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Abstract
• Introduction Accurate estimation of aboveground bio-
mass is essential to better understand the carbon cycle in
forest ecosystems.
• Methods The objective of this study was to determine
whether biomass in temperate hardwood forests is better
estimated using very high-frequency radar data (from
BioSAR) alone or in combination with small-footprint
discrete-return lidar data (both profiling and scanning).
The study area was in the Appomattox-Buckingham State
Forest, Virginia, USA (78°41′W, 37°25′N). Aboveground
biomass for 28 stands was estimated using 131 basal area
factor 10 point samples. The resulting stand biomass
estimates were used as the dependent variable in a multiple
linear regression. Descriptors of the lidar distributions (both
profiling and scanning) and averaged normalized radar

cross-sections in each of these stands were used as
independent variables.
• Results Regression results revealed the following: (1) neither
BioSAR nor scanning lidar data alone are good predictors of
stand biomass (R2=0.57, root mean squared error (RMSE)=
31.0 tonnes/ha and R2=0.64, RMSE=28.5 tonnes/ha, respec-
tively); (2) BioSAR data combined with small-footprint
discrete lidar data (either profiling or scanning) are the best
predictors of stand biomass (R2=0.80, RMSE=21.3 tonnes/
ha and R2=0.76, RMSE=24.2 tonnes/ha, respectively); and
(3) when used with BioSAR data for stand biomass
estimation, less costly profiling lidar data convey the same
information as more costly scanning lidar data.
• Conclusion Useful synergy can be realized by consider-
ing lidar and radar measurements jointly in estimating
aboveground biomass in hardwood and mixed forests.

Keywords BioSAR . Scanning lidar . Profiling lidar .

Aboveground biomass . Best subsets regression . Carbon

1 Introduction

Biomass forms an essential part of the active carbon pools
in the global carbon cycle. Prediction of forest biomass is
therefore important for understanding major carbon cycle
uncertainties and monitoring carbon sequestration (Hyde et
al. 2007; Lucas et al. 2000; Skole and Tucker 1993). The
traditional field methods used for measuring aboveground
biomass are accurate but very expensive and labor intensive
(Lefsky et al. 1999; Lim et al. 2003). In recent years,
various remote sensing techniques have been explored in
estimating aboveground biomass, starting with optical passive
remote sensing using the visible and infrared part of the solar
electromagnetic spectrum (Fraser and Li 2002; Sader et al.
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1989; Steininger 2000). In forested environments, these
sensors measure reflected energy that is largely a function of
canopy architecture (leaf area, leaf angle, and clumping), leaf
pigments, soil background, and underground vegetation
(Goel 1989). A direct physical relationship between above-
ground biomass and optical remote sensing data does not
exist; hence, the latter only provide indirect estimates of
aboveground biomass (Chopping et al. 2008; Hyde et al.
2007). Different approaches have been utilized with varying
degrees of success to estimate biomass from optical remote
sensing data, for example, establishing the relationships
between biomass and vegetation indices (Peddle et al. 2001;
Sader et al. 1989), spectral bands (Boyd et al. 1999; Foody et
al. 2003; Steininger 2000), image texture (Lu 2005), and
combinations of texture and spectral information (Lu and
Batistella 2005). Vegetation reflectance and/or reflectance
derivatives (for example, vegetation indices, texture, etc.)
saturate in moderate to high biomass forests (Anaya et al.
2009; Lefsky et al. 2002). For example, Steininger (2000)
showed that the canopy reflectance saturated when above-
ground biomass approached 150 tonnes/ha or vegetation age
reached 15 years in the tropical secondary successional
forests in Manaus, Brazil.

A number of studies have investigated the role of synthetic
aperture radar (SAR) data to estimate aboveground biomass
(Austin et al. 2003; Harrell et al. 1997; Luckman et al. 1998;
Santos et al. 2002). SAR data are sensitive to geometric
properties of the forest; thus, they are more directly related to
measurements of aboveground biomass than optical remote
sensing data. Studies utilizing SAR data have found that the
sensitivity of the radar backscatter coefficient to biomass
disappears in forests with biomass exceeding 100 tonnes/ha
(Dobson et al. 1992; Fransson et al. 2000; Imhoff et al. 2000;
Imhoff 1995). The usual 1- to 10-GHz frequencies are often
intercepted by the crown layer of the canopy in dense forests,
and twigs, needles, and smaller branches in the top layers of
the canopy are the major scatterers at these wavelengths
(Fransson et al. 2000). Using lower frequencies, e.g., the P-
band (around 440 MHz), the sensitivity to biomass increases,
but saturation still occurs at 100–200 tonnes/ha biomass.
Hence, even with the P-band, 81% of global forests are
above the saturation limit and not within the range of
biomass assessment (Imhoff 1995; Nelson et al. 2007).
Therefore, even lower SAR frequencies are necessary to
push the saturation point upward and facilitate biomass
retrieval for medium to high biomass forest stands.

The pressing need for the use of lower-frequency SAR
systems to address saturation-related issues accelerated the
development of BioSAR. BioSAR is a very high-frequency
(VHF) SAR that was specifically designed by NASA and
Zimmerman Associates, Inc., Vienna, Virginia, USA to retrieve
forest biomass estimates without saturating. It operates in the
frequency range of 80–120 MHz. Results have shown good

correlation between backscatter measured with BioSAR and
forest biomass up to values of 250 tonnes/ha without saturation
(Imhoff et al. 2000). For VHF SAR, the dominant scattering
mechanism is ground-trunk dihedral scattering, since back-
scattering from branches, needles, and the forest floor and
corresponding attenuation due to the forest canopy are very
low. Hence, the strength of backscattering can be directly
related to the trunk volume, with improved biomass discrim-
ination and no saturation effects (Jonforsen et al. 2005).

The use of airborne lidar remote sensing in estimating
aboveground biomass has also become more prevalent. A
lidar sensor can directly measure components of vegetation
canopy structure, such as canopy height, and provides
indirect information about the vertical distribution of
canopy structure such as leaves and branches (Drake et al.
2003; Lim et al. 2003). Because the components of the
vertical structure of the canopy are closely linked with
aboveground biomass, several studies have shown good
correlation between biomass and lidar metrics. Studies that
used lidar for aboveground biomass estimation utilized both
“discrete return” systems and “full waveform” systems.
Bortolot and Wynne (2005) and Popescu et al. (2003)
utilized an individual tree-based approach, and van Aardt et
al. (2008) utilized a stand-based approach with discrete
lidar data to estimate biomass (<350 tonnes/ha) in a
hardwood and mixed forest in Virginia, USA. Zhao et al.
(2009) utilized a scale invariant approach to estimate
biomass (<300 tonnes/ha) in a plantation and deciduous
forest in eastern Texas, USA and obtained root mean
squared errors (RMSEs) between measured and model-
estimated biomass ranging from 14.3 to 36.7 tonnes/ha.
Boudreau et al. (2008) used waveform lidar in the different
vegetation zones in the Canadian province of Québec
(biomass up to 215 tonnes/ha) and estimated aboveground
biomass with RMSEs ranging from 14.2 to 38.7 tonnes/ha.
Lefsky et al. (1999) and Means et al. (1999) estimated
aboveground biomass with waveform lidar in a deciduous
forest of eastern Maryland, USA (biomass up to
450 tonnes/ha, R2 between measured and estimated biomass
up to 0.81) and with large footprint scanning airborne lidar
in the Western Cascades of Oregon, USA (biomass ranging
from 500 to 1,500 tonnes/ha, RMSE=132 tonnes/ha),
respectively. Nelson et al. (2007) reported that no lidar
research to date has noted any saturation effect for biomass
estimation. Lidar makes use of the close link between
canopy height and aboveground biomass. The absence of
saturation in the relationship between lidar-derived varia-
bles and biomass is likely because higher biomass forests
usually have taller canopies. However, there are some
shortcomings of both discrete-return and waveform lidar
data. For waveform data, these include the often large
footprint and typically low horizontal sampling densities
(van Aardt et al. 2006). For discrete-return data, the primary
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shortcomings are the poor results in mixed and deciduous
forests (Boudreau et al. 2008; Popescu et al. 2003) and (for
scanning lidar) the high cost.

The main objective of this study was to investigate the
usefulness of BioSAR, used individually or with lidar, to
estimate biomass in hardwood and mixed forests. The
current study is a follow-on to work reported by Nelson et
al. (2007). They investigated the use of the VHF radar
system BioSAR in conjunction with a simple profiling
lidar, the portable airborne laser system (PALS), in
estimating aboveground biomass in an industrial, intensively
managed pine forest. They found no practical, exploitable
lidar–radar synergy in their studies. However, the authors
recommended continuing studies to compare lidar and
BioSAR data sets to look for exploitable synergies in
temperate and hardwood mixed forests. Their assumption
was that the utility of radar–lidar combination might be
manifested in hardwood and mixed forests, where biomass
estimation has been shown to be more problematic than in
coniferous forests. Deliquescent tree forms in hardwood
forests do not exhibit apical dominance as in coniferous
forests, thereby making the height–volume or height–biomass
relationship noisier (Boudreau et al. 2008). Hence, adding
SAR variables (whose value is directly related to bole or
large branch volume) to the height-related information from
lidar variables might provide better estimates of biomass in
hardwood and mixed forests. The current study augments
Nelson et al. (2007) by looking at hardwood and mixed
forest stands using small-footprint discrete-return scanning
lidar (hereinafter referred to as scanning lidar) data in
addition to BioSAR and PALS data.

2 Methods

2.1 Study area and ground data

The study area is in the Appomattox–Buckingham State
Forest, Virginia, USA (78°40′30″ W, 37°25′9″ N). This
Virginia Piedmont region consists of various coniferous,
upland hardwood, and mixed forest stands. The tree species
were white oak (Quercus alba), chestnut oak (Quercus
prinus), northern red oak (Quercus rubra), southern red oak
(Quercus falcata), yellow poplar (Liriodendron tulipifera),
red maple (Acer rubrum), and three species of pines:
Virginia pine (Pinus virginiana), loblolly pine (Pinus
taeda), and shortleaf pine (Pinus echinata). The stand age
varied, being approximately 25 years for the pine planta-
tions, 45–65 years for the pine-hardwood mixed stands, and
up to 110–125 years for the upland hardwood stands. A
mean elevation of 185 m, with a minimum of 159 m and a
maximum of 238 m, and rather gentle slopes characterize
the topography of the study area. The location of the study

area and a canopy height model from the scanning lidar
data used are shown in Fig. 1.

Field data consisted of 131 basal area plots (basal area
factor 10) out of 256 previously mapped plots on a 16
columns by 16 rows, 201.17-m grid (van Aardt et al. 2006).
Not all locations could be measured this time because of
recent or active harvests or lack of permission to sample
some plots on private property. Field data were collected
during November and December of 2007. Differentially
corrected plot location, plot basal area, diameter at breast
height (dbh), height, and species were measured for all
plots and tallied trees. Biomass equations for per-tree
calculations found in Popescu et al. (2004) were used in
this study. This latter study was situated within the same
geographical boundaries, with the same species being
studied. Biomass was calculated on an individual tree basis
for each plot and expanded to per-hectare values. Descriptive
statistics for all basal area plots are given in Table 1.

2.2 Data collection and preprocessing

2.2.1 BioSAR data

The BioSAR sensor was carried aboard a Twin Otter twin-
engine aircraft to collect data over the study area in October
2007. BioSAR acquires volumetric returns on a 600-m radius
circle directly beneath the aircraft in the 80–120 MHz range.
As reported in Nelson et al. (2007), the size of the area
illuminated by the radio pulse is determined by the beam
width and flight altitude, nominally 300 m AGL. The
frequency of the emitted pulse was designed to avoid
contamination from local FM radio station signals.

BioSAR returns from a 600-m target area were range-gated
and Doppler-sorted to produce 300 m across-track×30 m
along-track pixels. Doppler sorting was used to collect radar
signal in 5° incidence angle increments fore and aft of nadir.
Radar response values were averaged together to provide a
single response value for 18 incidence angle bins (5o–45o) for
each Doppler resolution cell. The angular volumetric BioSAR
responses were radar cross-sections for a given incidence
angle, defined as the ratio of the received power to the
transmitted power, adjusted for receiver and antenna gains.
Each radar cross-section was then divided by the effective
target area to produce the normalized radar cross-section
(NRCS).

2.2.2 Profiling lidar

Profiling lidar data were acquired using a portable airborne
laser system (PALS) coincident with the BioSAR along 13
flight lines. PALS was specifically designed as a sampling tool
to estimate forest volume, biomass, and carbon across larger
regions. The laser used in the acquisition was a Riegl LD90-
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3800 VHS FLP, a near-infrared lidar (λ=0.905 μm),
programmed to supply sequential, alternating first and last
returns. The PALS spot size was 60 cm at target, and the
along-track post spacing was 16.7 cm. Since first and last
returns are sequentially acquired, the top of the canopy is

described by pulses spaced 33.4 cm apart. The interleaved last
returns were used to identify ground beneath the forest canopy
by identifying local minima and connecting these minima
with a spline function. Once the ground line was defined,
canopy height was calculated for each first return pulse.

Fig. 1 Map of the Commonwealth of Virginia, USA indicating the study area location; the canopy height model from the scanning lidar data set
used in this study is shown below (height in meters). Projected coordinate system of map: NAD 1983 UTM Zone 17N
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2.2.3 Scanning lidar

Scanning lidar data were acquired in August 2008 (during
“leaf on” conditions) using an Optech ALTM 3100 sensor.
The laser was operated with a pulse rate of 100 kHz, with a
scan angle less than 15°, point densities of five pulses or
better per square meter, a vertical accuracy of 15 cm or
better over bare ground, and 0.5 m or better horizontal
accuracy. The range captured included up to four measure-
ments with first, second, third, and last returns. Bare ground
returns were supplied by the data provider and were based
on a proprietary algorithm. Ground returns were interpo-
lated to a 1-m spatial resolution grid using regular kriging,
which was found to be the most accurate interpolation
technique using similar data for the same study area
(Popescu et al. 2003; van Aardt et al. 2006). Canopy height
was computed as the difference between all returns and the
corresponding ground return values.

2.2.4 Stand-based metrics calculation

A stand-based strategy was adapted to directly compare
model-estimated biomass with that of ground-observed
biomass. We utilized a recently updated Appomattox–
Buckingham State Forest (ABSF) stand map of the area
for that purpose. ABSF stands were buffered inward by
50 m in order to exclude fuzzy stand boundary areas and to
address potential misregistration between the field and
remotely sensed data. Only those BioSAR pixels falling
cleanly inside the buffered stands and lying within 100 m of
plot centers were extracted. BioSAR measurements within
the stands were averaged, resulting in 28 stand-level
observations for the 18 variables (Table 2). Lidar pulses
were collected across the same 28 stands to get stand-level
PALS distributional metrics as listed in Table 3. Stand-level
metrics were calculated for all hits and canopy hits (pulse

with a height≥3 m). Similar distributional metrics were also
calculated for scanning lidar for heights derived from first,
second, and third returns.

2.3 Statistical analysis

Best subsets linear regression (MINITAB 15) was used to
create models of stand biomass as a function of the remote
sensing variables (Tables 2 and 3). We separated the
variables into 11 sensor-specific sets, as follows: one set
of BioSAR variables, two sets of PALS variables (metrics
from all hits and canopy hits), and eight sets of scanning
lidar variables (metrics from “canopy hits” and “all hits” for
first, second, third, and all lidar returns). These sensor-
specific sets were considered separately and in combination
with each other resulting in 21 analysis sets of independent
variables. For each analysis set, correlation analysis was
used to remove all but one (that most correlated with
biomass) within each group of highly correlated (r>0.9)
variables. Each (now paired) analysis set was used to
predict biomass measured in situ. Only models of six or
fewer predictor variables were considered in each case.
Only the best performing (highest adjusted R2) analysis sets
for each sensor or sensor combination were retained,
reducing the final number of analysis sets from 21 to five
(BioSAR only, PALS all hits, BioSAR plus PALS all hits,
scanning lidar all return canopy hits, and BioSAR plus
scanning lidar all return canopy hits). Selected models were
subject to the following constraints: (1) all independent
variables were significant at α=0.05, (2) Mallows Cp was
less than p+1, where p is the number of predictor variables
used, and (3) there could not be multi-collinearity, i.e., all
variance inflation factors (VIFs) were less than 10.
Significance testing and calculation of VIFs were done in
MATLAB (v. 7.1). Consideration was also given to model
parsimony, i.e., a model with fewer variables was preferred
to one with many variables. Once the best models were

Table 1 General descriptive statistics for deciduous and coniferous
plots

Type Parameter unit Min Max Mean σ

Coniferous Height m 8.44 31.56 18.12 3.92

DBH cm 12.70 53.10 24.10 7.87

Biomass tonnes/ha 11.60 202.00 96.90 47.80

Deciduous Height m 2.10 38.12 22.10 5.47

DBH cm 10.41 130.56 34.80 14.99

Biomass tonnes/ha 16.33 267.20 140.50 57.30

“Deciduous” or “coniferous” types were defined with majority
contribution, from either deciduous or coniferous species, respectively.
The last four columns show the minimum, maximum, mean, and
standard deviation of the measured (height and DBH) and calculated
(biomass) parameters

DBH diameter at breast height

Table 2 BioSAR variables used in this study

Angular bins (in degrees) Variable name

0–5 a00, b00

5–10 a05, b05

10–15 a10, b10

15–20 a15, b15

20–25 a20, b20

25–30 a25, b25

30–35 a30, b30

35–40 a35, b35

40–45 a40, b40

Variables “a” and “b” refer to the mean forward and backward NRCS
response, respectively
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chosen, leave-one-out cross validation was used to validate
them. In each iteration of the cross validation, one of the 28
observations was set aside, a predictive equation was
calculated using the remaining 27 observations, and the
single observation set aside was used to validate the model.
This procedure was repeated 28 times. The cross-validation
coefficient of determination (CV-R2) and prediction sum of
squares (PRESS) were calculated to assess the prediction
capability of the best models.

3 Results

The final results of best subset regression analyses are
presented in Table 4. The first column shows the type of
independent variables used in the model. The second, third,
fourth, and fifth columns show the model coefficient of
determination (R2), adjusted R2, model Mallows Cp, and
root mean square error (RMSE in tonnes per hectare). The
sixth and seventh columns show the cross-validation R2

(CV-R2) and PRESS, respectively. The last column shows
the best subset regression equations between aboveground
biomass (in tonnes per hectare) and subsets of remote
sensing variables selected based upon different models’
statistics (adjusted R2, model mallows Cp, VIF, and
statistical significance).

The models derived from the scanning lidar metrics
provided the best fit (R2=0.64, RMSE=28.5 tonnes/ha) when
the regression models were built using measurements from a
single sensor. However, the models fitted using composite
variables from two sensors, BioSAR and PALS (R2=0.80,
RMSE=21.3 tonnes/ha) and BioSAR and scanning lidar (R2=
0.76, RMSE=24.2 tonnes/ha), provided better estimates of
biomass compared to the models with single sensor variables.
The predicted versus observed biomass plots for the best two
models are provided in Figs. 2 and 3.

No model had more than four variables. Across all
models, the selected variables were as follows: a15, mean
NRCS response at forward 15°to 20° angle bins (decibels);
b20, mean NRCS response at backward 20° to 25° angle
bins (decibels); b40, mean NRCS response at backward 40°
to 45° angle bins (decibels); p60, 60th percentile of PALS
height, all hits (meters); p70, 70th percentile of PALS
height, all hits (meters); kal, kurtosis of PALS height, all
hits; kcI, kurtosis of scanning lidar height, all return canopy
hits; and pc30I, 30th percentile of scanning lidar height, all
return canopy hits (meters). While space precludes illustra-
tion of the relationship of each of these variables to field-
measured biomass, we include two to help the reader
understand why the simple linear models are sufficient to
predict biomass. Observed biomass versus b20 is shown in
Fig. 4. Observed biomass versus pc30I is shown in Fig. 5.

PALS metric Description

ha, hc Mean height, all hits and canopy hits

stdal, stdc Standard deviation, all hits and canopy hits

skal, skc Skewness, all hits and canopy hits

kal, kc Kurtosis, all hits and canopy hits

hqal, hqc Quadratic mean canopy height, all hits and canopy hits

p10, p20, …p100 Percentile heights, all hits

pc10, pc20, …pc100 Percentile heights, canopy hits

Table 3 Metrics derived from
PALS

Similar set of metrics were
developed for height derived
from first, second, third, and all
returns of scanning lidar. A
canopy hit is a pulse with a
height≥3 m

Table 4 Regression results between stand-based biomass and lidar (PALS or scanning lidar) and/or BioSAR variables

Variables R2 Adjusted R2 Cp RMSE CV-R2 PRESS Best model

BioSAR only 0.57 0.54 −2.6 31.0 0.49 28,955 Y ¼ 151:2� 4:5 a15ð Þ þ 4:4 b20ð Þ
PALS only 0.55 0.51 −2 31.6 0.47 29,596 Y ¼ �1:7þ 7:5 kalð Þ þ 6:1 p60ð Þ
BioSAR+PALS 0.80 0.78 4 21.3 0.70 17,358 Y ¼ �163:3þ 9:0 kalð Þ þ 9:7 p70ð Þ � 8:4 b40cð Þ
Scanning lidar only 0.64 0.61 2.8 28.5 0.55 25,491 Y ¼ 178� 14:3 pc30Ið Þ � 84:8 kcIð Þ
BioSAR+scanning lidar 0.76 0.72 −1.4 24.2 0.67 18,816 Y ¼ 144:9þ 10:3 pc30Ið Þ � 49:8 kcIð Þ � 2:8 a15ð Þ þ 2:4 b20ð Þ

The first column shows the type of independent variables used in the model. The second, third, fourth, and fifth columns show the model
coefficient of determination (R2 ), adjusted R2 , model Mallows Cp, and RMSE (in tonnes/ha), respectively. The sixth and seventh columns show the CV-
R2 and PRESS, respectively

Y, biomass (tonnes/ha); a15, mean NRCS response at forward 15° to 20° angle bins (decibels); b20, mean NRCS response at backward 20° to 25°
angle bins (decibels); b40, mean NRCS response at backward 40° to 45° angle bins (decibels); p60, 60th percentile of PALS height, all hits
(meters); p70, 70th percentile of PALS height, all hits (meters); kal, kurtosis of PALS height, all hits; kcI, kurtosis of scanning lidar height, all return
canopy hits; pc30I, 30th percentile of scanning lidar height, all return canopy hits (meters)
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4 Discussion

The results indicate that significant synergy may be realized
by using lidar and radar data in tandem for estimating
biomass in hardwood and mixed forests. The model
statistics in this study were better than those for an object-
and stand-level study by van Aardt et al. (2006) and a plot-
level lidar study by Popescu et al. (2004) in the same study

area. The best model in this study had an R2 of 0.80 and
RMSE of 21.3 tonnes/ha, versus 0.66 and 20.3 tonnes/ha
(object level) and 0.46 and 41.2 tonnes/ha (stand level)
found by van Aardt et al. (2006). Similarly, Popescu et al.
(2004) obtained an R2 of 0.82 and RMSE of 29.0 tonnes/ha
(for coniferous species) and an R2 of 0.33 and RMSE of
44.4 tonnes/ha (for deciduous species). These results are
different from those reported by Hyde et al. (2007) and
Nelson et al. (2007). In those studies, lidar, whether
scanning or profiling, estimated biomass more accurately
and precisely than any of the radar data considered in the
two studies. Further consideration of lidar and radar jointly
did not, for all practical purposes, improve forest biomass
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Fig. 3 Predicted versus observed biomass plot for the best model with
BioSAR variables (a15, b20, mean NRCS response at forward 15° to
20°, backward 20° to 25° angle bins (decibels)) and scanning lidar
variable (kcI, pc30I, kurtosis of scanning lidar height, all return canopy
hits, and 30th percentile of scanning lidar height, all return canopy hits
(meters)). Solid and hollow triangles stand for the pine and hardwood
stands, respectively
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Fig. 2 Predicted versus observed biomass plot for best model with
BioSAR variables (b40, mean NRCS response at backward 40°–45°
angle bins (decibels)) and PALS variable (p70, kal, 70th percentile of
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Fig. 5 Observed biomass versus pc30I, the 30th percentile of scanning
lidar height, all return canopy hits. Solid and hollow triangles stand
for the pine and hardwood stands, respectively
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backward 20° to 25° angle bins. Solid and hollow triangles stand for
the pine and hardwood stands, respectively
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estimation. However, those two studies were undertaken in
industrial, heavily managed, even-aged forests of loblolly
pine and ponderosa pine, respectively. Lidar has been
shown to accurately estimate canopy height in even-aged,
monospecific forests with an apically dominant growth
form (Nelson et al. 2007). These forests exhibit greater
correlation between individual tree height and biomass
(Popescu et al. 2003). Hence lidar-based biomass estimates
are highly accurate and precise in studies conducted in
these type of forests (cross-validation R2=93.3 and
RMSE=33.9 tonnes/ha in Nelson et al. 2007; cross-
validation R2=82.6 and RMSE=26.05 tonnes/ha in Hyde
et al. 2007), and little is gained by further adding radar-
derived variables. On the other hand, canopy height
estimation in hardwood and mixed forests using small
footprint lidar data is less accurate than in coniferous
forests, mainly because of (1) increased understory and (2)
failure to sample the tops of the relatively broad trees
(Clark et al. 2004; Lefsky et al. 2002; Means et al. 1999).
Combined with the greater uncertainty in canopy height
estimation is the decreased correlation between tree height
and biomass in hardwood forests compared to coniferous
forests (Popescu et al. 2003). The lower correlation between
tree height and biomass can be attributed to hardwoods’
deliquescent form, as hardwood trees tend to distribute their
biomass in their lateral branches, weakening the height–
biomass relationships (Nelson et al. 2007). As such, we posit
that the relatively poor relationship between biomass and
lidar-derived height variables in this study (used alone) is
explained by the combined effect of greater uncertainty in
canopy height estimates and the weaker biomass–height
relationship in hardwood and mixed forests.

Studies using CARABAS, a radar sensor similar to
BioSAR, have shown that the VHF backscatter mecha-
nisms are mainly dominated by ground-trunk double-
bounce scattering mechanisms for simple forest structures
such as gently sloped coniferous forests (Fransson et al.
2000; Hallberg et al. 2005). The longer wavelength radar
has good foliage penetration; hence, the foliage-floor and
trunk-foliage double-bounce scattering can be considered
negligible. The backscattering amplitude due to trunk-
ground scattering has been shown to be proportional to
stem volume (Israelsson et al. 1997; Jonforsen et al. 2005).
In hardwood forests, not only the main trunk but also the
primary branches are expected to dominate the backscat-
tering through branch–ground interactions and direct
backscatter from the branches themselves (Israelsson et al.
1997). Understanding the exact mechanisms of this scatter-
ing and the sensitivity of backscatter to canopy structure
(size, distribution, and density of the stem branches) is
outside the scope of this study, but it is expected that
BioSAR returns measured at multiple incidence angles
respond to the volume (and thus the biomass) both in the

main trunk and the major branches in hardwood trees of
deliquescent form as in this study. This is borne out by
Fig. 4, in which there is more variability in the mean NRCS
response at lower (e.g., 80–120 tonnes/ha) biomasses (and
thus, given similar stocking, smaller diameter boles) than at
higher (e.g., 160–200 tonnes/ha) biomasses (with larger
diameter boles more on a par with the wavelength of the
radar). The lidar data provide additional information on
canopy height that is directly related to observed biomass
(Fig. 5). As can be seen, at lower biomasses, there is less
height variability at a given percentile—nicely comple-
menting the BioSAR data with the opposite situation (lower
biomass, more variability). The combined information on
canopy height (from the lidar) and tree volume (from the
VHF backscatter) provided better estimates of aboveground
biomass than either used alone.

The predicted versus observed biomass for the best two
BioSAR–PALS and BioSAR–scanning lidar models are
provided in Figs. 2 and 3, respectively. These figures,
together with the model statistics, show that PALS and
BioSAR variables provided slightly better synergy over
scanning lidar and BioSAR variables. We can visually infer
from the figures that biomass values for pine stands were
better predicted with the BioSAR–PALS model, and the
predictions for hardwood stands were more or less
consistent between the two models. Given the greater
coverage and higher pulse density of scanning lidar, it is
difficult to put a finger on what caused the PALS data to be
the better lidar data set. One of the potential causes might
be the time discrepancy between the field data and scanning
lidar data collection. Though we do not expect a significant
growth in biomass in less than a single year, some trees
might have been harvested or lost through natural distur-
bance during that time, for example. Based on this study,
we can argue that simple profiling lidar measurements
might suffice when considered jointly with BioSAR
volumetric returns, rendering high cost and extensive
processing of scanning lidar data unnecessary in estimating
stand-based aboveground biomass in hardwood and mixed
forests. Cross-validation results reiterate the adequacy of
profiling lidar, as the BioSAR–profiling lidar model (CV-
R2=0.70, PRESS=17,358) has better predictive ability than
the BioSAR–scanning lidar model (CV-R2=0.67, PRESS=
18,816). Though the time difference of data collection is an
issue, this really points in favor of profiling lidar because
both BioSAR and PALS sensors are carried on the same
aircraft and can be used to collect the data concomitantly.

The most important lidar variables consistently represented
in the biomass equations in this study were kurtosis of lidar
heights (kal and kcI). Other important lidar variables were the
30th percentile of lidar heights derived from canopy hits
(pc30I) for scanning lidar and the 60th and 70th percentiles of
heights derived from all hits for profiling lidar. Among
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different BioSAR variables, a15, b20, and b40, mean
response at forward 15°–20°, backward 20°–25°, and
backward 40°–45° angle bins, respectively, were the most
useful predictor variables. Our findings are comparable to
those of Imhoff et al. (2000), who also identified radar
returns at a 25° look angle as best for predicting forest dry
biomass. However, Nelson et al. (2007) found the backward-
looking BioSAR NRCS response at 8.5° to be the best single
BioSAR predictor of stem green biomass using 1.4° Doppler
bins rather than the 5° bins used in this study. The observed
differences in which BioSAR variable performed best might
be attributed to the differences among the heavily managed
pine forests studied by Nelson et al. (2007), the hardwood
and mixed forests in this study and the oak/pine forests of
Big Thicket Forest Preserve in eastern Texas studied by
Imhoff et al. (2000).

5 Conclusion

Hardwood and mixed forests comprise a large portion of
the earth’s land surface; they are important carbon pools
with substantial fluxes. Our results suggest that useful
synergy can be realized by considering lidar and radar
measurements jointly in estimating aboveground biomass in
hardwood and mixed forests.
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