Skip to main content
  • Original Article
  • Published:

Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments

Établissement d’équations prédisant la concentration en nutriments des compartiments de l’arbre en vue d’une amélioration des modèles d’exportation de nutriments par récolte de biomasse

Abstract

  • • The objective of this study was to explore the distribution of major nutrients (N, P, K, Ca and Mg) in the aboveground compartments of an intensively managed tree species (Pinus pinaster Ait.). A total of 53 trees were cut down in even-aged stands respectively 8, 16, 26, 32 and 40 years old. The nutrient concentrations of the aboveground compartments were analysed.

  • • Nutrient concentrations of foliage did not vary with any of the variables used, except needle age. Nutrient concentrations of living branches, stem bark, stem sapwood, stem heartwood, stemwood and stem decreased with increasing branch diameter, bark thickness, sapwood thickness and heartwood thickness, respectively. Beyond a certain value of the predictive variable (stem diameter ≈ 15 cm; branch diameter ≈ 2.5 cm), the concentration of all the nutrients stabilised.

  • • A 50 year-old pine stand was used to obtain a validation dataset for nitrogen concentration. For this nutrient, the regression relationships gave satisfactory estimates for most compartments (mean error = 12–25%) and particularly for the stem.

  • • A procedure is proposed to estimate the nutrient exports associated with harvests of Pinus pinaster biomass.

Résumé

  • • L’objectif de cette étude est d’explorer la distribution des éléments majeurs (N, P, K, Ca, Mg) dans les compartiments aériens d’une essence gérée de manière intensive. Au total, 53 pins maritimes (Pinus pinaster Ait.) ont été abattus parmi des peuplements équiennes de 8, 16, 26, 32 et 40 ans.

  • • Les concentrations en nutriments du feuillage ne varient pas pour une classe d’âge d’aiguilles donnée. Les concentrations des branches vivantes, de l’écorce, de l’aubier et du duramen décroissent lorsque le diamètre ou l’épaisseur du compartiment considéré augmente. La concentration de l’ensemble des nutriments devient constante lorsque la variable prédictive (diamètre ou épaisseur) atteint une valeur plateau.

  • • Un jeu de données de validation pour les concentrations en azote, provenant d’un peuplement équienne de pins de 50 ans, permet de confirmer les performances satisfaisantes des modèles construits (erreur moyenne = 12–25 %) et en particulier pour le tronc.

  • • Une procédure d’estimation des exportations de nutriments associées aux récoltes de biomasse de Pinus pinaster est présentée.

References

  • André F. and Ponette Q., 2003. Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standard stand in Chimay (Belgium). Ann. For. Sci. 60: 489–502.

    Article  Google Scholar 

  • Augusto L. and Bert D., 2005. Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry 78: 451–455.

    Article  Google Scholar 

  • Augusto L., Ranger J., Ponette Q., and Rapp M., 2000. Relationships between forest tree species, stand production and stand nutrient amount. Ann. For. Sci. 57: 313–324.

    Article  Google Scholar 

  • Bergstrom B., 2003. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 76: 45–53.

    Article  Google Scholar 

  • Bert D. and Danjon F., 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manage. 222: 279–295.

    Article  Google Scholar 

  • Bravo F., Bravo-Oviedo A., and Diaz-Balteiro L., 2008. Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach. Eur. J. For. Res. 127: 225–234.

    Google Scholar 

  • Colin-Belgrand M., Ranger J., and Bouchon J., 1996. Internal nutrient translocation in chestnut tree stemwood: III-Dynamics across an age series of Castanea sativa (Miller). Ann. Bot. 78: 729–740.

    Article  Google Scholar 

  • Dambrine E., Vega J.A., Taboada T., Rodriguez L., Fernandez C., Macias F., and Gras J.M., 2000. Bilans d’éléments minéraux dans de petits bassins versants forestiers de Galice (NW Espagne). Ann. For. Sci. 57: 23–38.

    Article  Google Scholar 

  • Daniel R.C., Lischer P., Theiller G., Fragoso M.A.C., and van Beusichem M.L. (Eds.), 1993. Four new CII reference materials for the chemical analysis of plants: pine needles, oak leaves, barley-straw and applefruit. Optimization of plant nutrition: refereed papers from the Eighth International Colloquium for the Optimization of Plant Nutrition, 31 August–8 September 1992, Lisbon, Portugal, pp. 31–35.

  • De Walle D.R., Tepp J.S., Swistock B.R., Sharpe W.E., and Edwards P.J., 1999. Tree-ring cation response to experimental watershed acidification in West Virginia and Maine. J. Env. Qual. 28: 299–309.

    Article  Google Scholar 

  • Dumery B., 1973. Relation entre la nutrition minérale et la croissance du Pin maritime dans les principaux sites des Landes de Gascogne. Ph.D. thesis, Univ. Bordeaux, 175 p.

  • Fernandez-Prida C., 1977. Mineral composition of Pinus pinaster wood. Investigacion-y-Tecnica-del-Papel 14: 633–642.

    CAS  Google Scholar 

  • Ferretti M., Udisti R., and Barbolani E., 1993. Mineral nutrients and trace metals in tree rings of Pinus sp. J. Anal. Chem. 347: 467–470.

    CAS  Google Scholar 

  • Finer L. and Kaunisto S., 2000. Variation in stemwood nutrient concentrations in Scots pine growing on peatland. Scand. J. For. Res. 15: 424–432.

    Article  Google Scholar 

  • Gordon W.E. and Jackson R.B., 2000. Nutrient concentrations in fine roots. Ecology 81: 275–280.

    Article  Google Scholar 

  • Heilman P.E. and Gessel S.P., 1963. The effect of nitrogen fertilization on the concentration and weight of nitrogen, phosphorus, and potassium in Douglas fir trees. Soil. Sci. Soc. Am. Proc. 27: 102–105.

    Article  CAS  Google Scholar 

  • Houle D., Duchesne L., Moore J.D., Laflèche M.R., and Ouimet R., 2002. Soil and tree-ring chemistry response to liming in a sugar maple stand. J. Env. Qual. 31: 1993–2000.

    Article  CAS  Google Scholar 

  • Ilomaki S., Nikinmaa E., and Makela A., 2003. Crown rise due to competition drives biomass allocation in silver birch. Can. J. For. Res. 33: 2395–2404.

    Article  Google Scholar 

  • Johnson C.E., Johnson A.H., and Siccama T.G., 1991. Whole-tree clearcutting effects on exchangeable cations and soil acidity. Soil Sci. Soc. Am. J. 55: 502–508.

    Article  CAS  Google Scholar 

  • Keay J. and Turton A.G., 1970. Distribution of biomass and major nutrients in a Marine Pine plantation. Aust. For. 34: 39–48.

    Google Scholar 

  • Keay J., Turton A.G., and Campbell N.A., 1968. Some effects of nitrogen and phosphorus fertilization of Pinus pinaster in Western Australia. For. Sci. 14: 408–417.

    CAS  Google Scholar 

  • Lemoine B., 1991. Growth and yield of maritime pine (Pinus pinaster Ait.): the average dominant tree of the stand. Ann. For. Sci. 48: 593–611.

    Article  Google Scholar 

  • Lemoine B., Ranger J., and Gelpe J., 1988. Distributions qualitative et quantitative des éléments nutritifs dans un jeune peuplement de pin maritime (Pinus pinaster). Ann. Sci. For. 45: 95–116.

    Article  Google Scholar 

  • Lopez-Serrano F.R., de las Heras J., Gonzalez-Ochoa A.I., and Garcia-Morote F.A., 2005. Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halenpensis forest stands. For. Ecol. Manage. 210: 321–336.

    Article  Google Scholar 

  • Meerts P., 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann. For. Sci. 59: 713–722.

    Article  Google Scholar 

  • Merino A., Balboa M., Rodriguez-Soalleiro R., and Alvarez Gonzalez J.G., 2005. Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For. Ecol. Manage. 207: 325–339.

    Article  Google Scholar 

  • Monge C., 1970. Variations de la teneur en composés azotés des organes végétatifs du Pin maritime. Ph.D. thesis, Univ. Bordeaux, 45 p.

  • Montero G., Ortega C., Cañellas I., and Bachiller A., 1999. Productividad aérea y dynamica de nutrientes en una repoblacion de Pinus pinaster Ait. Sometida a distintos regimenes de claras. Investig. Agrar. Sist. Recur. For., Special issue 1: 175–206.

    Google Scholar 

  • Nilsson L.O. and Wiklund K., 1995. Nutrient balance and P, K, Ca, Mg, S and B accumulation in a Norway spruce stand following ammonium sulphate application, fertilization, irrigation, drought and N-free fertilisation. Plant Soil 168–169: 437–446.

    Article  Google Scholar 

  • Nunez-Regueira L., Rodriguez-Anon J.A., Proupin J., Mourinon B., and Artiaga-Diaz R., 2005. Energic study of residual forest biomass using calorimetry and thermal analysis. J. Therm. Anal. Cal. 80: 457–464.

    Article  CAS  Google Scholar 

  • Penninckx V., Glineur S., Gruber W., and Herbauts J., 2001. Radial variations in wood mineral element concentrations: a comparison of beech and pedunculate oak from the Belgian Ardennes. Ann. For. Sci. 58: 253–260.

    Article  Google Scholar 

  • Porté A., Bosc A., Champion I., and Loustau D., 2000. Estimating the foliage area of maritime pine (Pinus pinaster Ait.) branches and crowns with application to modelling the foliage area distribution in the crown. Ann. For. Sci. 57: 73–86.

    Article  Google Scholar 

  • Porté A., Trichet P., Bert D., and Loustau D., 2002. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 158: 71–83.

    Article  Google Scholar 

  • Ranger J., Allié S., Gelhaye D., Pollier B., Turpault M.P., and Granier A., 2002. Nutrient budgets for a rotation of a Douglas-fir plantation in the Beaujolais (France) based on a chronosequence study. For. Ecol. Manage. 171: 3–16.

    Article  Google Scholar 

  • Rochon P., Pare D., and Messier C., 1998. Development of an improved model estimating the nutrient content of the bole for four boreal tree species. Can. J. For. Res. 28: 37–43.

    Article  Google Scholar 

  • Rodriguez-Soalleiro R., Balboa-Murias M., Alvarez-Gonzalez J.G., and Merino-Garcia A., 2007. Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations. Ann. For. Sci. 64: 375–384.

    Article  CAS  Google Scholar 

  • Rytter L., 2002. Nutrient content in stems of hybrid aspen as affected by tree age and tree size, and nutrient removal with harvest. Biomass Bioenergy 23: 13–25.

    Article  CAS  Google Scholar 

  • Saint-André L., Laclau J.P., Deleporte P., Ranger J., Gouma R., Saya A., and Joffre R., 2002. A generic model to describe the dynamics of nutrient concentrations within stemwood across an age series of a Eucalyptus hybrid. Ann. Bot. 90: 65–76.

    Article  PubMed  Google Scholar 

  • Seillac P., 1962. L’application du diagnostic foliaire à la sylviculture landaise. C.R. Acad. Agric. Fr. 48: 322–327.

    Google Scholar 

  • Smith K.T. and Shortle W.C., 2001. Conservation of element concentration in xylem sap of red spruce. Trees 15: 148–153.

    Article  CAS  Google Scholar 

  • Thompson T.D., Morris L.A., Lee A.H., and Wells C.G., 1986. Estimates of nutrient removal, displacement and loss resulting from harvest and site preparation of a Pinus taeda plantation in the Piedmont of North Carolina. For. Ecol. Manage. 15: 257–267.

    Article  Google Scholar 

  • Warren C.R., 2005. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees 20: 157–164.

    Article  Google Scholar 

  • Warren C.R. and Adams M.A., 2001. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 24: 597–609.

    Article  CAS  Google Scholar 

  • Watmough S.A., Hutchinson T.C., and Sager E.P.S., 1999. The impact of simulated acid rain on soil leachate and xylem chemistry in a Jack pine (Pinus banksiana Lamb.) stand in northern Ontario, Canada. Water Air Soil Pollut. 111: 89–108.

    Article  CAS  Google Scholar 

  • Wyttenbach A. and Tobler L., 1988. The seasonal variation of 20 elements in 1st and 2nd year needles of Norway spruce, Picea abies (L.) Karst. Trees 2: 52–64.

    Article  CAS  Google Scholar 

  • Young H.E. and Guinn V.P., 1966. Chemical elements in complete mature trees of seven species in Maine. TAPPI J. 49: 190–197.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Augusto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augusto, L., Meredieu, C., Bert, D. et al. Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments. Ann. For. Sci. 65, 808 (2008). https://doi.org/10.1051/forest:2008059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008059

Keywords

Mots-clés