Skip to main content
  • Original Article
  • Published:

Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies?

L’environnement maternel induit-il une sélection génotypique durant les différents stades de reproduction chez Picea abies?

Abstract

In forest trees, environmental conditions during reproduction can greatly influence progeny performance. This phenomenon probably results from adaptive phenotypic plasticity but also may be associated with genotypic selection. In order to determine whether selective effects during the reproduction are environment specific, single pair-crosses of Norway spruce were studied in two contrasted maternal environments (warm and cold conditions). One family expressed large and the other small phenotypic differences between these crossing environments. The inheritance of genetic polymorphism was analysed at the seed stage. Four parental genetic maps covering 66 to 78% of the genome were constructed using 190 to 200 loci. After correcting for multiple testing, there is no evidence of locus under strong and repeatable selection. The maternal environment could thus only induce limited genotypic-selection effects during reproductive steps, and performance of progenies may be mainly affected by a long-lasting epigenetic memory regulated by temperature and photoperiod prevailing during seed production.

Résumé

Chez les arbres forestiers, les conditions environnementales durant la reproduction peuvent influencer les performances des descendants. Ce phénomène reflète probablement la plasticité phénotypique, mais également il pourrait être associé à une sélection génotypique. Afin de déterminer si des effets sélectifs durant la reproduction sont spécifiques d’un environnement donné, deux familles d’épicéa commun non apparentées ont été obtenues par croisements dirigés dans deux environnements maternels contrastés (conditions chaude et froide). La première famille exprimait de larges différences phénotypiques entre les deux environnements tandis que la seconde ne montrait pas de différence significative. La transmission des polymorphismes génétiques a été étudiée au stade de la graine. Quatre cartes génétiques parentales couvrant 66 à 78 % du génome ont été construites. Aucun effet de sélection n’a été mis en évidence aux différents locus étudiés. L’environnement maternel n’induirait donc que des effets de sélection génotypique relativement faibles durant les stades de la reproduction. Les performances des descendants seraient principalement affectées par une mémoire épigénétique durable régulée par la température et la photopériode régnant durant la production des graines.

References

  1. Acheré V., Faivre Rampant P., Jeandroz S., Besnard G., Markussen T., Aragones A., Fladung M., Ritter E., Favre J.M., A saturated consensus linkage map of Picea abies including AFLP, SSR, STS, 5S rDNA and morphological markers, Theor. Appl. Genet. 108 (2004) 1602–1613.

    Article  PubMed  Google Scholar 

  2. Agrawal A.A., Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance, Ecology 83 (2002) 3408–3415.

    Article  Google Scholar 

  3. Archaux F., Wolters V., Impact of summer drought on forest biodiversity: what do we know? Ann. For. Sci. 63 (2006) 645–652.

    Article  Google Scholar 

  4. Bernasconi G., Ashman T.L., Birkhead T.R., Bishop J.D.D., Grossniklaus U., Kubli E., Marshall D.L., Schmid B., Skogsmyr I., Snook R.R., Taylor D., Till-Bottraud I., Ward P.I., Zeh D.W., Hellriegel B., Evolutionary ecology of the prezygotic stage, Science 303 (2004) 971–975.

    Article  PubMed  CAS  Google Scholar 

  5. Besnard G., Acheré V., Faivre Rampant P., Favre J.M., Jeandroz S., A set of cross-species amplifying microsatellite markers developed from DNA-sequence databanks in Picea (Pinaceae), Mol. Ecol. Notes 3 (2003) 380–383.

    Article  CAS  Google Scholar 

  6. Bréda N., Huc R., Granier A., Dreyer E., Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. For. Sci. 63. (2006) 625–644.

    Article  Google Scholar 

  7. Buckler E.S. TV, Phelps-Durr T.L., Buckler C.S.K., Dawe R.K., Doebley J.F., Holtsford T.P., Meiotic drive of chromosomal knobs reshaped the maize genome, Genetics 153 (1999) 415–426.

    PubMed  CAS  Google Scholar 

  8. Chagné D., Brown G., Lalanne C., Madur D., Plot D., Neale D., Plomion C., Comparative and QTL mapping between maritime and loblolly pines, Mol. Breed. 12 (2003) 185–195.

    Article  Google Scholar 

  9. Chakraverti A., Lasher L.K., Reefer J.E., A maximum likelihood method for estimating genome length using genetic linkage data, Genetics 128 (1991) 175–182.

    Google Scholar 

  10. Collignon A.M., nVan de Sype H., Favre J.M., Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce, Can. J. For. Res. 32 (2002) 266–282.

    Article  CAS  Google Scholar 

  11. Falconer D.S., Introduction to quantitative genetics, 3rd ed., Longman Scientific and Technical, John Wiley and Sons, NY, 1989, 438 pp.

    Google Scholar 

  12. Galloway L.F., Maternal effects provide phenotypic adaptation to local environmental conditions, New Phytol. 166 (2005) 93–100.

    Article  PubMed  Google Scholar 

  13. Grattapaglia D., Sederoff R., Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers, Genetics 137 (1994) 1121–1137.

    PubMed  CAS  Google Scholar 

  14. Grivet D., Jeandroz S., Favre J.M., Nad1 b/c intron polymorphism reveals maternal inheritance of the mitochondrial genome in Picea abies, Theor. Appl. Genet. 99 (1999) 346–349.

    Article  Google Scholar 

  15. Hall M.C., Willis J.H., Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence, Genetics 170 (2005) 375–386.

    Article  PubMed  CAS  Google Scholar 

  16. Hamrick J.L., Response of forest trees to global environmental changes, For. Ecol. Manage. 197 (2004) 323–335.

    Article  Google Scholar 

  17. Hodgetts R.B., Aleksiuk M.A., Brown A., Clarke C., Macdonald E., Nadeem S., Khasa D., Development of microsatellite markers for white spruce (Picea glauca) and related species, Theor. Appl. Genet. 102 (2001) 1252–1258.

    Article  CAS  Google Scholar 

  18. Hulbert S., Ilott T., Legg E.J., Lincoln S., Lander E., Michelmore R., Genetic analysis of the fungus Bremia lactucae, using restriction length polymorphism, Genetics 120 (1988) 947–958.

    PubMed  CAS  Google Scholar 

  19. Jaramillo-Correa J.P., Beaulieu J., Bousquet J., Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce, Mol. Ecol. 10 (2001) 2729–2740.

    Article  PubMed  CAS  Google Scholar 

  20. Johnsen Ø., SkrØppa T., Junttila O., Dæhlen O.G., Influence of the female flowering environment on autumn frost-hardiness of Picea abies progenies, Theor. Appl. Genet. 92 (1996) 797–802.

    Article  Google Scholar 

  21. Johnsen Ø., Dœhlen O.G., Østreng G., SkrØppa T. Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies, New Phytol. 168 (2005) 589–596.

    Article  PubMed  Google Scholar 

  22. Johnsen Ø., Fossdal C.G., Nagy N., MØlmann J., Dæhlen O.G., SkrØppa T., Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation, Plant Cell Environ. 28 (2005) 1090–1102.

    Article  CAS  Google Scholar 

  23. Karhu A., Hurme P., Karjalainen M., Karvonen P., Karkkainen K., Neale D., Savolainen O., Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93 (1996) 215–221.

    Article  CAS  Google Scholar 

  24. Karl T.R., Trenberth K.E., Modern global climate change, Science 302 (2003) 1719–1723.

    Article  PubMed  CAS  Google Scholar 

  25. Kosambi D.D., The estimation of map distances from recombination values. Ann. Eugen. 12 (1944) 172–175.

    Article  Google Scholar 

  26. Kremer A., Genetic diversity and phenotypic variability of forest trees, Genet. Sel. Evol. 26 (1994) S105-S123.

    Article  Google Scholar 

  27. Lacy E.P., What is an adaptive environmentally induced parental effect? in: Mousseau T.A., Fox C.W. (Eds.), Maternal effects as adaptations, Oxford University Press, Oxford, 1998.

    Google Scholar 

  28. Lenormand T., Dutheil J., Recombination difference between sexes: a role for haploid selection, PLoS Biol. 3 (2005) 396–403.

    Article  CAS  Google Scholar 

  29. Maron J.L., Vila M., Bommarco R., Elmendorf S., Beardsley P., Rapid evolution of an invasive plant, Ecol. Monogr. 74 (2004) 261–280.

    Article  Google Scholar 

  30. Owens J.N., Blake M.D., Forest tree seed production, Information Report PI-X-53 Petawawa National Forestry Institute, Chalk River, Ontario, 1985, 161 p.

    Google Scholar 

  31. Owens J.N., Johnsen Ø., Dæhlen O.G., SkrØppa T., Potential effects of temperature on early reproductive development and progeny performance in Picea abies (L.) Karst., Scand. J. Forest Res. 16 (2001) 221–237.

    Google Scholar 

  32. Paglia G.P., Olivieri A.M., Morgante M., Towards secondgeneration STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.), Mol. Gen. Genet. 258 (1998) 466–478.

    Article  PubMed  CAS  Google Scholar 

  33. Pardo-Manuel de Villena F., de la Casa-Esperón E., Sapienza C., Natural selection and the function of genome imprinting: beyond the silenced minority, Trends Genet. 16 (2000) 573–579.

    Article  PubMed  CAS  Google Scholar 

  34. Pasonen H.L., Pulkkinen P., Kärkkäinen K., Genotype-environment interactions in pollen competitive ability in an anemophilous tree, Betula pendula Roth., Theor. Appl. Genet. 105 (2002) 465–473.

    Article  PubMed  Google Scholar 

  35. Perry D.J., Bousquet J., Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers, Theor. Appl. Genet. 97 (1998) 735–743.

    Article  CAS  Google Scholar 

  36. Pfeiffer A., Olivieri A.M., Morgante M., Identification and characterization of microsatellites in Norway spruce (Picea abies K.), Genome 40 (1997) 411–419.

    Article  PubMed  CAS  Google Scholar 

  37. Rajora O.P., Rahman M.H., Dayanandan S., Mosseler A., Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species, Mol. Gen. Genet. 264 (2001) 871–882.

    Article  PubMed  CAS  Google Scholar 

  38. Rapp R.A., Wendel J.F., Epigenetics and plant evolution, New Phytol. 168 (2005) 81–91.

    Article  PubMed  CAS  Google Scholar 

  39. Sarvas R., Investigations on the flowering and seed crop of Picea abies, Communicationes Instituti Forestalls Fenniae 67 (1968) 1–84.

    Google Scholar 

  40. Saxe H., Cannell M.G.R., Johnsen Ø., Ryan M.G., Vourlitis G., Tree and forest functioning in response to global warming, New Phytol. 149 (2001) 369–399.

    Article  CAS  Google Scholar 

  41. Schmidtling R.C., Hipkins V., The after-effects of reproductive environment in shortleaf pine, Forestry 77 (2004) 287–295.

    Article  Google Scholar 

  42. Schubert R., Sperisen C., Müller-Starck G., La Scala S., Ernst D., Sandermann H., Häger K.P., The cinnamyl alcohol dehydrogenase gene structure in Picea abies (L.) Karst.: genomic sequences, southern hybridization, genetic analysis and phylogenetic relationships, Trees Struct. Funct.12 (1998) 453–463.

    Google Scholar 

  43. Schubert R., Müller-Starck G., Riegel R., Development of ESTPCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst., Theor. Appl. Genet. 103 (2001) 1223–1231.

    Article  CAS  Google Scholar 

  44. Scotti I., Magni F., Fink R., Powell W., Binelli G., Hedley P.E., Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies K.) expressed sequences, Genome 43 (2000) 41–46.

    PubMed  CAS  Google Scholar 

  45. Scotti I., Magni F., Paglia G.P., Morgante M., Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers, Theor. Appl. Genet. 106 (2002) 46–50.

    Google Scholar 

  46. Scotti I., Paglia G.P., Magni F., Morgante M., Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) through dot-blot selection, Theor. Appl. Genet. 104 (2002) 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  47. Scotti I., Burelli A., Cattonaro F., Chagné D., Fuller J., Hedley P.E., Jansson G., Lalanne C., Madur D., Neale D., Plomion C., Powell W., Troggio M., Morgante M., Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies Karst.), Tree Genet. Genomes 1 (2005) 93–102.

    Article  Google Scholar 

  48. SkrØppa T., Kohmann K., Adaptation to local conditions after one generation in Norway spruce, For. Genet. 4 (1997) 165–180.

    Google Scholar 

  49. Sokal R.R., Rohlf F.J., Biometry, 4th ed., WH Freeman, New York, 1998.

    Google Scholar 

  50. Taylor D.R., Ingvarsson P.K., Common features of segregation distortion in plants and animals, Genetica 117 (2003) 27–35.

    Article  PubMed  CAS  Google Scholar 

  51. Temesgen B., Brown G.R., Harry D.E., Kinlaw C.S., Sewell M.M., Neale D.B., Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.), Theor. Appl. Genet. 102 (2001) 664–675.

    Article  CAS  Google Scholar 

  52. Trontin J.F., Grandemange C., Favre J.M., Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi (Lamb.) Carr.), Genome 42 (1999) 837–848.

    PubMed  CAS  Google Scholar 

  53. Van Ooijen J.W., Voorrips R.E., JoinMap 3.0, Software for the calculation of genetic linkage maps, Plant Research International, Wageningen, The Netherlands, 2001, and website: http://www.plant.wageningen-ur.nl.

    Google Scholar 

  54. Vogl C., Xu S., Multiple point mapping of viability and segregation distorting loci using molecular marker, Genetics 155 (2000) 1439–1447.

    PubMed  CAS  Google Scholar 

  55. Webber J., Ott P., Owens J., Binder W., Elevated temperature during reproductive devlopment affects traits and progeny performance in Picea glauca × engelmannii complex, Tree Physiol. 25 (2005) 1219–1227.

    PubMed  Google Scholar 

  56. Young W.P., Schupp J.M., Keim P.D.N.A., methylation and AFLP distribution in the soybean genome, Theor. Appl. Genet. 99 (1999) 785–790.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Besnard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besnard, G., Acheré, V., Jeandroz, S. et al. Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies?. Ann. For. Sci. 65, 109 (2008). https://doi.org/10.1051/forest:2007081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007081