Skip to main content

Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain

Interversion de rangs dans la croissance des arbres en relation avec la taille de l’arbre, la compétition et les gradients climatiques pour quatre espèces forestières dominantes dans la canopée

Abstract

  • • Interspecific differences in tree growth patterns with respect to biotic and abiotic factors are key for understanding forest structure and dynamics, and predicting potential changes under climate change.

  • • Repeated observations from the Spanish Forest Inventory (SFI) were used to parameterize maximum likelihood estimators of tree growth as a function of tree size, competition indices and climate for Pinus pinaster, P. sylvestris, Quercus ilex and Q. pyrenaica.

  • • Significant responses to both biotic and abiotic factors were found, with interspecific differences in species performance along competition, temperature and precipitation gradients. Q. ilex was the species most tolerant to competition while P. pinaster was the species most sensitive to climatic variation. Species relative positions shifted along gradients of these factors with rank reversals in species performance along size, competition and climatic gradients.

  • • The results based on average growth matched previous forestry classifications and experimental studies on relative growth rate (RGR).

  • • When examining growth along studied abiotic and biotic gradients, a mismatch was found between species performance ranks as predicted by our models and information derived from previous knowledge. Those discrepancies highlight the relevance of ontogeny and environmental heterogeneity in defining species performance along competition gradients.

Résumé

  • • Les différences interspécifiques dans les modèles de croissance des arbres, pour ce qui concerne les facteurs biotiques et abiotiques, sont des clés pour la compréhension des structures et des dynamiques forestières, et pour prédire les changement potentiels avec le changement climatique.

  • • Des observations répétées de l’Inventaire Forestier Espagnol (SFI) ont été utilisées pour paramétrer les estimateurs de probabilité maximum de croissance des arbres comme une fonction de la taille de l’arbre, des indices de compétition et du climat pour Pinus pinaster, Pinus sylvestris, Quercus ilex et Quercus pyrenaica.

  • • Des réponses significatives aux facteurs biotiques et abiotiques ont été trouvées, avec des différences interspécifiques pour les performances des espèces en relation avec la compétition, les gradients de température et de précipitations. Quercus ilex a été l’espèce la plus tolérante à la compétition tandis que Pinus pinaster a été l’espèce la plus sensible aux variations climatiques. Les positions relatives des espèces ont changé en relation avec les gradients de ces facteurs avec des interversions de rang pour les performances des espèces en relation avec la taille, la compétition et les gradients climatiques.

  • • Les résultats basés sur la moyenne de croissance sont en adéquation avec la classification forestière antérieure et les études expérimentales sur le taux relatif de croissance (RGR).

  • • En examinant la croissance en relations avec les gradients biotiques et abiotiques étudiés, il a été trouvé une disparité entre les rangs de performance des espèces prédits par nos modèles et les informations provenant des connaissances antérieures. Ces divergences soulignent l’importance de l’ontogénie et de l’hétérogénéité environnementale pour la détermination des performances des espèces en relation avec les gradients de compétition.

References

  • Adame P., Cañellas I., Roig S., and Del Río M., 2006. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Ann. For. Sci 63: 929–940.

    Article  Google Scholar 

  • Akaike H., 1992. Information theory and an extension of the maximum likelihood principle. In: Kotz S. and Johnson N. (Eds.), Breakthroughs in statistics. Springer-Verlag, New York, pp. 610–624.

    Google Scholar 

  • Andreu L., Gutiérrez E., Macías M., Ribas M., Bosch O., and Camarero J.J., 2007. Climate increases regional tree-growth variability in Iberian pine forests. Glob. Change Biol. 13: 804–815.

    Google Scholar 

  • Baraloto C., Goldberg D.E., and Bonal D., 2005. Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 86: 2461–2472.

    Article  Google Scholar 

  • Begon M., Harper J.L., and Townsend C.R., 1996. Ecology: individuals, populations and communities. Blackwell Science Ltd, Oxford, GB.

    Google Scholar 

  • Bravo-Oviedo A., Sterba H., del Rio M., and Bravo E., 2006. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For. Ecol. Manage. 222: 88–98.

    Article  Google Scholar 

  • Broncano M.J., Riba M., and Retana J., 1998. Seed germination and seedling performance or two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multi-factor experimental approach. Plant Ecol. 138: 17–26.

    Article  Google Scholar 

  • Burnham K.P. and Anderson D.R., 2002. Model selection and multimodel inference:a practical information-theoretic approach. Springer-Verlag, New York.

    Google Scholar 

  • Castro-Díez P., Puyravaud J.P., Cornelissen J.H.C., and Villar-Salvador P., 1998. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116: 57–66.

    Article  Google Scholar 

  • Cavender-Bares J. and Bazzaz F.A., 2000. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8–18.

    Article  Google Scholar 

  • Cherubini P., Gartner B.L., Tognetti R., Bräker O.U., Schoch W., and Innes J.L., 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78: 119–148.

    Article  PubMed  Google Scholar 

  • Chesson P.L., 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of differents sorts of variability. Theor. Popul. Biol. 28: 263–287.

    Article  Google Scholar 

  • Coleman J.S., McConnaughay K.D.M., and Ackerly D.D., 1994. Interpreting phenotypic variation in plants. Trends Ecol. Evol. 9: 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Corcuera L., Camarcro J.J., and Pelegrín E.G., 2002. Funtional groups in Quercus species derived from the analysis of pressure-volume curves. Trees 16: 465–472.

    Article  Google Scholar 

  • Costa M., Morla C., and Sainz H., 1998. Los bosques ibéricos. Una interpretation geobotánica. Geoplaneta, Barcelona.

    Google Scholar 

  • Dantin J. and Revenga A., 1940. Una nueva relation climatológica: el índice termopluviométrico. In: Avance al estudio de la aridez en España, Congreso de Zaragoza.

  • De Martonne E., 1926. L’indice d’aridité. Bull. Assoc. Géogr. Fr. 9: 3–5.

    Google Scholar 

  • Del Río S. and Penas A., 2006. Potential distribution of semi-deciduous forest in Castile and Leon (Spain) in relation to climatic variations. Plant Ecol. 185: 269–282.

    Article  Google Scholar 

  • DGCN (Ed.), 2004. Tercer Inventario Forestal National 1997–2006: Comunidad de Madrid. Ministerio de Medio Ambiente, Madrid.

    Google Scholar 

  • Edwards A.W.F., 1992. Likelihood. John Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • García-Abril A., Martin-Fernández S., Grande M.A., and Manzaneda J.A., 2007. Stand structure, competition and growth of Scots pine (Pinus sylvestris L.) in a Mediterranean mountainous environment. Ann. For. Sci. 64: 825–830.

    Article  Google Scholar 

  • Givnish T.J., 1988. Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Physiol. 15: 63–92.

    Article  Google Scholar 

  • Gómez-Aparicio L., Valladares F., Zamora R., 2006. Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol. 26: 947–958.

    PubMed  Google Scholar 

  • Grime J.P., Hunt R., 1975. Relative growth rate: its range and adaptive significance in a local flora. J. Ecol. 63: 393–422.

    Article  Google Scholar 

  • Hein S. and Dhote J.F., 2006. Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann. For. Sci. 63: 457–467.

    Article  Google Scholar 

  • Hilborn R. and Mangel M., 1997. The ecological detective: confronting models with data. Princeton University Press, New Jersey.

    Google Scholar 

  • Huston M. and Smith T., 1987. Plant succession: life history and competition. Am. Nat. 130: 168–198.

    Article  Google Scholar 

  • ICONA (Ed.), 1994. Segundo Inventario Forestal National 1986–1995: Comunidad de Madrid. Ministerio de Medio Ambiente, Madrid.

    Google Scholar 

  • Kitajima K., 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419–428.

    Article  Google Scholar 

  • Kitajima K. and Poorter L., 2008. Functional basis for resource niche differentiation by tropical trees. In: Carson W.P. and Schnitzer S.A. (Eds.), Tropical forest community ecology. Blackwell (in press).

  • Kohyama T., 1994. Size-structure-based models of forest dynamics to interpret population- and community-level mechanisms. J. Plant Res. 107: 107–116.

    Article  Google Scholar 

  • Lambers H., Chapin F.S. III, and Pons T.L., 1998. Plant physiological ecology. Springer-Verlag, York, PA.

    Google Scholar 

  • Levin S.A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Lough J.M., 1997. Regional indices of climate variation: Temperature and rainfall in Queensland, Australia. Int. J. Climatol. 17: 55–66.

    Article  Google Scholar 

  • Metropolis N., Rusenbluth A.W., Rusenbluth M.N., Teller A.H., and Teller E., 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1087–1092.

    Article  CAS  Google Scholar 

  • Montgomery R., 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiol. 24: 155–167.

    PubMed  Google Scholar 

  • Pacala S.W., Canham C.D., Saponara J., Silander J.A., Kobe R.K.J., and Ribbens E., 1996. Forest models defined by field measurements: estimation, error analysis, and dynamics. Ecol. Monogr. 66: 1–43.

    Article  Google Scholar 

  • Pausas J.G., Bladé C., Valdecantos A., Seva J.P., Fuentes D., Alloza A., Vilagrosa A., Bautista S., Cortina J., and Vallejo R., 2004. Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for and old practice — a review. Plant Ecol. 171: 209–220.

    Article  Google Scholar 

  • Pereira J.S., 1994. Gas exchange and growth. In: Schulze E.D. and Caldwell M.M. (Eds.), Ecophysiology of photosynthesis. Springer-Verlag, New York.

    Google Scholar 

  • Poorter L. and Arets E.J.M.M., 2003. Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecol. 166: 295–306.

    Article  Google Scholar 

  • Pukkala T. and Kolström T., 1988. Simulation of the development of Norway spruce stands using a transition matrix. For. Ecol. Manage. 25: 255–267.

    Article  Google Scholar 

  • Purves D.W., Zavala M.A., Ogle K., Prieto F., and Rey Benayas J.M., 2007. Environmental heterogeneity, bird-mediated directed dispersal, and oak woodland dynamics in Mediterranean Spain. Ecol. Monogr. (in press).

  • Ruiz de la Torre J., 2001. Árboles y arbustos de la España peninsular. Fundación Conde del Valle de Salazar y Grupo Mundi-prensa, Madrid.

    Google Scholar 

  • Sack L. and Grubb P.J., 2001. Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? Funct. Ecol. 15: 145–154.

    Article  Google Scholar 

  • Sánchez-Gómez D., Valladares F., and Zavala M.A., 2006a. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree Physiol. 26: 1425–1433.

    PubMed  Google Scholar 

  • Sánchez-Gómez D., Zavala M.A., and Valladares F., 2006b. Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate-Mediterranean ecotone. Acta Oecol. 30: 322–332.

    Article  Google Scholar 

  • Shugart H.H., 1984. A theory of forest dynamics: the ecological implications of forest succession models. Springer-Verlag, New York.

    Google Scholar 

  • Tilman D., 1982. Resource competition. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Varis O., Kajander T., and Lemmela R., 2004. Climate and water: From climate models to water resources management and vice versa. Clim. Change 66: 321–344.

    Article  Google Scholar 

  • Veneklaas E.J. and Poorter L., 1998. Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In: Lambers H., Poorter H., and Van Vuuren M.M.I. (Eds.), Inherent variation in plant growth: physiological mechanisms and ecological consequences. Backhuys, Leiden, NL, pp. 337–361.

    Google Scholar 

  • Villar R., Ruiz-Robleto J., Quero J.L., Poorter H., Valladares F., and Marañón T., 2004. Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In: Valladares F. (Ed.), Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, S.A., Madrid, pp. 191–227.

    Google Scholar 

  • Walters M.B., Kruger E.L., and Reich P.B., 1993. Growth, biomass distribution and CO2 exchange of northern hardwood seedling in high and low light: relationships with successional status and shade tolerance. Oecologia 94: 7–16.

    Article  Google Scholar 

  • Whittaker R.H., 1975. Communities and ecosystems. Macmillan, New York, USA.

    Google Scholar 

  • Wyckoff P.H. and Clark J.S., 2005. Tree growth prediction using size and exposed crown area. Can. J. For. Res. 35: 13–20.

    Article  Google Scholar 

  • Zavala M.A. and Zea G.E., 2004. Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: insights from a spatial simulation model. Plant Ecol. 171: 197–207.

    Article  Google Scholar 

  • Zavala M.A., Espeita J.M., and Retana J., 2000. Constraints and trade-offs in Mediterranean plant communities: the case of Holm oak-Aleppo pine forests. Bot. Rev. 66: 119–149.

    Article  Google Scholar 

  • Zavala M.A., Angulo O., Bravo de la Parra R., and López-Marcos J.C., 2007. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: The shade tolerance-stand structure hypothesis revisited. J. Theor. Biol. 244: 440–450.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Zavala.

Additional information

Supplementary material (Tables and Figures) are available online only at www.afs-journal.org

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Sánchez-Gomez, D., Zavala, M.A., Van Schalkwijk, D.B. et al. Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain. Ann. For. Sci. 65, 605 (2008). https://doi.org/10.1051/forest:2008040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008040