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Abstract
& Context Loblolly pine is often grown in intensively man-
aged plantations for wood production. In order to fully eval-
uate the effects of management practices on wood quality and
ultimately value, it is necessary to relate mechanical properties
to management practices.
& Aims The aim of this study was to evaluate the effect of
planting density on mechanical properties of lumber recov-
ered from loblolly pine trees from a 27-year-old spacing trial
and develop prediction equations for modulus of elasticity and
modulus of rupture from stand, tree, and board characteristics.
& Methods Regression methods were applied to sample trees
from three planting densities (2,989, 1,682, and 746 trees ha−1)
and used to relate mechanical properties of lumber extracted
from the trees to stand, tree, and board characteristics.
& Results Initial planting density was found to be correlated
with modulus of elasticity and, to a lesser extent, with modu-
lus of rupture. Including board characteristics and utilizing the
visual grade and board position as regressors produced im-
proved prediction equations.
& Conclusions The mean modulus of elasticity declines with
decreasing planting density while the variability increases,

suggesting that planting density is a surrogate for frequency
and size of knots. Thus, lower planting densities, while pro-
ducing more lumber, may produce proportionally fewer
boards of greater modulus of elasticity than higher planting
densities.

Keywords Wood quality . Spacing .MOE .MOR .

Stiffness . Strength

1 Introduction

As demonstrated in the Sudden Sawlog Study (Burton and
Shoulders 1974), loblolly pine sawlogs can be produced in
fast-grown stands. However, along with this accomplishment
comes a concern that the same practices so successful in
boosting productivity through intensive silviculture and
shorter rotations may have a negative impact on the mechan-
ical properties MOE (modulus of elasticity) and MOR (mod-
ulus of rupture) associated with harvested wood (Pearson and
Gilmore 1980; Biblis et al. 1993; Biblis et al. 1995; Clark et al.
2008). Thus, in order to fully evaluate effects of management
practices on wood quality and ultimately value, it is necessary
to relate mechanical properties to management practices.

Pearson and Gilmore (1980) studied mechanical properties
of lumber associated with three populations of loblolly pine
stands: older natural stands, 25-year-old unmanaged commer-
cial plantations of unimproved trees, and young intensively
managed plantations established with genetically improved
and fertilized trees. While they found that faster growth rates
from plantations were associated with lower values of me-
chanical properties, they attributed these differences to the
younger ages of the plantations rather than differences in
growth rates. That is, if allowed to reach ages typical of natural
stands, lumber produced from fast-grown plantations would
have MOR, MOE, and specific gravity (SG) values similar to
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those from natural stands. They developed regression equa-
tions to predict MOR and MOE from SG, rings per inch and
percentage summerwood (SW).

In a study examining the effects of thinning on mechanical
properties of loblolly pine lumber, Biblis et al. (2004) found
that neither of the properties tested, MOE and MOR, were
influenced by thinning. Further, they did not find evidence
that variables used to predict MOE and MOR, including SG
and percent latewood, were influenced by thinning. Schneider
et al. (2008) found similar results for thinned jack pine stands
using small clear-wood test samples. They found that thinning
did not directly affect prediction models of MOE orMOR, but
only indirectly through rings per inch. While both studies
found a strong correlation between SG and mechanical prop-
erties, Biblis et al. (2004) noted that the strong significance of
SG as a predictor of MOE and MOR weakened under the
testing protocols of dimensional lumber as compared to small,
clear-wood samples. The presence of knots, slope of the grain,
and other anomalies found in dimensional lumber can have a
strong influence on MOE and MOR that may not be apparent
when small, clear-wood samples are tested.

In the absence of thinning, one of the most influential
management practices affecting lumber yield and quality is
initial planting density. Using lumber recovered from sample
trees extracted from a loblolly pine spacing trial, Amateis and
Burkhart (2013) found that total lumber production was max-
imized from larger trees grown at lower planting densities.
Even after accounting for the reduction in board quality
through the visual grading process and applying prices by
grade and dimension, total value of lumber recovered from
lower planting densities was significantly greater than from
higher densities. Their study provides an initial assessment of
value by accounting for quantity and quality off the green
chain. However, for a comprehensive assessment of value, it is
necessary to account for the effect of planting density on
mechanical properties if indeed planting density is found to
affect mechanical properties.

The aim of this study was to evaluate the effect of planting
density on mechanical properties of lumber recovered from
loblolly pine trees from a 27-year-old spacing trial and devel-
op prediction equations for MOE (modulus of elasticity) and
MOR (modulus of rupture) from stand, tree, and board
characteristics.

2 Materials and methods

2.1 Study and treatment plots

The Forest Modeling Research Cooperative established a set
of loblolly pine (Pinus taeda L.) spacing trials in the early
spring, 1983. At each of the four locations (two in the Pied-
mont of Virginia and one each in the Coastal Plain areas of

Virginia and North Carolina), three replicates containing 16
treatment plots were established. Only the two Coastal Plain
sites each with three plots of the square planting densities of
1.8 m×1.8 m (2,989 trees ha−1), 2.4 m×2.4 m (1,682 trees
ha−1), and 3.66 m×3.66 m (746 trees ha−1) were considered.
Additional information about the trial design and a compre-
hensive summary of research results over the life of the study
have been published (Amateis and Burkhart 2012). The quan-
tity, quality, and value of lumber off the green chain recovered
from sample trees at age 27 can be found in Amateis and
Burkhart (2013).

Age 27 data were collected on all live standing trees from
the 2,989, 1,682, and 746 trees ha−1 treatment plots. Standing
tree measurements relevant to these analyses included diam-
eter at breast height, total height, and product categorization as
either sawtimber or pulpwood. To be categorized as sawtim-
ber, a tree had to have a dbh of at least 22 cm with a 5 m butt
log free of damage and disease, and be straight such that a line
connecting the center of the stem at any two points above the
stump would not lie outside the tree bole (Amateis and
Burkhart 2013).

2.2 Sample tree selection

From each replicate at each location, up to six trees were
selected at random from the pool of qualifying sawtimber
quality trees on each of the treatment plots. For plots that did
not have six qualifying trees in a particular replicate, additional
qualifying trees from the same treatment plot in the other two
replicates at the same locationwere used. An attemptwasmade
to obtain 18 sample trees representing each treatment plot at
each of the two locations for a total of 108 sample trees. Due to
the lack of suitable sample trees from the 2,989 trees ha−1 plots,
however, the total number of sample trees representing that
treatment was 25. Thus a total of 97 sample trees was obtained.

Sample trees were felled and total height and height to live
crown were obtained by tape. The butt log was cut from the
tree and log length and large and small end diameters were
measured. Tags identifying each log by location, replication,
plot, and tree were attached to the ends of sample logs which
were then skidded off the plots and subsequently transported
to the sawmill.

2.3 Milling

A portable Wood-Mizer sawmill was used to recover lumber
from the sample logs. All logs weremilled employing the same
operator and sawn into structural 5-cm and non-structural 2.5-
cm boards according to mill-run specifications. The goal was
to maximize the lumber yield recovered from each log. Widths
were 10, 15, or 20 cm; lengths varied from 2.5 to 5 m.

Off the carriage, each piece of fresh lumber was identified
by location, replicate, treatment plot, tree (log), board position
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within the log (inside or outside) and assigned a board num-
ber. The length, width, and thickness dimensions were
recorded. All 5-cm-thick boards were visually graded green
as #1, #2, or #3 according to national grading rules for
structural light framing lumber (National Grading Rule Com-
mittee 2004) by a certified lumber grader. Following green
grading, all #1 and #2 boards were racked on drying sticks and
air-dried for several months reaching a stable moisture content
of about 20 % (Table 1).

Out of the 5-cm-thick boards green graded #1 and #2, one
inside board (containing pith) and one randomly selected
outside board per log were chosen for testing of mechanical
properties resulting in 184 test boards (ten trees had only one
suitable board for testing). The center 2 m of each board was
extracted. If the sample board had a width of 15 or 20 cm, one
edge was randomly selected and set down on the carriage. The
board was then ripped to a width of 10 cm. Thus, each sample
board was of dimension 5 cm thick×10 cm wide×2 m long.

The test boards were placed into an Ebac LD3000 dehu-
midifier kiln and dried to 10 % moisture content. Following
drying, each board was re-graded by the same certified grader.
Of the 184 #2 and better green graded boards, the drying
process resulted in 54 boards being down-graded to #3. All
test boards were then shipped to the Timber Products Inspec-
tion (TPI) lab. Upon receipt at TPI, the boards were stored at
ambient conditions of 24°C and 50 % relative humidity until
testing.

In the lab, each board was subjected to edge-wise bending in
accordance with ASTMD4761 testing protocols using a Tinius
Olsen machine. A static bending load was applied to each
board across a span of 173 cm (span to depth ratio of 17) at a
testing speed that applied stress at a rate of 0.02758 GPamin−1.
Deflection data were collected until the load reached 138 kN
whereupon each board was loaded until failure. Data collected
included strength (MOR), stiffness (MOE), and cause of fail-
ure. Following testing, a 2.5-cm section was cut from each
board as close to the point of failure as possible and used to
determine moisture content (MC) at time of testing and SG in
accordance with ASTM D4442 and D2395, respectively. In
addition, rings per 2.5-cm increment (RPI) and percent sum-
merwood (SW) were obtained. One board with a very low

MOE (2.8 GPa) was considered an outlier and removed from
the dataset, leaving a total sample size of 183. Table 2 summa-
rizes the data collected from the testing procedure. Figures 1
and 2 present the observed distributions of MOE and MOR,
respectively, for the three planting densities. Table 3 shows the
cumulative proportion of boards grouped by MOE class and
visual grade class for each treatment plot. Table 4 presents, in a
similar format, the MOR data. The fifth percentile values of
MOE for the 746, 1,682, and 2,989 trees ha−1 planting densities
were 3.962, 4.319, and 6.540 GPa, respectively. The fifth
percentile values of MOR for the 746, 1,682, and 2,989 trees
ha−1 planting densities were 0.0183, 0.0215, and 0.0274 GPa,
respectively.

2.4 Regressions

Regression methods were used to develop models for
predicting mechanical properties MOE and MOR of 5-cm
kiln-dried lumber. Stand, tree, and board variables available
for use as possible regressor variables included planting den-
sity (PD), dbh (D), tree height (H), crown length (CL), large
end log diameter (Dl), small end log diameter (Ds), and log
taper (Ds/Dl). Board variables MOE,MOR, SG, rings per 2.5-
cm increment (RPI) and percent summerwood (SW) were
averaged by tree resulting in a dataset of 94 observations
containing one stand variable (PD) and tree and mean board
variables for each tree (mean board variables for each tree
denoted by MOE, MOR , SG , RPI , SW ). Stand age and site
index were not useful here because all trees were of the same
age and site index varied little among treatment plots and also
between the two coastal plain locations. Table 5 presents
Pearson correlation coefficients between all variables and
MOE and MOR .

The first objective was to examine correlations between
MOE and MOR values and associated stand and tree vari-
ables readily available as inventory data to determine which
might be significant predictor variables in a regression equa-
tion:

MOE ¼ f PD;D;H;CL;Dl;Ds;
Ds

Dl

� �� �
þ ε ð1Þ

MOR ¼ f PD;D;H;CL;Dl;Ds;
Ds

Dl

� �
;MOE

� �
þ ε ð2Þ

where ε is an error term and other variables are as defined
previously. Applying methods similar to Lei et al. (2005) and
Liu et al. (2007), stepwise regression procedures were used to
relate the regressor variables of Eqs. (1) and (2) to MOE and
MOR . Variables significant at α=0.05 remained in the
regression.

A second set of more comprehensive equations that includ-
ed mean board characteristics for each tree SG , RPI , and SW

Table 1 Tally of 263 5-cm thick boards sawn from sample trees by
planting density, visual grade green, and board width

Densitya Visual grade green #2 and better Visual grade green #3

10 cm 15 cm 20 cm 10 cm 15 cm 20 cm

2,989 36 15 3 1

1,682 33 50 2 2 5

746 20 74 12 9 1

a Planting density (trees per hectare)

Planting density affects board stiffness 745



were also considered:

MOE ¼ f PD;D;H;CL;Dl;Ds;
Ds

Dl

� �
; SG;RPI;SW

� �
þ ε ð3Þ

MOR ¼ f PD;D;H;CL;Dl;Ds;
Ds

Dl

� �
;SG;RPI;SW;MOE

� �
þ εð4Þ

From the stepwise procedures a set of OLS regression
equations was identified for predicting MOE and MOR from

only stand and tree characteristics [Eqs. (1a) and (2a)] and
another set for predicting MOE and MOR from stand, tree,
and mean board characteristics utilizing all boards [Eqs. (3a)
and (4a)]:

MOE ¼ a0 þ a1 PDð Þ þ a2Hþ ε1 ð1aÞ

MOR ¼ b0 þ b1MOEþ ε2 ð2aÞ

Table 2 Summary of the wood characteristics for 183 kiln-dried sample boards by planting density and board grade sawn from butt logs from sample
trees from the loblolly pine spacing trials

Mean (minimum, maximum in parentheses)

Planting density
(trees ha−1)

Visual board
gradea

Number sample
boards

Rings
2.5 cm−1

Summer
wood (%)

SG (od vol−1 at 10 % MC) MOE (GPa) MOR (GPa)

2,989 2 40 6.1 (3, 9) 29.2 (12, 48) 0.47 (0.38, 0.60) 9.48 (6.41, 14.5) 0.049 (0.024, 0.085)

3 6 5.5 (5, 6) 28.0 (20, 38) 0.47 (0.45, 0.50) 7.08 (4.43, 8.40) 0.048 (0.041, 0.064)

All 46 6.0 (3, 9) 29.0 (12, 48) 0.47 (0.38, 0.60) 9.17 (4.43, 14.5) 0.049 (0.024, 0.085)

1, 682 2 47 5.1 (2, 8) 28.6 (14, 50) 0.46 (0.37, 0.59) 8.80 (4.84, 13.2) 0.047 (0.021, 0.091)

3 20 4.8 (3, 8) 28.1 (12, 43) 0.44 (0.39, 0.51) 5.69 (3.34, 7.94) 0.032 (0.014, 0.059)

All 67 5.0 (2, 8) 28.4 (12, 50) 0.46 (0.37, 0.59) 7.87 (3.34, 13.2) 0.042 (0.014, 0.091)

746 2 42 4.4 (2, 7) 26.0 (10, 50) 0.47 (0.40, 0.56) 8.38 (4.25, 15.4) 0.050 (0.020, 0.104)

3 28 3.9 (2, 8) 28.5 (15, 56) 0.43 (0.38, 0.53) 5.36 (3.22, 8.24) 0.031 (0.016, 0.057)

All 70 4.2 (2, 8) 27.0 (10, 56) 0.46 (0.38, 0.56) 7.17 (3.22, 15.4) 0.042 (0.016, 0.104)

a 2=#2 or better; 3=#3

Fig 1 Comparison of the
observed and predicted [using
Eq. (3b)] distributions of MOE
values and the fitted normal
distribution by planting density
for 183 test boards.
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MOE ¼ c0 þ c1PDþ c2Dþ c3RPIþ c4SGþ ε3 ð3aÞ

MOR ¼ d0 þ d1MOEþ d2SGþ ε4 ð4aÞ

where a0−d2 are parameter estimates and ε1−ε4 are error
terms for Eqs. (1a)–(4a), respectively. Thus, Eqs. (1a)–(4a)
have 97 observations.

To examine the question of how useful visual grade and
board position (inside or outside) might be for predicting
mechanical properties, Eqs. (1a)–(4a) were expanded by
allowing visual grade and position to enter the regressions as
a predictor variables at α=0.05:

MOE ¼ a0 þ a1 PDð Þ þ a2Hþ a3VG2þ ε1 ð1bÞ
MOR ¼ b0 þ b1MOEþ b2BPþ ε2 ð2bÞ
MOE ¼ c0 þ c1PDþ c2Dþ c3RPIþ c4SGþ c5VG2

þ ε3 ð3bÞ
MOR ¼ d0 þ d1MOEþ d2SGþ d3BPþ ε4 ð4bÞ

where MOE, MOR, SG, and RPI in Eqs. (1b)–(4b) are as
defined previously and VG2=1 if visual grade 2 or better; 0
otherwise, and BP=1 if board position is inner (contains pith);
0 otherwise.

3 Results

The OLS fit of Eq. (1a) produced a prediction equation for
MOE from regressors PD and H with R2 of 0.26. Residual

Fig 2 Comparison of the
observed and predicted [using
Eq. (4b)] distributions of MOR
values and the fitted normal
distribution by planting density
for 183 test boards

Table 3 Cumulative proportions for 183 kiln-dried sample boards by
planting density, visual grade, and MOE class

Planting density (trees ha−1)

2,989 1,682 746

MOE (GPa) #2a (40) #3b (6) #2a (47) #3b (20) #2a (42) #3b (28)

<4.999 0.167 0.021 0.200 0.071 0.357

5.0–5.999 0.106 0.600 0.190 0.750

6.0–6.999 0.10 0.500 0.191 0.800 0.429 0.964

7.0–7.999 0.35 0.340 1.000 0.571

8.0–8.999 0.475 1.000 0.511 0.595 1.000

9.0–9.999 0.625 0.723 0.714

10.0–10.999 0.725 0.894 0.786

11.0–11.999 0.875 0.915 0.833

12.0–12.999 0.925 0.979 0.952

>13.0 1.000 1.000 1.000

a Visual grade #2 and better (total number of sample boards in
parentheses)
b Visual grade #3 (total number of sample boards in parentheses)
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plots across PD, H, and other tree variables did not show
trends that would indicate bias. The stepwise procedure on
Eq. (2) resulted in prediction Eq. (2a) which uses only MOE
as a significant predictor of MOR . The R2 for Eq. (2a) was
0.57 which reflects only the high correlation between MOE
and MOR .

Equation (3a) included mean board characteristics in com-
bination with stand and tree variables as predictors of MOE
and produced a significant regression of MOE from PD, D,
RPI , and SG with a R2 of 0.61. A significant regression for
predicting MOR fromMOE and SG [Eq. (4a)] was obtained
with a R2 of 0.66.

Since previous work has indicated that a curvilinear rela-
tionship may exist between MOE and certain board charac-
teristics for some species (Zhang 1994; Zhang 1997), an effort
was made to improve Eqs. (1a)–(4a) by expressing the regres-
sors as power functions and structuring the equations as
nonlinear regressions, then refitting using nonlinear regression
methods. The nonlinear model fits were not an improvement
over the linear OLS fits.

Because cross-equation correlations exist among variables
used to predict MOE and MOR for the system of Eqs. (1a)

and (2a), and the more comprehensive system (3a) and (4a),
some gain in modeling efficiency may be achieved by using
joint-generalized least squares, also termed seemingly
unrelated regression (SUR). For plantation-grown black
spruce, Lei et al. (2005) found that using SUR produced a
reduction in standard errors of the parameter estimates ranging
from 1–15 % over the OLS estimates. Therefore, the two
systems of equations for loblolly pine were fitted using SUR
methods and results compared to the OLS fits. Only a very
small gain in efficiency as expressed by a reduction in the
standard error of the parameter estimates was achieved using
SUR on these data. For the system of Eqs. (1a) and (2a), the
standard error of each of the five parameters was reduced by
less than 0.4 %. For the system of Eqs. (3a) and (4a), SUR
produced a reduction of less than 0.1 % in the standard errors
of only three of the eight parameters.

Predicting MOE at the board level and utilizing the visual
grade as a regressor produced prediction Eqs. (1b) and (3b)
with R2 values of 0.40 and 0.70, respectively. The variable
VG2 was highly significant for predicting MOE in Eqs. (1b)
and (3b), but not significant for predicting MOR in (2b) and
(4b). For predicting MOR at the board level, board position

Table 5 Pearson correlation coefficients between MOE , MOR , and potential stand, tree, and mean board regressor variables for 94 sample trees

Stand Tree Board

Variablea PD D H H/D CL Ds/Dl RPI SG SW MOE MOR

MOE
0.42 −0.15 0.05 0.24 −0.02 −0.02 0.59 0.68 0.40 1.00 0.77

MOR
0.23 −0.08 0.02 0.13 0.09 −0.09 0.50 0.74 0.37 0.77 1.00

aMOE =mean MOE (in gigapascal) per tree, MOR =mean MOR (in gigapascal) per tree, PD=planting density (trees per hectare), D=tree dbh (in
meter), H=tree height (in meter), H/D=height/dbh ratio, CL=crown length (in meter), Ds/Dl=ratio of log small end diameter to large end diameter,
RPI =mean rings per 2.5-cm increment, SG =mean specific gravity, SW =mean percent summerwood.

Table 4 Cumulative proportions
for 183 kiln-dried sample boards
by planting density, visual grade,
and MOR class

a Visual grade dry #2 and better
(total number of sample boards in
parentheses)
b Visual grade dry #3 (total number
of sample boards in parentheses)

Planting density (trees ha−1)

2,969 1,682 746

MOR (GPa) #2a (40) #3b (6) #2a (47) #3b (20) #2a (42) #3b (28)

<0.020 0.100 0.024 0.143

0.020–0.0299 0.100 0.170 0.450 0.119 0.536

0.030–0.0399 0.350 0.426 0.750 0.381 0.750

0.040–0.0499 0.550 0.667 0.617 0.950 0.548 1.000

0.050–0.0599 0.725 0.833 0.766 1.000 0.714

0.060–0.0699 0.850 1.000 0.872 0.810

0.070–0.0799 0.950 0.979 0.952

0.080–0.0899 1.000 0.976

0.090–0.0999 1.000

>0.100 1.000
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was a significant regressor. R2 values of 0.61 and 0.65 were
obtained for prediction Eqs. (2b) and (4b), respectively. Ap-
plying SUR methods to estimate parameters for these board-
level models produced only minimal reduction of the standard
errors of the parameter estimates. Table 6 presents final pa-
rameter estimates for Eqs. (1a)–(4b) using SUR methods.
Figures 1 and 2 present predicted distributions for MOE and
MOR using Eqs. (3b) and (4b), respectively.

4 Discussion

Overall, the results of this study are similar to previous work
relating mechanical properties of lumber obtained from static
bending tests to stand, tree, and board characteristics. For
stands of black spruce, Lei et al. (2005) and Liu et al. (2007)
found stand density to be significantly and positively correlat-
ed with MOE as was found in this loblolly pine plantation
study. Similarly, Zhang et al. (2006) working with jack pine
and Moore et al. (2009) with Sitka spruce found similar
significant positive correlations between stand density and
lumber stiffness following early thinnings. Apparently, stand
density is a reasonable surrogate for branchiness which affects
MOE through the size and frequency of knots. The prediction
equation in this loblolly pine study based only on planting
density and tree height has relatively low precision (R2=0.26)
compared with the equations fitted for 55- to 100-year-old
black spruce trees by Lei et al. (2005) and Liu et al. (2007)
who reported R2 values in the 0.55–0.65 range for mean
MOE. The 0.26 R2 value for the loblolly pine data is com-
paratively low which reflects the inherent variability of the
MOE and MOR data in the sample (Tables 3 and 4) and may
also be related to the sample size and tree age.

Mechanical properties were found to be more highly corre-
lated to board characteristics than tree and stand characteristics.
Equations including mean board characteristics RPI and SG
increasedmodel precision considerably for predictingMOE at
the tree level over equations based on stand and tree charac-
teristics alone. As expected, MOR was strongly correlated
with MOE .

Testing full-sized dimension lumber as in this study
resulted in high variability of the mechanical properties. Biblis
et al. (2004) noted that the strong correlation of SG of small
clear test specimens to mechanical properties weakens when
applied to full-sized dimension lumber. It is likely the effects
of knots, slope of grain, and other abnormalities found in
dimension lumber increased the variability of MOE and
MOR within the sample and hence reduced the precision of
resultant prediction equations. Including the visual grade cat-
egory in the regression equations increased the R2 for the
mean MOE equation from 0.26 [Eq. (1a)] to 0.40 [Eq. (1b)]
and for the individual board MOE equation from 0.61
[Eq. (3a)] to 0.70 [Eq. (3b)] (Table 6). Clearly, visual grade
is a useful indicator of the effect of knot size, frequency, and
position on MOE.

The MOE values of the sample boards (Table 3) show
considerable variability for the #2 and better boards for all
planting densities. The mean MOE declines with decreasing
planting density while the variability increases, again
suggesting that planting density is a surrogate for frequency
and size of knots. Thus, lower planting densities, while pro-
ducing more lumber (Amateis and Burkhart 2012), may pro-
duce proportionally fewer boards of greater MOE than higher
planting densities. For visual grade #3, both the mean and
variation of MOE appear to be less sensitive to changes in
planting density than grade #2 or better. These trends can

Table 6 Equations (1a)–(4b) with parameter estimates and fit statistics for predicting mechanical properties from planting density, tree, and board
characteristics using SUR methods

Equation* MSE R2

Tree-level prediction equations

MOE ¼ −4:9296þ 0:00135 PDð Þ þ 0:1475H (1a) 3.19 0.26

MOR ¼ 0:007944þ 0:004558MOE (2a) 0.000076 0.57

MOE ¼ −10:8372þ 0:000695PDþ 10:337Dþ 0:44825RPIþ 27:314SG (3a) 1.725 0.61

MOR ¼ −0:04688þ 0:00307MOEþ 0:1449SG (4a) 0.000061 0.66

Board-level prediction equations

MOE=−6.099+0.000914(PD)+0.14478H+2.95587VG2 (1b) 3.941 0.40

MOR=0.00988+0.00467MOE−0.00516BP (2b) 0.000118 0.61

MOE=−11.7733+0.000435(PD)+9.2976D+0.3867RPI+28.370SG+2.0709VG2 (3b) 1.9854 0.70

MOR=−0.03401+0.00356MOE+0.1142SG−0.00475BP (4b) 0.000108 0.65

*MOE =mean MOE (in gigapascal) of boards per tree, MOR =mean MOR (in gigapascal) of boards per tree, MOE=modulus of elasticity (in
gigapascal), MOR=modulus of rupture (in gigapascal), PD=planting density (trees per hectare), H=total height (in meter), D=diameter breast height (in
meter), RPI =mean rings per 2.5-cm increment, SG =mean specific gravity, RPI=rings per 2.54-cm increment, SG=specific gravity, VG2=1 if visual
grade is #2 or better; 0 otherwise, BP=1 if board position is inner (containing pith); 0 otherwise.
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impact end use and hence economic value of recovered lum-
ber when particular design values are required.

The equations presented here can be used for a variety of
purposes to assist practitioners with assessing the value of
loblolly pine plantations. For alternative planting densities,
MOE for lumber obtained from standing trees that meet
sawtimber specifications can be estimated using Eq. (1a)
and, when visual grades of sample lumber are available,
Eq. (1b). Distributions of MOE by visual grade across height
and/or diameter class can be useful for estimating mechanical
properties of the product mix and ultimately value following
harvest. Stand and stock table output from growth and yield
models can be augmented with estimates of MOE and MOR
for particular stand and tree characteristics. Where machine
stress rating of visually graded boards for specific applications
is not available, the equations presented here can be used to
predict MOE and MOR.

The data used in this study are limited to planting densities
ranging from 2,989 to 746 trees ha−1. They should be indic-
ative of stands established with first generation seed orchard
seedlings on coastal plain sites similar to those included in the
spacing trial. Other than early competition control, no inter-
mediate treatments were imposed prior to harvest at age
27 years. Changes in any of these factors can influence the
mechanical properties of lumber harvested from loblolly pine
plantations. Still, the results of this study suggest that deci-
sions concerning planting density made at time of stand es-
tablishment will affect the mechanical properties of lumber
obtained following harvest.
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