- Original Article
- Published:
Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies?
L’environnement maternel induit-il une sélection génotypique durant les différents stades de reproduction chez Picea abies?
Annals of Forest Science volume 65, page 109 (2008)
Abstract
In forest trees, environmental conditions during reproduction can greatly influence progeny performance. This phenomenon probably results from adaptive phenotypic plasticity but also may be associated with genotypic selection. In order to determine whether selective effects during the reproduction are environment specific, single pair-crosses of Norway spruce were studied in two contrasted maternal environments (warm and cold conditions). One family expressed large and the other small phenotypic differences between these crossing environments. The inheritance of genetic polymorphism was analysed at the seed stage. Four parental genetic maps covering 66 to 78% of the genome were constructed using 190 to 200 loci. After correcting for multiple testing, there is no evidence of locus under strong and repeatable selection. The maternal environment could thus only induce limited genotypic-selection effects during reproductive steps, and performance of progenies may be mainly affected by a long-lasting epigenetic memory regulated by temperature and photoperiod prevailing during seed production.
Résumé
Chez les arbres forestiers, les conditions environnementales durant la reproduction peuvent influencer les performances des descendants. Ce phénomène reflète probablement la plasticité phénotypique, mais également il pourrait être associé à une sélection génotypique. Afin de déterminer si des effets sélectifs durant la reproduction sont spécifiques d’un environnement donné, deux familles d’épicéa commun non apparentées ont été obtenues par croisements dirigés dans deux environnements maternels contrastés (conditions chaude et froide). La première famille exprimait de larges différences phénotypiques entre les deux environnements tandis que la seconde ne montrait pas de différence significative. La transmission des polymorphismes génétiques a été étudiée au stade de la graine. Quatre cartes génétiques parentales couvrant 66 à 78 % du génome ont été construites. Aucun effet de sélection n’a été mis en évidence aux différents locus étudiés. L’environnement maternel n’induirait donc que des effets de sélection génotypique relativement faibles durant les stades de la reproduction. Les performances des descendants seraient principalement affectées par une mémoire épigénétique durable régulée par la température et la photopériode régnant durant la production des graines.
References
Acheré V., Faivre Rampant P., Jeandroz S., Besnard G., Markussen T., Aragones A., Fladung M., Ritter E., Favre J.M., A saturated consensus linkage map of Picea abies including AFLP, SSR, STS, 5S rDNA and morphological markers, Theor. Appl. Genet. 108 (2004) 1602–1613.
Agrawal A.A., Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance, Ecology 83 (2002) 3408–3415.
Archaux F., Wolters V., Impact of summer drought on forest biodiversity: what do we know? Ann. For. Sci. 63 (2006) 645–652.
Bernasconi G., Ashman T.L., Birkhead T.R., Bishop J.D.D., Grossniklaus U., Kubli E., Marshall D.L., Schmid B., Skogsmyr I., Snook R.R., Taylor D., Till-Bottraud I., Ward P.I., Zeh D.W., Hellriegel B., Evolutionary ecology of the prezygotic stage, Science 303 (2004) 971–975.
Besnard G., Acheré V., Faivre Rampant P., Favre J.M., Jeandroz S., A set of cross-species amplifying microsatellite markers developed from DNA-sequence databanks in Picea (Pinaceae), Mol. Ecol. Notes 3 (2003) 380–383.
Bréda N., Huc R., Granier A., Dreyer E., Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. For. Sci. 63. (2006) 625–644.
Buckler E.S. TV, Phelps-Durr T.L., Buckler C.S.K., Dawe R.K., Doebley J.F., Holtsford T.P., Meiotic drive of chromosomal knobs reshaped the maize genome, Genetics 153 (1999) 415–426.
Chagné D., Brown G., Lalanne C., Madur D., Plot D., Neale D., Plomion C., Comparative and QTL mapping between maritime and loblolly pines, Mol. Breed. 12 (2003) 185–195.
Chakraverti A., Lasher L.K., Reefer J.E., A maximum likelihood method for estimating genome length using genetic linkage data, Genetics 128 (1991) 175–182.
Collignon A.M., nVan de Sype H., Favre J.M., Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce, Can. J. For. Res. 32 (2002) 266–282.
Falconer D.S., Introduction to quantitative genetics, 3rd ed., Longman Scientific and Technical, John Wiley and Sons, NY, 1989, 438 pp.
Galloway L.F., Maternal effects provide phenotypic adaptation to local environmental conditions, New Phytol. 166 (2005) 93–100.
Grattapaglia D., Sederoff R., Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers, Genetics 137 (1994) 1121–1137.
Grivet D., Jeandroz S., Favre J.M., Nad1 b/c intron polymorphism reveals maternal inheritance of the mitochondrial genome in Picea abies, Theor. Appl. Genet. 99 (1999) 346–349.
Hall M.C., Willis J.H., Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence, Genetics 170 (2005) 375–386.
Hamrick J.L., Response of forest trees to global environmental changes, For. Ecol. Manage. 197 (2004) 323–335.
Hodgetts R.B., Aleksiuk M.A., Brown A., Clarke C., Macdonald E., Nadeem S., Khasa D., Development of microsatellite markers for white spruce (Picea glauca) and related species, Theor. Appl. Genet. 102 (2001) 1252–1258.
Hulbert S., Ilott T., Legg E.J., Lincoln S., Lander E., Michelmore R., Genetic analysis of the fungus Bremia lactucae, using restriction length polymorphism, Genetics 120 (1988) 947–958.
Jaramillo-Correa J.P., Beaulieu J., Bousquet J., Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce, Mol. Ecol. 10 (2001) 2729–2740.
Johnsen Ø., SkrØppa T., Junttila O., Dæhlen O.G., Influence of the female flowering environment on autumn frost-hardiness of Picea abies progenies, Theor. Appl. Genet. 92 (1996) 797–802.
Johnsen Ø., Dœhlen O.G., Østreng G., SkrØppa T. Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies, New Phytol. 168 (2005) 589–596.
Johnsen Ø., Fossdal C.G., Nagy N., MØlmann J., Dæhlen O.G., SkrØppa T., Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation, Plant Cell Environ. 28 (2005) 1090–1102.
Karhu A., Hurme P., Karjalainen M., Karvonen P., Karkkainen K., Neale D., Savolainen O., Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93 (1996) 215–221.
Karl T.R., Trenberth K.E., Modern global climate change, Science 302 (2003) 1719–1723.
Kosambi D.D., The estimation of map distances from recombination values. Ann. Eugen. 12 (1944) 172–175.
Kremer A., Genetic diversity and phenotypic variability of forest trees, Genet. Sel. Evol. 26 (1994) S105-S123.
Lacy E.P., What is an adaptive environmentally induced parental effect? in: Mousseau T.A., Fox C.W. (Eds.), Maternal effects as adaptations, Oxford University Press, Oxford, 1998.
Lenormand T., Dutheil J., Recombination difference between sexes: a role for haploid selection, PLoS Biol. 3 (2005) 396–403.
Maron J.L., Vila M., Bommarco R., Elmendorf S., Beardsley P., Rapid evolution of an invasive plant, Ecol. Monogr. 74 (2004) 261–280.
Owens J.N., Blake M.D., Forest tree seed production, Information Report PI-X-53 Petawawa National Forestry Institute, Chalk River, Ontario, 1985, 161 p.
Owens J.N., Johnsen Ø., Dæhlen O.G., SkrØppa T., Potential effects of temperature on early reproductive development and progeny performance in Picea abies (L.) Karst., Scand. J. Forest Res. 16 (2001) 221–237.
Paglia G.P., Olivieri A.M., Morgante M., Towards secondgeneration STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.), Mol. Gen. Genet. 258 (1998) 466–478.
Pardo-Manuel de Villena F., de la Casa-Esperón E., Sapienza C., Natural selection and the function of genome imprinting: beyond the silenced minority, Trends Genet. 16 (2000) 573–579.
Pasonen H.L., Pulkkinen P., Kärkkäinen K., Genotype-environment interactions in pollen competitive ability in an anemophilous tree, Betula pendula Roth., Theor. Appl. Genet. 105 (2002) 465–473.
Perry D.J., Bousquet J., Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers, Theor. Appl. Genet. 97 (1998) 735–743.
Pfeiffer A., Olivieri A.M., Morgante M., Identification and characterization of microsatellites in Norway spruce (Picea abies K.), Genome 40 (1997) 411–419.
Rajora O.P., Rahman M.H., Dayanandan S., Mosseler A., Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species, Mol. Gen. Genet. 264 (2001) 871–882.
Rapp R.A., Wendel J.F., Epigenetics and plant evolution, New Phytol. 168 (2005) 81–91.
Sarvas R., Investigations on the flowering and seed crop of Picea abies, Communicationes Instituti Forestalls Fenniae 67 (1968) 1–84.
Saxe H., Cannell M.G.R., Johnsen Ø., Ryan M.G., Vourlitis G., Tree and forest functioning in response to global warming, New Phytol. 149 (2001) 369–399.
Schmidtling R.C., Hipkins V., The after-effects of reproductive environment in shortleaf pine, Forestry 77 (2004) 287–295.
Schubert R., Sperisen C., Müller-Starck G., La Scala S., Ernst D., Sandermann H., Häger K.P., The cinnamyl alcohol dehydrogenase gene structure in Picea abies (L.) Karst.: genomic sequences, southern hybridization, genetic analysis and phylogenetic relationships, Trees Struct. Funct.12 (1998) 453–463.
Schubert R., Müller-Starck G., Riegel R., Development of ESTPCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst., Theor. Appl. Genet. 103 (2001) 1223–1231.
Scotti I., Magni F., Fink R., Powell W., Binelli G., Hedley P.E., Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies K.) expressed sequences, Genome 43 (2000) 41–46.
Scotti I., Magni F., Paglia G.P., Morgante M., Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers, Theor. Appl. Genet. 106 (2002) 46–50.
Scotti I., Paglia G.P., Magni F., Morgante M., Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) through dot-blot selection, Theor. Appl. Genet. 104 (2002) 1035–1041.
Scotti I., Burelli A., Cattonaro F., Chagné D., Fuller J., Hedley P.E., Jansson G., Lalanne C., Madur D., Neale D., Plomion C., Powell W., Troggio M., Morgante M., Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies Karst.), Tree Genet. Genomes 1 (2005) 93–102.
SkrØppa T., Kohmann K., Adaptation to local conditions after one generation in Norway spruce, For. Genet. 4 (1997) 165–180.
Sokal R.R., Rohlf F.J., Biometry, 4th ed., WH Freeman, New York, 1998.
Taylor D.R., Ingvarsson P.K., Common features of segregation distortion in plants and animals, Genetica 117 (2003) 27–35.
Temesgen B., Brown G.R., Harry D.E., Kinlaw C.S., Sewell M.M., Neale D.B., Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.), Theor. Appl. Genet. 102 (2001) 664–675.
Trontin J.F., Grandemange C., Favre J.M., Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi (Lamb.) Carr.), Genome 42 (1999) 837–848.
Van Ooijen J.W., Voorrips R.E., JoinMap 3.0, Software for the calculation of genetic linkage maps, Plant Research International, Wageningen, The Netherlands, 2001, and website: http://www.plant.wageningen-ur.nl.
Vogl C., Xu S., Multiple point mapping of viability and segregation distorting loci using molecular marker, Genetics 155 (2000) 1439–1447.
Webber J., Ott P., Owens J., Binder W., Elevated temperature during reproductive devlopment affects traits and progeny performance in Picea glauca × engelmannii complex, Tree Physiol. 25 (2005) 1219–1227.
Young W.P., Schupp J.M., Keim P.D.N.A., methylation and AFLP distribution in the soybean genome, Theor. Appl. Genet. 99 (1999) 785–790.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Besnard, G., Acheré, V., Jeandroz, S. et al. Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies?. Ann. For. Sci. 65, 109 (2008). https://doi.org/10.1051/forest:2007081
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1051/forest:2007081