2. Bacilieri R., Ducousso A., Kremer A., Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of northwest of France, Silvae Genet. 44 (1995) 1–10.

    Google Scholar 

  3. Barreneche T., Bodénès C., Lexer C., Trontin J.F., Fluch S., Streiff R., Plomion C., Roussel G., Steinkellner H., Burg K., Favre J.M., Glössl J., Kremer A., A genetic linkage map of Quercus robur L. (pedunculate oak) with RAPD, SCAR, microsatellite, minisatellite, isozyme and rDNA markers, Theor. Appl. Genet. 97 (1998) 1090–1103.

    Article  CAS  Google Scholar 

  4. Brown H.D., Hardner C.M., Sampling the gene pools of forest trees for ex situ conservation, in: Brown H.D., Hardner C.M. (Eds.), Forest conservation genetics. Principles and practice, CABI Publishing, Wallingford, Oxon UK, 2000, pp. 185–196.

    Google Scholar 

  5. Dow B., Ashley M., Howe H., Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa, Theor. Appl. Genet. 91 (1995) 137–141.

    Article  CAS  Google Scholar 

  6. Dow B., Ashley M., High levels of gene flow in bur oak revealed by paternity analysis using microsatellites, J. Hered. 89 (1998) 62–70.

    Article  Google Scholar 

  7. Doyle J.J., Doyle L.J., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull. 19 (1987) 11–15.

    Google Scholar 

  8. Ducousso A., Michaud H., Lumaret R., Reproduction and gene flow in the genus Quercus L., Ann. Sci. For. 50 (1993) 91–106.

    Article  Google Scholar 

  9. El Mousadik A., Petit R., High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco, Theor. Appl. Genet. 92 (1996) 832–839.

    Article  Google Scholar 

  10. England P.R., Osier G.H.R., Woodworth L.M., Montgomery M.E., Briscoe D.A., Frankham R., Effects of intense versus diffuse population bottlenecks on microsatellites genetic diversity and evolutionary potential, Conserv. Genet. 4 (2003) 595–604.

    Article  CAS  Google Scholar 

  11. Fineschi S., Cozzolino F., Migliaccio M., Musacchio A., Innocenti M., Vendramin G.G., Sicily represents the Italian reservoir of chloroplast DNA diversity of Quercus ilex L. (Fagaceae), Ann. For. Sci. 62 (2005) 79–84.

    Article  CAS  Google Scholar 

  12. Finkeldey R., Ziehe M., Genetic implications of silvicultural regimes, For. Ecol. Manage. 197 (2004) 231–244.

    Article  Google Scholar 

  13. Gömöry D., Effects of stand origin on the genetic diversity of norway spruce (Picea abies Karst.) populations, For. Ecol. Manage. 54 (1992) 215–223.

    Article  Google Scholar 

  14. Goudet J., FSTAT, a program to estimate and test gene diversities and fixation indices (Vers. 2.9.3), 2001.

  15. Greenberg C.H., Individual variation in acorn production by five species of southern Appalachian oaks, For. Ecol. Manage. 132 (2000) 1999–210.

    Article  Google Scholar 

  16. Hardy O.J., Vekemans X., SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels, Mol. Ecol. Notes 2 (2002) 618–620.

    Article  Google Scholar 

  17. Healy W.M., Lewis A.M., Boose E.F., Variation of red oak acorn production, For. Ecol. Manage. 116 (1999) 1–11.

    Article  Google Scholar 

  18. Jamieson A., Taylor S.C.S., Comparison of the tree probability formulae for parentage exclusion, Anim. Gen. 28 (1997) 397–400.

    Article  CAS  Google Scholar 

  19. Kalinowski S.T., Taper M.L., Marshall T.C., Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment, Mol. Ecol. 16 (2007) 1099–1106.

    Article  PubMed  Google Scholar 

  20. Kampfer S., Lexer C., Glössl J., Steinkellner H., Characterization of (GA)n microsatellite loci from Quercus robur, Hereditas 129 (1998) 183–186.

    Article  CAS  Google Scholar 

  21. Kitzmiller J.H., Managing genetic diversity in a tree improvement program, For. Ecol. Manage. 35 (1990) 131–149.

    Article  Google Scholar 

  22. Knapp E.E., Goedde M.A., Rice K.J., Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations, Oecologia 128 (2001) 48–55.

    Article  Google Scholar 

  23. Koenig A.O., Mumme R.L., Carmen W.J., Stanback M.T., Acorn production by oaks in central coastal California: variation within and among years, Ecology 75 (1994) 99–109.

    Article  Google Scholar 

  24. Ledig F.T., Human impacts on genetic diversity in forest ecosystems, Oikos 63 (1992) 87–108.

    Article  Google Scholar 

  25. Lefèvre F., Human impacts on forest genetic resources in the temperate zone: an updated review, For. Ecol. Manage. 197 (2004) 257–271.

    Article  Google Scholar 

  26. Li Y.Y., Chen X.Y., Zhang X., Wu T.Y., Lu H.P., Cai Y.W., Genetic differences between wild and artificial populations of Metasequoia glyptostroboides: implications for species recovery, Conserv. Biol. 19 (2005) 224–231.

    Article  Google Scholar 

  27. Loiselle B.A., Sork V.L., Nason J.D., Graham C., Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae), Am. J. Bot. 82 (1995) 1420–1425.

    Article  Google Scholar 

  28. Lumaret R., Yacine A., Berrod A., Romane F., Xian Li T., Mating system and genetic diversity in holm oak (Quercus ilex L. Fagaceae), in: Lumaret R., Yacine A., Berrod A., Romane F., Xian Li T. (Eds.), Biochemical markers in the population genetics of forest trees, SPB Academic Publishing bv, The Hague, The Netherlands, 1991, pp. 149–153.

    Google Scholar 

  29. Marshall T.C., Slate J., Kruuk L.E.B., Pemberton J.M., Statistical confidence for likelihood-based paternity inference in natural populations, Mol. Ecol. 7 (1998) 639–655.

    Article  PubMed  CAS  Google Scholar 

  30. McKay J.H., Christian C.E., Harrison S., Rice K.J., “How local is local?” A review of practical and conceptual issues in the genetics of restoration, Restor. Ecol. 13 (2005) 432–440.

    Article  Google Scholar 

  31. Michaud H., Toumi L., Lumaret R., Li T.X., Romane F., Di Giusto F., Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism, Heredity 74 (1995) 590–606.

    Article  CAS  Google Scholar 

  32. Nakanishi A., Tomaru N., Yoshimaru H., Manabe T., Yamamoto S., Interannual genetic heterogeneity of pollen pools accepted by Quercus salicina individuals, Mol. Ecol. 14 (2005) 4469–4478.

    Article  PubMed  CAS  Google Scholar 

  33. Nei M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics 89 (1978) 583–590.

    PubMed  CAS  Google Scholar 

  34. Nielsen R., Tarpy D.R., Reeve K., Estimating effective paternity number in social insects and the effective number of alleles in a population, Mol. Ecol. 12 (2003) 3157–3164.

    Article  PubMed  Google Scholar 

  35. Rajora O.P., Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce, Theor. Appl. Genet. 99 (1999) 954–961.

    Article  CAS  Google Scholar 

  36. Scotti I., Paglia G., Magni F., Morgante M., Population genetics of Norway spruce (Picea abies Karst.) at regional scale: sensitivity of different mocrosatellite motif classes in detecting differentiation, Ann. For. Sci. 63 (2006) 485–491.

    Article  CAS  Google Scholar 

  37. Soto A., Lorenzo Z., Gil L., Nuclear microsatellites markers for the identification of Quercus ilex L. and Quercus suber L. hybrids, Silvae Genet. 52 (2003) 63–66.

    Google Scholar 

  38. Spencer C.C., Neigel J.E., Leberg P.L., Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks, Mol. Ecol. 9 (2000) 1517–1528.

    Article  PubMed  CAS  Google Scholar 

  39. Steinkellner H., Fluch S., Turetschek E., Lexer C., Streiff R., Kremer A., Burg K., Glössl J., Identification and characterization of (GA/CT)n — microsatellite loci from Quercus petraea, Plant Mol. Biol. 3 (1997) 1093–1096.

    Article  Google Scholar 

  40. Stoehr M.U., El-Kassaby Y.A., Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia, Theor. Appl. Genet. 94 (1997) 83–90.

    Article  PubMed  CAS  Google Scholar 

  41. Streiff R., Ducousso A., Lexer C., Steinkellner H., Glössl J., Kremer A., Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl., Mol. Ecol. 8 (1999) 831–841.

    Article  Google Scholar 

  42. Van Osterhoout C., Hutchinson W.F., Wills D.P.M., Shipley P., MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes 4 (2004) 535–538.

    Article  Google Scholar 

  43. Vencovsky R., Crossa J., Variance effective population size under mixed self and random mating with applications to genetic conservation of species, Crop Sci. 39 (1999) 1282–1294.

    Article  Google Scholar 

  44. Wang J., A pseudo-likelihood method for estimating effective population size from temporally spaced samples, Genet. Res. 78 (2001) 243–257.

    Article  PubMed  CAS  Google Scholar 

  45. Weir B.S., Cockerham C.C., Estimating F-statistics for the analysis of population structure, Evolution 38 (1984) 1358–1370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Burgarella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgarella, C., Navascués, M., Soto, Á. et al. Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily. Ann. For. Sci. 64, 757–763 (2007). https://doi.org/10.1051/forest:2007055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007055