Skip to main content
  • Original Article
  • Published:

Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes

Allocation de carbone et morphologie des semis et rejets de Quercus pagoda (Raf.) sous trois diffĂ©rents rĂ©gimes d’éclairement

Abstract

  • ‱ Continued problems in regenerating oak forests has led to a need for more basic information on oak seedling biology.

  • ‱ In the present study, carbon allocation and morphology were compared between cherrybark oak (Quercus pagoda Raf.) seedlings and sprouts at 1-Lag grown in full, 47%, and 20% sunlight.

  • ‱ Results indicated that cherrybark oak seedling carbon allocation and morphology responded plastically to light availability. In full light, roots were sinks for 14C, while shoots were sinks for 14C under reduced light availability. Cherrybark oak sprouts exhibited similar carbon allocation patterns in response to light availability, but displayed stronger shoot sinks than seedlings when grown underreduced light availability. We also showed that young oak sprout roots are a sink for 14C-photosynthates.

  • ‱ Results from this study point to the need for a morphological index for oak sprout development so more precise comparisons in sprout development and physiology can be made with seedlings.

Résumé

  • ‱ Des problĂšmes continus pour la rĂ©gĂ©nĂ©ration des forĂȘts de chĂȘne ont conduit Ă  un besoin de plus d’informations de base sur la biologie des semis de chĂȘne.

  • ‱ Dans la prĂ©sente Ă©tude, l’allocation de carbone et la morphologie ont Ă©tĂ© comparĂ©es entre des semis de Quercus pagoda Raf. et des rejets au stade de dĂ©veloppement 1Lag cultivĂ©s en pleine lumiĂšre, Ă  47 % et Ă  20 % de lumiĂšre.

  • ‱ Les rĂ©sultats ont indiquĂ© que l’allocation de carbone et la morphologie des semis de chĂȘne ont rĂ©pondu plastiquement Ă  la disponibilitĂ© en lumiĂšre. En pleine lumiĂšre, les racines ont Ă©tĂ© des puits pour 14C, tandis que les pousses ont Ă©tĂ© des puits pour 14C sous une disponibilitĂ© rĂ©duite de la lumiĂšre. Les rejets ont montrĂ© des modes d’allocation de carbone similaires en rĂ©ponse Ă  la disponibilitĂ© en lumiĂšre, mais ont montrĂ© des puits plus importants que les jeunes plants quand ils ont Ă©tĂ© cultivĂ©s sous un Ă©clairement rĂ©duit. Nous avons Ă©galement montrĂ© que les jeunes chĂȘnes pousses des racines sont un puits pour photosynthats 14C.

  • ‱ Les rĂ©sultats de cette Ă©tude soulignent le besoin d’un indice morphologique de dĂ©veloppement des rejets de chĂȘne de maniĂšre Ă  pouvoir faire des comparaisons plus prĂ©cises en ce qui concerne le dĂ©veloppement des rejets et leur physiologie par rapport aux jeunes plants.

References

  • Abrams M.D., 1990. Adaptations and responses to drought in Quercus species of North America. Tree Physiol. 7: 227–238.

    PubMed  Google Scholar 

  • Beon M. and Bartsch N., 2003. Early seedling growth of pine (Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture. Plant Ecol. 167: 97–105.

    Article  Google Scholar 

  • Blake T.J. and Tschaplinski T.J., 1986. Role of water relations and photosynthesis in the release of buds from apical dominance and the early reinvigoration of decapitated poplars. Physiol. Plant. 68: 287–293.

    Article  Google Scholar 

  • Bond W.J. and Midgley J.J., 2001. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol. Evol. 16: 45–51.

    Article  PubMed  Google Scholar 

  • Borchert R., 1975. Endogenous shoot growth rhythms and indeterminate shoot growth in oak. Physiol. Plant. 35: 152–157.

    Article  Google Scholar 

  • Bourdeau P., 1954. Oak seedling ecology determining segregation of species in Piedmont oak-hickory forests. Ecol. Monogr. 24: 297–320.

    Article  Google Scholar 

  • Cecich R.A., 1993. Flowering and oak regeneration. In: Loftis D.L. and C.E. McGee (Eds.), Oak Regeneration: Serious Problems Practical Recommendations, USDA For. Serv. Gen. Tech. Rep. SE-84, pp. 79–95.

  • Chaar H., Colin F., and Collet C., 1997. Effects of environmental factors on the shoot development of Quercus petraea seedlings. A methodological approach. For. Ecol. Manage. 97: 119–131.

    Article  Google Scholar 

  • Collet C. and Frochot H., 1996. Effects of interspecific competition on periodic shoot elongation in oak seedlings. Can. J. For. Res. 26: 1934–1942.

    Article  Google Scholar 

  • Collet C., Ningre F., and Frochot H., 1998. Modifying the microclimate around young oaks through vegetation manipulation: effects on seedling growth and branching. For. Ecol. Manage. 110: 249–262.

    Article  Google Scholar 

  • Cowan I.R., 1994. As to the mode of action of guard cells in dry air. In: Schulze, E.D. and M.M. Caldwell (Eds.), Ecophysiology of Photosynthesis, Springer-Verlag, New York, pp. 205–229.

    Google Scholar 

  • Crow T.R., 1988. Reproductive mode and mechanism for selfreplacement of northern red oak (Quercus rubra) — a review. For. Sci. 34: 19–40.

    Google Scholar 

  • Dickson R.E., Isebrands J.G., and Tomlinson P.T., 1990. Distribution and metabolism of current photosynthate by single-flush northern red oak seedlings. Tree Physiol. 7: 65–77.

    PubMed  Google Scholar 

  • Dickson R.E., Tomlinson P.T., and Isebrands J.G., 2000a. Allocation of current photosynthates and changes in tissue dry weight within northern red oak seedlings: individual leaf and flush carbon contribution during episodic growth. Can. J. For. Res. 30: 1296–1307.

    Article  Google Scholar 

  • Dickson R.E., Tomlinson P.T., and Isebrands J.G., 2000b. Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth. Can. J. For. Res. 30: 1308–1317.

    Article  CAS  Google Scholar 

  • Fitter A.H. and Hay R.K.M., 1987. Environmental physiology of plants. Second Ed., Academic Press, London, 423 p.

    Google Scholar 

  • Gardiner E.S. and J.D. Hodges. 1998. Growth and biomass distribution of cherrybark oak (Quercus pagoda Raf.) seedlings as influenced by light availability. For. Ecol. Manage. 108: 127–134.

    Article  Google Scholar 

  • Gardiner E.S., Russell D.R., Oliver M., and Dorris L.C. Jr, 2002. Bottomland hardwood afforestation: state of the art. In: Holland M.M., Warren M.L., and Stanturf J.A., (Eds.), Proc. Conference on Sustainability of Wetlands and Water Resources: How Well Can Riverine Wetlands Continue to Support Society into the 21st Century? USDA For. Serv. Gen. Tech. Rep. SRS-50, pp. 75–86.

  • Geiger D.R., 1987. Understanding interactions of source and sink regions of plants. Plant Physiol. Biochem. 25: 659–666.

    CAS  Google Scholar 

  • Gottschalk K.W., 1994. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings. Tree Physiol. 14: 735–749.

    PubMed  Google Scholar 

  • Hanson P.J., Dickson R.E., Isebrands J.G., Crow T.R., and Dixon R.K., 1986. A morphological index of Quercus seedling ontogeny for use in studies on physiology and growth. Tree Physiol. 2: 273–281.

    PubMed  Google Scholar 

  • Hodges J.D., 1967. Patterns of photosynthesis under natural environmental conditions. Ecol. 48: 234–242.

    Article  Google Scholar 

  • Isebrands J.G. and Nelson N.D., 1983. Distribution of [14C]-labeled photosynthates within intensively cultured Populus cones during the establishment year. Physiol. Plant. 59: 9–18.

    Article  CAS  Google Scholar 

  • Isebrands J.G. and Dickson R.E., 1991. Measuring carbohydrate production and distribution: radiotracer techniques and applications. In: Lassoie J.P., and Hinckley T.M., (Eds.), Techniques and Approaches in Forest Tree Ecophysiology, CRC Press, Boca Raton, FL, pp. 358–385.

    Google Scholar 

  • Jenkins M.W., and Chambers J.L., 1989. Understory light levels in mature hardwood stands after partial overstory removal. For. Ecol. Manage. 26: 247–256.

    Article  Google Scholar 

  • Johnson P.S., Shifley S.R., and Rogers R., 2002. The ecology and silviculture of oaks, CABI Pub., Oxon, UK, 503 p.

    Book  Google Scholar 

  • Kammesheidt L., 1998. The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash- and- burn agriculture in Eastern Paraguay. Plant Ecol. 139: 155–165.

    Article  Google Scholar 

  • Kolb T.E., Steiner K.C., McCormick L.H., and Bowersox T.W., 1990. Growth response of northern red-oak and yellow-poplar seedlings to light, soil moisture and nutrients in relation to ecological strategy. For. Ecol. Manag. 38: 65–78.

    Article  Google Scholar 

  • Kruger E.L. and Reich P.B., 1993a. Coppicing alters ecophysiology of Quercus rubra saplings in Wisconsin forest openings. Physiol. Plant. 89: 741–750.

    Article  Google Scholar 

  • Kruger E.L. and Reich P.B., 1993b. Coppicing affects growth, root:shoot relations and ecophysiology of potted Quercus rubra seedlings. Physiol. Plant. 89: 751–760.

    Article  Google Scholar 

  • Lockhart B.R., Hodges J.D., Gardiner E.S., and Ezell A.W., 2003. Photosynthate distribution patterns in cherrybark oak seedling sprouts. Tree Physiol. 23: 1137–1146.

    PubMed  Google Scholar 

  • Lorimer C.G., 1993. Causes of the oak regeneration problem. In: Loftis D.L. and McGee C.E., (Eds.), Oak Regeneration: Serious Problems Practical Recommendations, USDA For. Serv. Gen. Tech. Rep. SE-84, pp. 14–39.

  • Peterson R.G., 1985. Design and analysis of experiments, Marcel Dekker, Inc., New York, 429 p.

    Google Scholar 

  • Reich P.B., Teskey R.O., Johnson P.S. and Hinckley T.M., 1980. Periodic root and shoot growth in oak. For. Sci. 26: 590–598.

    Google Scholar 

  • Sander I.V., 1971. Height growth of new oak sprouts depends on size of advance reproduction. J. For. 69: 809–811.

    Google Scholar 

  • Sander I.V., 1972. Size of oak advance reproduction: key to growth following harvest cutting. USDA For. Serv. Res. Pap. NC-79, 6 p.

  • SAS, 1985. SAS/STATℱ guide for personal computers, version 6 ed, SAS Institute, Cary, NC, 378 p.

  • Taylor J.S., Blake T.J., and Pharis R.P., 1982. The role of plant hormones and carbohydrates in the growth and survival of coppiced Eucalyptus seedlings. Physiol. Plant. 55: 421–430.

    Article  CAS  Google Scholar 

  • Tschaplinski T.J. and Blake T.J., 1989a. Photosynthetic reinvigoration of leaves following shoot decapitation and accelerated growth of coppice shoots. Physiol. Plant. 75: 157–165.

    Article  Google Scholar 

  • Tschaplinski T.J. and Blake T.J., 1989b. The role of sink demand in carbon partitioning and photosynthetic reinvigoration following shoot decapitation. Physiol. Plant. 75: 166–173.

    Article  CAS  Google Scholar 

  • Turgeon R., 1989. The sink-source transition in leaves. Ann. Rev. Plant Physiol. Mol. Biol. 40: 119–138.

    Article  Google Scholar 

  • Tworkoski T.J., Ross M.S., and Hopper G.M., 1990. Analysis of chestnut and scarlet oak stump sprout growth. Can. J. For. Res. 20: 112–116.

    Article  Google Scholar 

  • van Hees A.F.M., 1997. Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought. Ann. Sci. For. 54: 9–18.

    Article  Google Scholar 

  • Watt R.F., 1979. The need for adequate regeneration in oak stands. In: Holt, H.A. and B.C. Fischer (Eds.), Proc. Regenerating Oaks in Upland Hardwood Forests, Purdue Univ., Lafayette, IN, pp. 11–17.

    Google Scholar 

  • Welander N.T. and Ottosson B., 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. For. Ecol. Manage. 107: 117–126.

    Article  Google Scholar 

  • Ziegenhagen B. and Kausch W., 1995. Productivity of young shaded oaks (Quercus robur L.) as corresponding to shoot morphology and leaf anatomy. For. Ecol. Manage. 72: 97–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Roy Lockhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockhart, B.R., Gardiner, E.S., Hodges, J.D. et al. Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes. Ann. For. Sci. 65, 801 (2008). https://doi.org/10.1051/forest:2008064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008064

Keywords

Mots-clés