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Abstract
&Context Tree height prediction is an important issue in forest
management since tree heights are usually measured only in a
sample of trees. Although numerous model approaches have
been used for this purpose, no agreement on which one is
more appropriate has been achieved.

& Aims To analyse the random effects of basic and generalised
height–diameter (h–d ) models fitted to multi-species uneven-
aged forest stands, and to establish their ability to explain
differences between ecoregions, plots and species.
& Methods Height and diameter measurements for 29,084
trees from 187 sample plots located in the state of
Durango (Mexico) were used. Basic and generalised h–d
models were fitted in a mixed-models framework. The
variability between ecoregions, plots and species was con-
sidered in the random effects definition. Model calibration
for different height sampling designs and sampling sizes
was also analysed.
& Results Random components performed well in explaining
the differences in the h–d relationship between the
different plots and species; however, no significant var-
iance for the random effects was found for the different
ecoregions. A calibrated basic h–d model produced
similar results to a fixed-effects generalised h–d model
when a sufficiently large number of trees was used in
the calibration process.
& Conclusion From a practical point of view, if no calibration
is carried out, different models should be used for the different
species, so that at least the variation among species is captured.

Keywords Ecoregion .Generalisedheight–diametermodels .

Mixedmodels . Calibration

1 Introduction

The forests of Durango (Mexico) cover an area of 4.9 mil-
lion hectares, and timber resources account for about one
quarter, in terms of volume, of the national forest resources
in Mexico. Durango State is the top producer of pine
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growing stock (27.7 %), coniferous roundwood (35.3 %)
and other roundwood (37.6 %) nationwide (SRNyMA
2006). The pine-oak forests of Durango have been ranked
as the most important forests in Mexico because of their
extent and economic value. These forests are of particular
interest, not only because they represent a unique ecosys-
tem, but also because they are owned and managed by local
communities, known as Ejidos (Thoms and Betters 1998).

Most of the forests in Durango are irregular, and coni-
fer species occur as mixtures with hardwood species. This
irregularity refers to the spatial arrangement of trees (ver-
tical and horizontal irregularity) and the variation in the
age structure of trees and stands. This structure is the
result of the management history, which has depended
on land ownership, as well as the economic and social
changes that have taken place in the state, and also on
natural conditions (Wehenkel et al. 2011).

The management of such mixed uneven-aged forests is
more complex than the management of even-aged ones, and
one of the most pressing research problems is the development
of growth models to define sustainable harvests. However,
few studies have attempted to estimate tree growth and stand
development in Durango (e.g. Corral-Rivas et al. 2004;
Vargas-Larreta et al. 2009).

In this sense, height–diameter (h–d ) models (i.e.
models relating individual tree height with individual tree
diameter) are very useful for stand growth dynamics,
yield, site index and dominant height estimation (Curtis
1967), stand structural analysis (Morrison et al. 1992),
damage appraisal and stand stability (Parresol 1992), and
product recovery and carbon budgeting models (Newton
and Amponsah 2007).

In general, most height–diameter (h–d ) models have
been applied to pure even-aged stands or plantations
(e.g. Soares and Tomé 2002; López Sánchez et al.
2003). Despite the homogeneous characteristics of this
type of forest, a single h–d model is not usually adequate
for all possible situations within a stand because the
height curve does not remain constant and increases in
steepness with age. Height curves for good quality sites
have steeper slopes than those for poor quality sites, and
for a particular height, trees growing in high density
stands will have smaller diameters than those growing in
less dense stands (Curtis 1967; Bailey and Brooks 1994;
Lappi 1997; Zhang et al. 1997). This is even more evident
in mixed and uneven-aged stands, in which different spe-
cies, ages, sizes, crown types and levels of shade tolerance
coexist (Vargas-Larreta et al. 2009).

To account for this level of variance, basic h–d relation-
ships can be improved by taking into account stand variables
that introduce the dynamics of each stand into the model

(Curtis 1967). Such models, called generalised h–d models,
have been shown to be applicable to both even-aged (e.g.
Soares and Tomé 2002; Castedo-Dorado et al. 2006) and
uneven-aged stands (e.g. Sharma and Zhang 2004; Sharma
and Parton 2007), and even to a mixture of both types of
stands (e.g. Crecente-Campo et al. 2010). These models use
diameter and stand-specific variables as regressors, account-
ing for the differences in the h–d relationship both within
stands and over time (Curtis 1967; Soares and Tomé 2002;
Sharma and Zhang 2004).

The hierarchical structure of the h–d data (i.e. trees
within plots and plots within stands) usually results in a
lack of independence among measurements, since observa-
tions from the same sampling unit are highly correlated
(West et al. 1984). Development of the mixed-modelling
methodology provided a statistical method capable of ex-
plicitly modelling this nested stochastic structure (Lappi
1997; Calama and Montero 2004; Castedo-Dorado et al.
2006). Mixed models are composed of a fixed functional
part, common to the population, and random components
acting at each sampling level. These models allow descrip-
tion of the variability in given phenomena among different
sampling levels after defining a common fixed functional
structure and a covariance structure for the random effects
and residual terms (Lindstrom and Bates 1990; Calama and
Montero 2005). Detailed information on nonlinear mixed-
effects modelling for h–d relationships are provided by
Calama and Montero (2004). General information and dis-
cussion on non-linear mixed models in the forestry context
can be found in Hall and Bailey (2001). Finally, the mul-
tilevel case of mixed models has been discussed by several
authors in a general context (e.g. Lindstrom and Bates
1990; Longford 1993; Goldstein 1995).

Mixed models may also improve the predictions obtain-
ed if it is possible to estimate the value of the random
effects for an individual that has not been sampled. This
approach is known as localisation or calibration and can
be applied if supplementary observations of the dependent
variable (total tree height in this case) are available (Lappi
1991; Jayaraman and Lappi 2001; Lynch et al. 2005;
Calama and Montero 2005).

The h–d relationship is an important component of growth
models. This model plus a compatible volume system (com-
posed of a taper equation and a disaggregation equation)
allows for stand volume classification by merchantable sizes,
which are important tools for sustainable management of the
species in the study area.

Generalised h–d models for uneven-aged stands were
developed in a previous study for the region of El Salto
(Durango, Mexico) (Vargas-Larreta et al. 2009). However,
this previous study was very local, and results cannot be
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extrapolated to the state of Durango. Moreover, the au-
thors did not consider the different hierarchical levels
(ecoregions, plots and species) in the random effects def-
inition, and comparisons with non-generalised models were
not made.

The objective of the present study was to fit basic and
generalised h–d models in a mixed-models framework and
to analyse the random effects estimates of such models, in
order to establish their ability to explain the differences in
the h–d relationships between ecoregions, plots and spe-
cies observed in mixed uneven-aged stands in Durango,
México. Models for practical use are planned for devel-
opment on the basis of these analyses; therefore, the
impact on predictability of the model of having a subsam-
ple of complementary trees where both variables (diameter
and height) are measured was also analysed for different
height sampling designs and sampling sizes within each
sampling level.

2 Materials and methods

2.1 Study area and data description

The forests of Durango State are located in the Sierra
Madre Occidental, at altitudes ranging between 363 and
3,190 m above sea level. The climate in the area is tem-
perate to tropical, with most rainfall occurring in the sum-
mer, annual average precipitation of 443–1,452 mm and
annual average temperature of 8.2–26.2 °C (Silva-Flores et
al., submitted). The forests are mainly managed by selec-
tive removals, with only a small number of shelterwood
harvests (3 % of the productive forest area). Clearfellings,
which require special management expertise, are rarely
applied (Wehenkel et al. 2011).

The data used in the study were obtained from a net-
work of permanent sample plots used to monitor the
growth and yield of Durango’s forests. The plots used in
this study were established between 2007 and 2010 and
cover the main forest types and the current diameter distri-
butions of commercial forests in Durango. The plots are
50×50 m in size and are distributed by systematic sam-
pling (with some exceptions), with a variable grid ranging
from 3 to 5 km, depending on the size of the Ejidos . The
sampling plots are planned for re-measurement at 5-year
intervals. Among other variables, tag number, species code,
breast height diameter (d , centimetres, 1.3 m above ground
level), total tree height (h , metres), height to the live crown
(metres), azimuth (degrees Centigrade) and radius (metres)
from the centre of the plot of all trees equal or larger than
7.5 cm in diameter were recorded. Currently, the database

includes measurement data for 29,084 trees from 187 sample
plots.

These sample plots were located between latitudes 23°
10′ N and 25° 20′ N, and between longitudes 104° 45′ W
and 106° 40′ W (Fig. 1). They were located at altitudes
ranging from 2,006 to 2,939 m above sea level. The soils
were very variable, with sand (particles over 2 mm) per-
centages varying from 18 to 85 % (average value of 52 %),
silt (particles between 0.2 and 2 mm) percentages varying
from 1 to 87 % (average value of 25 %) and clay (particles
below 2 mm) percentages varying from 11 to 42 % (aver-
age value of 23 %). The number of stems per plot varied
from 16 to 498 (average value of 156), and the number of
species per plot varied from 2 to 12 (average value of 7).

Four different ecoregions, designated ecoregions I to IV,
were included in the dataset: I (El Salto), II (San Dimas), III
(Santiago y Topia) and IV (Tepehuanes) (Fig. 1). These
ecoregions were defined on the basis of regional organisations
previously designated by the National Forest Commission
(CONAFOR), as Regional Forest Management Units
(Unidades de Manejo Forestal Regional (UMAFORs)),
which tend to focus on environmental services as a public
policy goal. UMAFORs are defined as “representing” 30% of
the forest owners within a particular region, usually delineated
along ecological zones, and thus include cross-community
interdependence in a biological sense (Camille and García-
López 2008).

Sixteen different species or groups of species (here-
after simply referred as species) were distinguished for
posterior analysis as they presented similar growth
patterns:

1: Pinus arizonica
2: Pinus ayacahuite
3: Pinus cooperi
4: Pinus durangensis
5: Pinus engelmannii
6: Pinus herrerae
7: Pinus lumholtzii
8: Pinus teocote
9: other pines: Pinus chihuahuana , Pinus douglasiana ,
Pinus michoacana , Pinus oocarpa , Pinus tenuifolia
10: Quercus sideroxyla
11: other Quercus : Quercus candicans , Quercus
coccolobifolia , Quercus conzattii , Quercus cordifolia ,
Quercus crassifolia , Quercus durifolia , Quercus fulva ,
Quercus grisea , Quercus microphylla , Quercus
obtusata , Quercus resinosa , Quercus rugosa , Quercus
rysophylla , Quercus urbanii
12: Abies durangensis , Picea chihuahuana ,
Pseudotsuga menziesii
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13: Cupresus lindleyi
14: Juniperus depeana
15: Alnus acuminata
16: Arbutus xalapensis

The following stand variables were calculated from the
tree data recorded in each plot: stems per hectare (N , trees
per hectare), stand basal area (G , square metres per hect-
are), quadratic mean diameter (dg , centimetres), dominant
height (hdom , metres) and dominant diameter (ddom ,
centimetres). The last two variables were calculated from
the proportion of the 100 trees with the largest diameter
per hectare. Some of the trees with no species code, and
those trees with broken or dead tops were then excluded
from further analysis. Data from trees with broken or dead
tops were not used to calculate hdom .

The scatter plots of total tree height against diameter
at breast height for each species were visually examined
to detect possible anomalies in the data. Extreme data
points (i.e. outside the overall picture of the h–d pairs)
were not observed. Some unusual data points (i.e. trees
with quite large height and small diameters) were ob-
served, but since we are attempting to develop a model
for uneven-aged mixed forest (with a high variability),
the unusual data points may be very valuable signals on
h–d relationships rather than outliers. We therefore decid-
ed to keep these points in model fitting and to analyse them
via the residuals.

The database (Table 1) was finally randomly divided into a
fitting part (80 % of the plots) and an evaluation part (20 % of
the plots).

2.2 Models analysed

In a first step, 27 basic h–d models (h as a function of only d )
fromHuang et al. (2000) were fitted to the dataset. In a second
step, a total of 30 generalised h–d models selected from
previous studies (López Sánchez et al. 2003; Sharma and
Zhang 2004; Castedo-Dorado et al. 2006; Sharma and
Parton 2007) were fitted to the dataset. Some modifications
to the models were also tested (i.e. dg and mean height were
replaced by ddom and hdom , respectively). Models that re-
quire age or site index were not used or were modified to
exclude these variables, as the stands were uneven-aged.

2.3 Model fitting and comparison

To make an initial selection from the above-mentioned models,
they were fitted for the different species, by the ordinary
nonlinear least squares (ONLS) method with the MODEL
procedure of SAS/ETS® (SAS Institute Inc. 2008). Statistical
and graphical analyses were used to compare the performance of
the models. Four statistical criteria obtained from the residuals
were examined: the root mean square error (RMSE), the model
efficiency (EF) (similar to the coefficient of determination for

Fig. 1 Location, in the state of Durango (Mexico), of the research plots installed in the Ejidos in the four ecoregions analysed in this study: I (El Salto),
II (San Dimas), III (Santiago y Topia) and IV (Tepehuanes)
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linear regression), the mean bias (E) and Akaike’s informa-
tion criterion (AIC) (Akaike 1974), summarised as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl¼n

l¼1
yl −byl� �2

n−p

vuut ð1Þ

EF ¼ 1 −

Xl¼n

l¼1
yl −byl� �2

Xl¼n

l¼1
yl − y
� �2 ð2Þ

E ¼
Xl¼n

l¼1
yl −byl� �
n

ð3Þ

AIC ¼ nln
Xl¼n

l¼1
yl −byl� �2.

n

� �
þ 2 pþ 1ð Þ ð4Þ

where y l, byl and y are the measured, estimated and average
values of the dependent variable for the l th tree, respectively;
n is the total number of observations used; p is the number of
model parameters; and ln is the natural logarithm. Subscript l

Table 1 Summary statistics for
the fitting and the evaluation
datasets

Species numbers are as described
in the text

d (centimetres) diameter at breast
height (1.3 m above ground lev-
el), h (metres) total tree height, N
(trees per hectare) number of trees
per hectare; G (square metres per
hectare) stand basal area, dg
(centimetres) quadratic mean di-
ameter, hdom (metres) dominant
height, ddom (metres) dominant
diameter

Variable Sp. Fitting dataset Evaluation dataset

No. obs. Mean Min. Max. SD No. obs. Mean Min. Max. SD

d 1 421 20.5 7.5 52.0 10.5 39 24.6 8.0 40.4 8.6

2 992 16.7 6.5 57.0 8.2 189 15.7 6.2 91.3 10.4

3 2,382 18.1 5.7 80.0 9.6 569 19.0 5.2 71.0 11.0

4 6,143 17.8 6.6 99.5 10.4 1,919 16.8 6.6 62.0 9.5

5 271 20.9 7.4 65.5 11.1 94 20.2 7.3 55.5 10.4

6 601 22.3 7.5 78.5 13.1 132 26.6 8.0 67.5 12.3

7 628 16.9 6.7 47.5 7.7 81 16.8 8.0 46.5 6.8

8 1,842 17.8 6.9 68.0 9.7 866 14.8 7.0 55.4 7.7

9 1,109 20.9 6.5 80.0 10.9 292 18.2 7.3 79.3 10.9

10 3,576 17.8 6.0 120.0 11.9 800 18.4 7.1 90.7 11.2

11 1,784 18.5 7.0 86.0 11.1 586 17.2 7.5 81.3 10.9

12 289 25.2 5.0 103.1 18.5 55 22.1 5.9 57.0 14.2

13 322 23.6 5.0 90.0 19.5 15 16.4 6.0 89.0 20.0

14 1,000 14.3 5.7 104.0 7.7 255 14.8 5.0 62.0 8.5

15 458 14.0 6.8 87.0 8.1 123 16.8 7.0 52.8 10.1

16 921 14.9 6.7 65.8 7.7 330 14.9 7.0 70.0 9.1

h 1 421 12.7 2.8 29.3 5.6 39 17.4 4.8 25.9 6.3

2 992 11.6 2.3 35.7 4.2 189 10.5 4.0 38.1 4.9

3 2,382 12.6 2.5 38.8 5.5 569 12.5 3.1 36.5 5.9

4 6,143 13.5 2.9 37.9 5.6 1,919 12.5 2.5 32.3 5.3

5 271 14.1 2.9 31.4 5.8 94 13.4 2.9 26.5 5.0

6 601 15.8 4.6 33.8 6.2 132 17.9 5.2 35.3 5.6

7 628 10.1 1.6 27.0 4.8 81 10.0 3.2 19.8 3.5

8 1,842 11.5 2.7 35.0 5.1 866 9.6 2.7 31.7 3.7

9 1,109 13.9 2.7 45.3 5.9 292 11.6 2.7 25.1 4.9

10 3,576 9.8 1.8 32.9 4.5 800 9.3 2.4 30.8 4.3

11 1,784 9.1 1.9 40.1 4.2 586 9.1 2.1 28.8 4.2

12 289 17.6 2.6 46.2 9.4 55 12.7 3.9 30.6 6.7

13 322 13.2 2.3 34.4 8.1 15 7.2 3.7 22.7 4.6

14 1,000 7.3 2.6 26.0 3.1 255 7.0 2.0 19.6 3.2

15 458 7.5 2.4 29.8 3.3 123 7.3 2.1 24.3 3.8

16 921 6.4 1.9 21.9 2.5 330 5.9 2.2 18.2 2.4

N 149 611 64 1992 312 38 668 196 1,616 310

G 149 21.1 3.3 58.4 9.3 38 20.9 7.4 36.3 7.2

dg 149 21.9 11.8 50.7 5.4 38 20.9 12.4 35.8 5.1

hdom 149 17.6 5.4 32.3 4.8 38 16.9 9.3 26.8 4.5

ddom 149 36.2 17.5 67.2 7.6 38 35.3 24.6 55.4 7.2
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was used to refer to tree for concordance with the mixed-
models notation used later.

Model validation was not carried out because an indepen-
dent dataset was not available, and other validation methods
seldom provide any additional information compared with the
fitting statistics (Kozak and Kozak 2003). However, the eval-
uation data (Table 1) were used in model calibration in order
to provide informative results about the calibration process
(see details later).

Once the best basic and generalised h–d models were
selected, a nonlinear mixed-effects modelling framework
was used (e.g. Lappi 1997; Calama and Montero 2004;
Castedo-Dorado et al. 2006), because there was high variabil-
ity between ecoregions, plots and species. Basically, the pa-
rameter vector of the nonlinear model can be defined
(Pinheiro and Bates 2000) as:

Φijk ¼ Aijkλþ Bijkbijk ð5Þ

where λ is the p ×1 vector of fixed population parameters
(where p is the number of fixed parameters in the model), b ijk

is the q ×1 vector of random effects associated with the i th
ecoregion, the j th plot and the k th species (where q is the
number of random effects in the model), and A ijk and B ijk are
design matrices of size r ×p and r ×q (where r is the total
number of parameters in the model) for the fixed parameters
and random effects specific to each ecoregion, plot and spe-
cies, respectively.

The SAS macro NLINMIX (Littell et al. 2006) was used to
fit the models. This macro implements a two-step process for
estimating the parameters. First, it performs a standard
nonlinear regression by least squares, and in a second step it
performs successive calls to the procedure of estimating pa-
rameters of linear mixedmodels on a linearised approximation
function until convergence is achieved. The macro can use
two methods of expansion: expansion around zero or the best
linear unbiased predictor (BLUP ), which is the expected value
for the random effects (Beal and Sheiner 1982), or expansion
around the empirical best linear unbiased predictor (EBLUP)
of the random effects (Littell et al. 2006). Both approaches
produce reliable estimates (Davidian and Giltinan 1993;
Pinheiro and Bates 2000). The EBLUP method sometimes
generates slightly better results but requires more computation
time, is less stable, and is very sensitive to model specification
(Hartford and Davidian 2000). Moreover, Vonesh (1996)
showed that consistent estimates with the EBLUP expansion
method could only be obtained if the number of individuals
and observations per individual are infinite. For our data, most
of the models with various combinations of random effects
failed to converge when the EBLUP expansion method was
used. Therefore, all results presented in this study are based on
the expansion around zero method.

Different combinations of parameters were assumed to be
mixed (composed of a fixed part, and a random part, specific
to each ecoregion, plot and species). A variance components
structure was selected for the covariance structure of the
random effects, since convergence was easily achieved and
better fitting statistics were obtained than with other random
effects variance structures. This matrix contains the variance
components in a diagonal structure. The significance of the
variance of the random effects was tested using theCOVTEST
option in the NLINMIX macro, which displays asymptotic
standard errors and Wald tests for covariance parameters
(SAS Institute Inc. 2009).

Finally, heterocedasticity was analysed via the resid-
uals. If necessary, a special structure for the within-plot
variance–covariance matrix could be used to include
weighting factors to balance error variance (Calama and
Montero 2004).

2.4 Model calibration

An advantage of mixed-effects models is that, if a subsample
ofm tree heights is available, such data can be used to predict
the random effects vector b ijk (i.e. to calibrate the model), with
the following expression (Vonesh and Chinchilli 1997):

bbijk ≈ bDbZT

ijk
bRijk þ bZijk bDbZT

ijk

� �−1beijkl ð6Þ

where bD is a q ×q variance–covariance matrix for the among-
ecoregion, among-plot and among-species variability, com-
mon to all plots and estimated in the general fitting of the
model; bRijk is the m ×m variance–covariance matrix for
within-plot variability; beijkl is the residual vector m ×1, the
components of which are given by the difference between the
observed height of each tree included in the subsample, and
the value predicted by the model including only fixed effects
and bZijk is the m ×q matrix of partial derivatives with respect
to the random effects evaluated at bbijk .

For the best basic and generalised h -d models, the calibrat-
ed response was evaluated using the evaluation dataset for
different height sampling designs and sampling sizes within
each ecoregion, plot and species. This dataset was used to
show the calibrated results for plots that were not included in
the fitting process. The alternatives selected according to
previous studies (Calama and Montero 2004; Castedo-
Dorado et al. 2006; Crecente-Campo et al. 2010) were:

1. Total height of one to four randomly selected trees per
species and plot.

2. Total height of the one to four largest trees per species and
plot.

3. Total height of the one to four smallest trees per species
and plot.
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4. Total height of the one to four medium-size trees per
species and plot.

5. Total height of three trees per species and plot: the
smallest, the largest and the medium-size trees.

Some combinations of plot and species with less than four
trees were, therefore, eliminated, reducing the evaluation
dataset from 6,345 to 6,225 trees in 38 plots, and resulting in
a modal value of five species per plot.

The five calibration alternatives were evaluated in terms of
the previously defined statistics (RMSE, EF and E ) and
compared with the estimates obtained by ONLS in the indi-
vidual fit of each equation to each of the ecoregion, plot and
species groups. For the randomly selected trees, mean values
of the statistics after 100 simulations were obtained, as this
was considered a large enough value to obtain representative
results and was in accordance with previous studies (e.g.
Castedo-Dorado et al. 2006; Crecente-Campo et al. 2010).

Finally, the selected models were also fitted independently
for each species, and random effects specific to each
ecoregion and plot were added, to determine whether the
consideration of species as a fixed effect led to a significant
improvement in the accuracy of the predictions.

3 Results

3.1 ONLS fits

Statistics for the fitting of the basic h–d equations (not shown)
showed that the models of Bertalanffy–Richards (Bertalanffy
1949; Richards 1959), Weibull (Yang et al. 1978) and Schnute
(Schnute 1981) were the most accurate, with very similar
values for the fitting statistics. When the models were fitted
to each species, the model of Schnute (1981) (Eq. 7) produced
slightly better results (lower average AIC and RMSE values)
and was, therefore, selected as a basic h–d model for posterior
analysis:

hl ¼ 1:3a0 þ a1
a0−1:3a0ð Þ 1−exp −a2⋅dlð Þ

1−exp −a2⋅100ð Þ
� � 1

a0 ð7Þ

where hl and dl are, respectively, the total height and diameter
at breast height of the l th tree and ai are the parameters to be
estimated.

From the total number of generalised h–d models
analysed, a modification of the Bertalanffy–Richards
(Bertalanffy 1949; Richards 1959) model (Eq. 8) showed the
best results, as inferred from the fit statistics (Table 2).
The same equation has previously been used by Sharma and
Parton (2007) for several species in northern Ontario (Canada)
and by Vargas-Larreta et al. (2009) for several species in El
Salto (Durango, Mexico).

hl ¼ 1:3þ a0 ⋅ddomj
a1 1−exp −a2⋅

N j

Gj

� �a3

dl

� �� �� �a4

ð8Þ

where subscript j refers to plot and subscript l refers to tree;
the other variables are as previously defined.

3.2 Basic h–d mixed model

Independent fitting of Eq. 7 to each ecoregion, plot and
species, by the ONLS method, showed that most of the
variability in parameters was derived from the differences
between plots and, secondly, species. The a 0 parameter
showed the higher coefficient of variation for the different
plots, while the a2 parameter showed the higher coefficient of
variation among species. Variability among ecoregions was
small, as inferred from the differences between the values of
the parameters for the different ecoregions. Finally, all possi-
ble combinations of random effects for each ecoregion, plot
and species were tried. However, no significant variance for
the ecoregion-specific random effects was found when fitting
the model. The best results in the fitting of Eq. 7 as a mixed
model were obtained when all the parameters were expanded
to include plot-specific random effects, and some parameters
were expanded to include species-specific random effects,
resulting in the following mixed model (once parameters
were scaled so that they were all around the same order of
magnitude, to avoid instabilities in the fitting algorithm; Littell
et al. 2006):

hjkl ¼ 1:3a0þv0 jþw0k þ 20 a1 þ v1 j þ w1k

� �	 
a0þv0 jþw0k−1:3a0þv0 jþw0k

� � 1−exp − a2þv2 j
50 ⋅djkl

� �
1−exp − a2þv2 j

50 ⋅100
� �

 ! 1
a0þv0 jþw0k

ð9Þ

where subscript j refers to plot, subscript k refers to species
and subscript l refers to tree; v ij andwik are the random effects

specific to each plot and species, respectively, and the other
variables are as previously defined.
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Fit statistics for Eq. 9 (Table 2) showed an improve-
ment over the basic ONLS model (Eq. 7). RMSE values
were reduced by approximately 32 %, but E was greatly
increased, although it kept at a reasonable level (approx-
imately 0.5 m). This may suggest that differences have
become biased either negative or positive. However, the
plot of raw residuals against predicted values (Fig. 2a)
showed no systematics trends and a homogeneous distri-
bution. Trends in the residuals usually relate to missing
covariates or heterogeneity of variance. Parameter esti-
mates for Eq. 9 are shown in Table 3.

3.3 Generalised h–d mixed model

The best results in the fitting of Eq. 8 as a mixed model were
obtained when two parameters were expanded to include both
plot and species-specific random effects. As previously, the
ecoregion random effects variance was not significant. The
resultant model (once parameters were scaled so that they
were all around the same order of magnitude, to avoid insta-
bilities in the fitting algorithm: Littell et al. 2006) was:

hjkl ¼ 1:3þ a0 þ v0 j þ w0k

� �
⋅ddomj

a1 1−exp −
a2
50

⋅
N j

Gj

� �a3
4

djkl

 ! ! !a4þv4 jþw4k

ð10Þ
where all the variables are as previously defined.

Fit statistics for Eq. 10 (Table 2) showed a reduction in
RMSE by approximately 29 % as compared with the gener-
alised ONLS model (Eq. 8). However, an increase in E was
obtained, although it kept at a reasonable level (approximately
0.14 m). The plot of raw residuals against predicted values
(Fig. 2b) showed no systematics trends and a homogeneous
distribution. Parameter estimates for Eq. 10 are shown in
Table 4.

While RMSE was only reduced by 11 % between Eqs. 9
and 10, E was reduced by 73 %. The differences between
Eqs. 9 and 10 were also visually examined by species (Fig. 3).
As confirmed, RMSEs were very similar, with only a slightly
lower RMSE for Eq. 10. The greater RMSE differences were
observed for species 9 and 12. E , however, was greater for all
species for Eq. 9, particularly for species 6 and 12.

3.4 Fits to individual species

In an attempt to reduce the sources of variation, the
variation between species was treated as a fixed effect
(i.e. by fitting the models independently for each species
and adding random effects for each plot and ecoregion),
producing Eqs. 11 and 12.

hjkl ¼ 1:3a0kþv0jk þ 20 a1k þ v1jk
� �	 
a0kþv0jk−1:3a0kþv0jk

� � 1−exp − a2kþv2jk
50 ⋅djl

� �
1−exp − a2kþv2jk

50 ⋅100
� �

 ! 1
a0kþv0jk

ð11Þ

hjkl ¼ 1:3þ a0 k þ v0jk
� �

⋅ddomj
a1 kþv1jk 1−exp −

a2 k

50
⋅

N j

Gj

� �a3 k
4

djl

 ! ! !a4 kþv4jk

ð12Þ

where subscript j refers to plot, subscript k refers to species
and subscript l refers to tree; ai k are the fixed-effects param-
eters for the k th species, v i jk are the random effects specific to
each j th plot and k th species and the other variables are as
previously defined.

In this case, the estimate of the variance of the ecoregion
random effects was again not significant. Fitting statistics

were clearly superior to those obtained with the previous
models, with a large reduction in E and a small reduc-
tion in RMSE (Table 2). Results for Eq. 12 were again
only slightly better than those for Eq. 11 (Fig. 3).
Parameter estimates for Eq. 11 are shown in Table 3,
and those for Eq. 12 are shown in Table 4. In Eq. 11,
the a 1 k parameter (the model asymptote) showed clearly

Table 2 Statistics for the fitting
of the basic and generalised
mixed h–d models

Results for Eqs. 11 and 12 are
summarised for all the species but
are not normalised by the number
of trees of each species

Equation Type RMSE EF E AIC

(7) Basic ONLS 3.767 0.5598 0.0024 60,317

(9) Basic mixed 2.564 0.7960 0.5211 42,486

(11) Basic mixed by sp 2.406 0.8203 −0.0462 39,959

(8) Generalised ONLS 3.207 0.6809 0.0026 53,008

(10) Generalised mixed 2.271 0.8400 0.1423 37,317

(12) Generalised mixed by sp 2.225 0.8463 −0.0362 36,394
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lower values for species 10, 11, 14, 15 and 16, which are the
most shade tolerant species.

3.5 Model calibration

Results for the calibration process for all the mixed-models
using the evaluation dataset showed small differences be-
tween Eqs. 9 and 10 and between Eqs. 11 and 12, using
the random-trees selection method for calibration (Fig. 4).
The results for all species together (Fig. 5) showed a
similar trend, with quite different RMSEs for the fixed-
effects model (i.e. the mixed model with 0 trees used in
calibration) and quite similar RMSEs for the mixed-effects
model using four trees for calibration. Similar results were
found for EF and E (Fig. 5). The greatest reductions in
RMSE between a fixed-effects model and a calibrated
mixed-effects model were observed for the basic h–d
models, i.e. for Eqs. 9 and 11. As the evaluation dataset
has a modal value of five species per plot, the calibrated
results were aggregated in Figs. 4 and 5. So calibration
with one tree per species means, a measurement of five
trees per plot; calibration with two trees per species means
a measurement of 5×2=10 trees per plot, and so on.

In a practical sense, when using Eq. 9, at least two trees of
each species (i.e. a modal value of 10 trees per plot in the

evaluation dataset) must be measured to calibrate the model
and to obtain the same results as the uncalibrated Eq. 12
(Fig. 5). For Eq. 11, the measurement of only one tree of each
species per plot (a modal value of 5 trees per plot in the
evaluation dataset) is enough to calibrate the model and obtain
the same results as the uncalibrated Eq. 12. These general
results are, however, influenced by the fact that Eq. 12 showed
very poor results in the calibration process for species 12 and
13 (Fig. 4), maybe because there was a low number of obser-
vations included in the evaluation dataset (55 and 15 obser-
vations for each species, respectively) for these two species.
For the rest of the species, Eq. 12 showed better calibrated
results than Eq. 11 (Fig. 4).

The results obtained for the different calibration methods
with Eq. 11 are shown in Fig. 6. This equation was
selected as a reference for testing the different calibration
methods because it produced comparable results to Eq. 12
for the total data set (Fig. 5) and needs fewer measure-
ments to be applied. The medium-size tree selection meth-
od and the random tree selection method performed better
than others in terms of RMSE and EF, followed very
closely by the all-sizes tree selection method, which was
superior in terms of E (Fig. 6). The other tree selection
methods produced higher errors than the above-mentioned
ones (Fig. 6).

4 Discussion

Several basic h–d models were tested in this study for
modelling the h–d relationship in mixed uneven-aged stands
in Durango (Mexico). Confirming the findings of Zhang
(1997), the best models in this study were the Bertalanffy–
Richards (Bertalanffy 1949; Richards 1959), Weibull (Yang
et al. 1978) and Schnute (Schnute 1981) models. According
to Lei and Parresol (2001), the Schnute function together
with the Bertalanffy–Richards function are probably the
most flexible and versatile functions available for modelling
height–diameter relationships. Finally, the Schnute’s equa-
tion was selected for fitting as a basic h -d mixed model
because it showed superior fit statistics for almost all
species groups.

From a total of 25 generalised h–d models tested in
this study, the equation that provided the best fit to the
dataset was derived from the Bertalanffy–Richards model
and included diameter at breast height, dominant height,
stand basal area and trees per hectare in its formulation.
The relationship of trees per hectare and dominant height
to height growth has already been discussed by several
authors (e.g. Calama and Montero 2004; Saunders and
Wagner 2008; Vanclay 2009). Stand density (measured
for example by stand basal area or trees per hectare) is
the most important factor that affects the h–d relationship

Fig. 2 Plots of raw residuals versus predicted values for Eqs. 9 (a) and
10 (b)
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in a stand (Zhang et al. 1997; Saunders and Wagner
2008); in dense stands, trees of the same diameter are
usually taller than those in less dense stands. Dominant
height has also previously been included in generalised h–d
models by many authors (e.g. Castedo-Dorado et al. 2006;

Vargas-Larreta et al. 2009; Amaral Paulo et al. 2011). In the
present study, models that included dominant height provided
more accurate results than those including mean height. This
may be advantageous, since fewer trees need to be measured
to estimate dominant height than to estimate mean height, and

Table 3 Parameter estimates for the basic h–d models selected

Model Species Parameter estimates

a0 a1 a2 σw0 σw1 σv0 σv1 σv2 σ2

Eq. 9 all 0.9761 1.141 1.746 0.01090 0.07487 0.1206 0.06554 0.7793 5.678

(0.0481) (0.072) (0.108) (0.00476) (0.02759) (0.0220) (0.00913) (0.1530) (0.054)

Eq. 11 1 0.2766 1.127 3.585 – – 0 0.05110 0 5.308

(0.1229) (0.071) (0.601) (0.01723) (0.379)

2 1.239 1.415 1* – – 0.02074 0.03518 0 4.499

(0.041) (0.038) (0.01038) (0.00977) (0.214)

3 0.9975 1.353 1.803 – – 0.05405 0.07497 0.2359 4.968

(0.0851) (0.058) (0.239) (0.02029) (0.01867) (0.1205) (0.149)

4 0.8965 1.292 2.063 – – 0.06456 0.03652 0.2031 5.451

(0.0529) (0.030) (0.151) (0.01375) (0.00696) (0.0756) (0.101)

5 0.4898 1.197 3.188 – – 0.04335 0.0127 0 6.886

(0.2169) (0.075) (0.738) (0.02495) (0.0071) (0.643)

6 1.561 1.492 0.8689 – – 0 0 0.2100 5.967

(0.160) (0.071) (0.3436) (0.0805) (0.350)

7 0.6109 1.137 2.506 – – 0 0.06288 0 4.461

(0.1635) (0.109) (0.620) (0.02025) (0.257)

8 1.023 1.316 1.515 – – 0.05052 0.04562 0 4.451

(0.092) (0.063) (0.257) (0.01421) (0.01043) (0.152)

9 0.8904 1.309 1.834 – – 0 0.04526 0.2428 5.321

(0.1042) (0.074) (0.337) (0.01234) (0.0795) (0.237)

10 1.302 0.9409 1.425 – – 0 0.05652 0 6.213

(0.088) (0.0338) (0.202) (0.00842) (0.149)

11 0.8858 0.8360 2.423 – – 0.1800 0.05362 0 4.909

(0.1446) (0.0411) (0.379) (0.0497) (0.01077) (0.171)

12 0.8037 1.758 1.605 – – 0 0.03758 0 9.421

(0.1044) (0.091) (0.259) (0.02075) (0.803)

13 1.038 1.213 1* – – 0 0.2039 0 8.258

(0.050) (0.141) (0.0946) (0.664)

14 1.401 0.8523 1* – – 0 0.03514 0 3.494

(0.068) (0.0359) (0.00696) (0.164)

15 1.290 0.9448 1* – – 0 0.06470 0 3.060

(0.075) (0.0596) (0.01895) (0.213)

16 1.505 0.6993 1* – – 0 0.01394 0 3.260

(0.086) (0.0284) (0.00336) (0.161)

σwi, variance of the species-specifics random effects; σvi, variance of the plot-specifics random effects; σ2 , error variance of the model; the rest of
variables as previously defined. All parameters were significant at p <0.05 except those marked with an asterisk; standard error in brackets

*p <0.05: These parameters were not significant at this level and were fixed at 1 in the final model fitting. This produces slightly different models for each
species; a value of 0 for the variance of a random effect indicates that this variancewas not significant. A hyphen indicates that this parameter was not part
of the model
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this greater sampling effort may limit the future use of models
using mean height (López Sánchez et al. 2003). This general-
ised h–d model showed better fitting statistics than the basic
h–d model (Table 2).

However, when the basic and generalised h–d models
were fitted in a mixed-models framework, fit statistics differed

little between them (Fig. 3, Table 2), confirming the expecta-
tion that random effects specific to each plot and species will
capture most of the observed variability between these sam-
pling units, and that the incorporation of additional predictor
variables (i.e. stand variables) in a basic h–d model has a
major effect on the ability of the fixed-effects model in

Table 4 Parameter estimates for the generalised h–d models selected (all parameters were significant at p <0.05; standard errors in brackets)

Model Species Parameter estimates

a0 a1 a2 a3 a4 σw0 σw4 σv0 σv1 σv4 σ2

Eq. 10 All 2.164 0.8079 1.478 0.2722 1.035 0.2681 0.006324 0.02413 0 0.03081 5.780

(0.240) (0.0314) (0.173) (0.1225) (0.030) (0.0988) (0.002826) (0.00385) (0.00418) (0.055)

Eq. 12 1 0.7750 1.197 1.538 0.8350 1.641 – – 0.004639 0 0 5.317

(0.3382) (0.155) (0.529) (0.3838) (0.177) (0.002198) (0.379)

2 5.865 0.6090 0.4614 0.6581 0.8085 – – 0.2047 0 0.002967 4.516

(1.900) (0.0839) (0.1492) (0.3003) (0.0646) (0.1106) (0.001716) (0.212)

3 1.886 0.8951 0.8445 1* 1.042 – – 0.05336 0 0.03282 5.039

(0.476) (0.0850) (0.0831) (0.059) (0.01402) (0.00920) (0.150)

4 2.740 0.7499 0.9867 1* 1.108 – – 0.04699 0 0.04040 5.511

(0.349) (0.0427) (0.0518) (0.039) (0.010071) (0.00708) (0.101)

5 8.185 0.3801 1.181 1* 1.381 – – 0.6424 0 0.06776 6.915

(3.067) (0.1339) (0.2812) (0.248) (0.3537) (0.03832) (0.654)

6 8.139 0.3893 4.147 −1.048 0.8855 – – 0 0 0.3381 5.843

(2.306) (0.0901) (1.992) (0.522) (0.0969) (0.0151) (0.344)

7 3.210 0.7436 0.8383 1* 1.203 – – 0.2229 0 0 4.442

(0.977) (0.1040) (0.2214) (0.1435) (0.0802) (0.256)

8 2.875 0.7890 0.6567 1* 1.011 – – 0.04494 0 0.01929 4.490

(0.497) (0.0570) (0.0932) (0.0591) (0.01718) (0.00506) (0.145)

9 2.804 0.7421 1.206 0.7623 1.188 – – 0.05294 0 0.02158 5.329

(0.602) (0.0705) (0.279) (0.2570) (0.087) (0.01813) (.00884) (0.2236)

10 0.5128 1.203 0.5791 1.548 0.9945 – – 0.007057 0 0.05564 5.624

(0.1351) (0.090) (0.1959) (0.391) (0.0583) (0.001453) (0.01137) (0.137)

11 0.5844 1.134 0.7255 1.592 1.164 – – 0.008623 0 0.1147 4.868

(0.1790) (0.105) (0.2887) (0.470) (0.106) (0.002161) (0.0303) (0.169)

12 1.391 0.9641 0.3954 2.617 1.407 – – 0.007239 0 0 8.492

(0.606) (0.1325) (0.1212) (0.4356) (0.112) (0.003348) (0.719)

13 0.6033 1.231 0.2048 2.293 0.9332 – – 0 0 0 8.491

(0.2821) (0.141) (0.09188) (0.536) (0.0747) (0.697)

14 1.663 0.8710 0.3988 0.9059 0.7803 – – 0.05772 0 0 3.464

(0.612) (0.0961) (0.1881) (0.4100) (0.0681) (0.01480) (0.161)

15 1* 0.9750 0.7061 1* 1* – – 0 0.008882 0 3.083

(0.0334) (0.0797) (0.002635) (0.214)

16 1.376 0.7622 0.6975 1* 0.8648 – – 0.3680 0 0.01428 3.153

(0.454) (0.0996) (0.2609) (0.1172) (0.0145) (0.00646) (0.158)

All the variables are as previously defined

*p <0.05: These parameters were not significant at this level and were fixed at 1 in the final model fitting. This produces slightly different models for each
species. A value of 0 for the variance of a random effect indicates that this variance was not significant. A hyphen indicates that this parameter was not
part of the model
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explaining between-individual variability, but not on the
mixed-effects model (Trincado et al. 2007). Another advan-
tage usually assigned to mixed-models is that they take into
account the correlations between observations that belong to
the same sampling unit, thus dealing with the dependence of
error terms which should be avoided in regression models
(Calama and Montero 2004; Castedo-Dorado et al. 2006).

A result that seems somewhat counter intuitive is that bias
increased for Eqs. 9 and 10 as compared with the respective
ONLS Eqs. 7 and 8. This may be attributed to the fact that
Eqs. 7 and 8 do not make any distinction between species and
all the observations have the same importance in the
calculation of fitting statistics. However, Eqs. 9 and 10
differentiate between species, assigning a random effect
for each one, and in some cases, as with species 15 and
16, the explained variance was very low (Fig. 3) and
the associated bias very high. The same happens for the
bias obtained for species 6, 12 and 13 for Eq. 9, which
showed large values, thereby increasing the overall bias
(calculated over all species without normalising by the
number of observations for each species).

Expansion of fixed parameters to account for differences
between ecoregions led to non-significant variance of the
random effects. This is not surprising, since only four
ecoregions were sampled in this study. Several t tests were
performed to compare the average values of the height-
diameter ratios for the different ecoregions. These average
values (i.e. 0.72, 0.68, 0.76 and 0.56 for ecoregions 1, 2, 3
and 4, respectively) were significantly different between the
four ecoregions. However, group-level variance estimates of
zero often arise when fitting multilevel or hierarchical linear
models, especially when the number of groups is small
(Chung et al. 2013). The same may be expected for non-
linear models.

Equations 11 and 12, i.e. the species-specific ones, showed
better precision (RMSE) and bias (E ) than Eqs. 9 and 10,
respectively (Table 2, Fig. 3), indicating that a general mixed-
model for the whole population may not be sufficient to
explain the observed variation among species. However,

the differences between the models were greatly reduced
when they were calibrated with only one tree by spe-
cies. Only a marginal gain in accuracy was observed
when two, three or four sample trees per species were
used for calibration (Fig. 5). Other studies have reported
similar behaviour using linear or nonlinear mixed-effects
h–d equations for other tree species (e.g. Jayaraman
and Lappi 2001; Calama and Montero 2004; Trincado
et al. 2007).

For the whole dataset (fitting plus evaluation), there was a
modal value of six species present in each plot (SD=1.75).
This means that if one tree per species was used for calibra-
tion, an average of six trees would have to be measured in
each plot to calibrate Eq. 11. This number is substantially
lower than the number of trees that should be measured to
calculate dominant height (a variable included in Eq. 12) (25
dominant trees per plot in this study, as all the plots had an area
of 2,500 m2). One problem is whether we should focus our
efforts on measuring only the height of dominant trees, or
measuring heights for all species. Foresters usually prefer to
measure dominant height, since it is one of the key driving
variables in growth and yield models and can, sometimes, be
obtained as an output of growth simulators. However, if the
purpose of the h–d relationship is only to know missing
heights, the calibrated version of Eq. 11 showed better results
in terms of prediction accuracy (as showed by RMSE and E
values) and measurement effort. In any case, as the area of the
sample plot decreases, the number of trees used to calculate
dominant height also decreases, thus reducing the measure-
ment effort required for the application of the fixed-effects of
Eq. 12.

When fitting Eqs. 11 and 12, some parameters were not
significant at the 0.05 level (Table 2). If these parameters were
assigned a value of 0, then some variables would be eliminat-
ed from the model, resulting in a less accurate model. We
therefore decided to keep these variables in the model and
assign a value of 1 to the parameters (note that for parameters
that are multiplicative or in the exponent of a power term,
assigning a value of 1 means that this parameter is dropped
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Fig. 3 Plots of the fitting statistics for Eqs. 9, 10, 11 and 12, for each species. Lines are used only for a better comparison of the differences between the
models. Numbers on the X-axis refer to the species groups outlined in the text
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from the model). Therefore, slightly modified models were
used in these cases. Convergence was achieved in all cases
with the simpler models, and the accuracy of the models
(showed by the RMSE and E values) was higher than that
obtained by simply eliminating the parameters and their asso-
ciated variables.

Calibration of mixed-effects models has been shown to be
a good alternative for height prediction even when using a
basic h–d model and only one height measurement per sam-
pling level is available (e.g. Trincado et al. 2007), as in the
current study. Other studies report similar results for height
prediction (e.g. Calama and Montero 2004; Castedo-Dorado
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Fig. 4 Plots of the statistics obtained in the calibration process including
the random tree selection method, for Eq. 9 (first row), Eq. 10 (second
row), Eq. 11 (third row) and Eq. 12 (fourth row), for each species. Zero
trees for calibration represent the fixed-effects model. The X-axis shows

aggregate values to an average number of trees per plot, because the
evaluation dataset has a modal value of five species per plot. Numbers in
the legend refer to the species groups outlined in the text
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et al. 2006; Sharma and Parton 2007) as well as prediction of
other growth variables (e.g. Calama and Montero 2005).
Different calibration methods were tested for Eq. 11 in this
study, because it was the equation that showed the best trade-
off between fit statistics and measurement effort. The
medium-size tree selection method, the random tree selection
method and the all-size tree selection method performed better
than others. This can be attributed to the fact that most forests
in Durango are irregular, and the smaller and larger diameters
show more variation among stands, whereas the mean diam-
eters are much more similar between stands. Some authors
(e.g. Castedo-Dorado et al. 2006; Crecente-Campo et al.
2010) obtained the best results when the smaller trees in the
plot were used for calibration and attributed this to the fact that
their models included dominant height as a fixed effect, and
therefore heights corresponding to the larger trees did not
provide much additional information for calibration. In the
current study, Eq. 11 does not contain stand variables as
regressors, but the large-tree method gave the worst results
in calibration (Fig. 6). However, the smaller trees were not the

best possible sample in this study, perhaps because the select-
ed model was not restricted to pass through any point. In the
aforementioned studies, the models were restricted to pass
through the point (ddom , hdom), implying that the models
cannot change much in the upper part of the h–d relationship,
and small trees provided much more information for calibra-
tion than larger trees (Crecente-Campo et al. 2010). The
greater the number of measurements included in the subsam-
ple, the greater the decrease in RMSE and increase in EF
(Fig. 5). However, a large sample is often not justifiable,
because of the higher cost of sampling (Castedo-Dorado
et al. 2006). This was particularly important in this study,
since calibration should be carried out independently for each
sampling unit.

For the species-specific Eqs. 11 and 12, calibration can be
done for each plot independently, as the plot-specific random
effect associated with each species is different. A macro
program may be very useful in this case. However, when
calibrating Eqs. 9 and 10, calibration should be done for the
whole dataset for which we want to obtain calibrated
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Fig. 5 Plots of the statistics obtained in the calibration process including
the random tree selection method, for Eqs. 9, 10, 11 and 12, for all species
together. Zero trees for calibration represent the fixed-effects model. The

X-axis shows aggregate values to an average number of trees per plot,
because the evaluation dataset has a modal value of five species per plot
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Fig. 6 Plots of the fitting statistics obtained with the different tree
selection options for calibration of Eq. 11. The X-axis shows aggregate
values to an average number of trees per plot, because the evaluation

dataset has a modal value of five species per plot. Lines and points in the
legend refer to size of trees used in calibration

64 F. Crecente-Campo et al.



predictions (see Appendix A). This is because each species-
specific random effect is the same for all the plots in which
one species is present, and each plot-specific random effect is
the same for all the species included in a particular plot.
Therefore, each plot–species combination has a different ran-
dom effect, obtained by summing the corresponding plot-
specific and species-specific random effects.

Height–diameter models have previously been developed
for other multi-species, multi-height and multi-age forests
(e.g. Sharma and Parton 2007; Vargas-Larreta et al. 2009).
However, the developed models were always species-specific
(as Eqs. 11 and 12 in this study), and the utility of developing a
general model like Eqs. 9 and 10 had not been shown. The
approach used in this study could be applied in other irregular
stands, where a general model with species-specific and plot-
specific random effects could be calibrated by measuring only
one tree of each species per plot.

However, the specific models developed in this study
can only be used for the forests in Durango, because the
variance and covariance parameters were calculated with
the variability observed in the research plots, which were
all located in this state. Variability in other areas, such as
the bordering states of Chihuahua, Nayarit and Jalisco,
where the Sierra Madre Occidental is located, may be
different and therefore any predictions in these areas using
these models should be taken with caution until the devel-
oped models are tested.

Following these results, we therefore recommend measur-
ing one tree height for each species in the stands in order to
apply the species-specific Eq. 11. We recommend the mea-
surement of medium-sized trees for this purpose, because the
random tree selection method can give worse results than the
ones showed in this study if only one repetition is carried out
(note that the values showed for the statistics of the random
tree selection method are mean values after 100 simulations).
If heights are not measured, the uncalibrated Eq. 11 should be
used. If dominant height is available, and assuming that trees
per hectare and basal area are available because all diameters
would have been measured, then the uncalibrated Eq. 12
should be used. Finally, Eq. 12 can also be calibrated if
dominant height and additional height measurements are
available.

5 Conclusions

Random components of a basic h–d mixed model performed
very well in explaining the observed differences in the h–d
relationship between different plots and species in mixed
uneven-aged stands in Durango (Mexico). However, the var-
iance of the random effects for the different ecoregions was

non-significant. We likely do not have enough information
to estimate such variance since only four ecoregions were
included in the dataset. A generalised h–d model is not
necessary if a calibrated basic h–d model is used, as
similar results are obtained when only one tree per species
is used in the calibration process. If the models are not
being calibrated, species-specific models should be used
because they at least capture the variation between species.

Funding Fondo Sectorial CONAFOR-CONACYT (Project CONAFOR-
CONACYT 115900) (México); Fondo de Cooperación Internacional en
Ciencia y Tecnología Unión Europea-México (Project FONCICYT-92739).
Consellería de Economía e Industria (Galicia, Spain).

Appendix. Height estimation—an example

This Appendix shows an example of the height estimation
using the calibrated Eqs. 9 and 11. Equations 10 and 12
should be calibrated in the same way as Eqs. 9 and 11,
respectively.

We suppose that the following data belong to three new
plots in which several species are present, but we are interest-
ed in calibrating the models for species 1, 2 and 3, which are
the commercial ones. Thus, we measure one tree of these
species in each one of the plots, resulting in:

Plot Species d (cm) h (m)

1 1 15 12

1 2 17 12

1 3 14 12

2 1 20 13

2 2 19 13

2 3 16 13

3 1 17 11

3 2 15 11

3 3 18 11

Case 1: use of Eq. 9

In this case, calibration should be done for the whole dataset
for which we want to calibrate Eq. 9, using the expression
shown in Eq. 6.

Note that subscript i in Eq. 6 is finally not necessary
because there were no differences between ecoregions, so
hereafter it was omitted.

The estimated variances and the covariance of the random
effects (Table 3) are the elements of the variance–covariance
matrix bD , which should be arranged according to the
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dataset in the following way: three species, with two
random parameters by species and three plots with

three random parameters by plot, resulting in a 15×15
diagonal matrix:

bD ¼

0:01090 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0:01090 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0:01090 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0:07487 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0:07487 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0:07487 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0:1206 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0:1206 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0:1206 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0:06554 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0:06554 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0:06554 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0:7793 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0:7793 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:7793

2
6666666666666666666666664

3
7777777777777777777777775

The variance–covariance matrix for the random error
term is determined by assuming that all estimations have

constant variance (σ2, Table 3) and that the errors are not
correlated:

bRjk ¼ σ2 � I9 ¼

5:678 0 0 0 0 0 0 0 0
0 5:678 0 0 0 0 0 0 0
0 0 5:678 0 0 0 0 0 0
0 0 0 5:678 0 0 0 0 0
0 0 0 0 5:678 0 0 0 0
0 0 0 0 0 5:678 0 0 0
0 0 0 0 0 0 5:678 0 0
0 0 0 0 0 0 0 5:678 0
0 0 0 0 0 0 0 0 5:678

2
6666666666664

3
7777777777775

where I9 is the identity matrix with dimension (9×9) equal to
the number of data used for calibration.

The partial derivatives matrix bZjk with respect to the
random effects is calculated with the partial derivatives of

Eq. 9. Using z ¼ 1−exp − a2
50⋅djkl

� �	 

= 1−exp − a2

50⋅100
� �	 


for

simplification, the partial derivatives are:

∂hjkl
∂w0k

¼ 1

a0

� �2

20a1ð Þa0−1:3a0ð Þzþ 1:3a0½ � 1
a0 ⋅

a0 ln20þ lna1ð Þ 20a1ð Þa0z−1:3a0zln1:3þ 1:3a0 ln1:3ð Þ
20a1ð Þa0−1:3a0ð Þzþ 1:3a0

− ln 20a1ð Þa0−1:3a0ð Þzþ 1:3a0ð Þ
� �

∂hjkl
∂w1k

¼ 20a0a1
a0−1z 20a1ð Þa0−1:3a0ð Þzþ 1:3a0½ �

1
a0
−1

� �

∂hjkl
∂v0 j

¼ ∂hjkl
∂w0k

∂hjkl
∂v1 j

¼ ∂hjkl
∂w1k

∂hjkl
∂v2 j

¼
1:3a0− 20a1ð Þa0ð Þexp 2−

djkl
50

� �
a2

� �

50a0 exp 2a2ð Þ−1ð Þ2
� � :

djkl −exp 2a2ð Þð Þ þ 100 exp
a2
50

djkl
� �

−1
� �

þ djkl
� �

⋅ 20a1ð Þa0−1:3a0ð Þzþ 1:3a0½ �
1
a0
−1

� �
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The values for the partial derivatives are:

The partial derivatives should be arranged in the matrix
into different columns, to reflect how the data is arranged in

the dataset, to obtain a 9×15 matrix (9 observations used in
calibration and 15 random parameters) as follows:

bZjk ¼

∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0 0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0 0

0
∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0 0

0 0
∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0 0

∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0 0 0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0

0
∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0 0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0

0 0
∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0

∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0 0 0 0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0
∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0 0 0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

0 0
∂hjkl
∂w0k

0 0
∂hjkl
∂w1k

0 0
∂hjkl
∂v0 j

0 0
∂hjkl
∂v1 j

0 0
∂hjkl
∂v2 j

2
66666666666666666666666666666664

3
77777777777777777777777777777775

resulting in:

bZjk ¼

6:0907 0 0 8:2505 0 0 6:0907 0 0 8:2505 0 0 3:3777 0 0
0 6:0354 0 0 9:0770 0 6:0354 0 0 9:0770 0 0 3:5535 0 0
0 0 6:0887 0 0 7:8158 6:0887 0 0 7:8158 0 0 3:2712 0 0

5:8419 0 0 10:2163 0 0 0 5:8419 0 0 10:2163 0 0 3:7346 0
0 5:9183 0 0 9:8494 0 0 5:9183 0 0 9:9494 0 0 3:6844 0
0 0 6:0720 0 0 8:6707 0 6:0720 0 0 8:6707 0 0 3:4716 0

6:0354 0 0 9:0770 0 0 0 0 6:0354 0 0 9:0770 0 0 3:5535
0 6:0907 0 0 8:2505 0 0 0 6:0907 0 0 8:2505 0 0 3:3777
0 0 5:9835 0 0 9:4697 0 0 5:9835 0 0 9:4697 0 0 3:6243

2
6666666666664

3
7777777777775

Plot Species d (cm) h (m) ∂hjkl
∂w0k

∂hjkl
∂w1k

∂hjkl
∂v0 j

∂hjkl
∂v1 j

∂hjkl
∂v2 j

1 1 15 12 6.0907 8.2505 6.0907 8.2505 3.3777

1 2 17 12 6.0354 9.0770 6.0354 9.0770 3.5535

1 3 14 12 6.0887 7.8158 6.0887 7.8158 3.2712

2 1 20 13 5.8419 10.2163 5.8419 10.2163 3.7346

2 2 19 13 5.9183 9.8494 5.9183 9.8494 3.6844

2 3 16 13 6.0720 8.6707 6.0720 8.6707 3.4716

3 1 17 11 6.0354 9.0770 6.0354 9.0770 3.5535

3 2 15 11 6.0907 8.2505 6.0907 8.2505 3.3777

3 3 18 11 5.9835 9.4697 5.9835 9.4697 3.6243
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The matrix bejkl containing the errors obtained with the
fixed-effects model (Eq. 9 with w0k, w1k, v0j, v1j and v2j
equal 0) is:

bejkl ¼

1:7949
0:9066
2:2621
0:6825
1:0767
2:3432

−0:09339
0:7949
−0:5154

2
6666666666664

3
7777777777775

Therefore, the random parameters calculated using Eq. 6
were:

bbjk ¼

w01

w02

w03

w11

w12

w13

v01
v02
v03
v11
v12
v13
v21
v22
v23

2
6666666666666666666666664

3
7777777777777777777777775

¼

0:01561
0:02045
0:05229
0:002747
0:009959
0:03455
0:05549
0:04252

−0:0002459
0:03248
0:02262
−0:01373
0:1756
0:1310

−0:03699

2
6666666666666666666666664

3
7777777777777777777777775

This estimation of the random effects can be used to
calibrate the model to obtain a specific response for the plots
and species of this example, using Eq. 9.

The estimated heights and associated errors using the fixed
effects Eq. 9 and the calibrated Eq. 9 are, therefore:

Plot Species d (cm) h (m) hjkl fixed ejkl fixed hjkl cal. ejkl cal .

1 1 15 12 10.21 1.79 11.54 0.46

1 2 17 12 11.09 0.91 12.58 −0.58
1 3 14 12 9.74 2.26 11.55 0.45

2 1 20 13 12.32 0.68 13.41 −0.41
2 2 19 13 11.92 1.08 13.11 −0.11
2 3 16 13 10.66 2.34 12.22 0.78

3 1 17 11 11.09 −0.09 10.95 0.05

3 2 15 11 10.21 0.79 10.17 0.83

3 3 18 11 11.52 −0.52 11.89 −0.89

∑ bejkl  10.47 4.54

It can be observed how the prediction errors are reduced
from using a fixed-effects prediction to using a calibrated
prediction.

Case 2: use of Eq. 11

This is the usual way of calibrating a mixed-effects model
with only one sampling level (i.e. the plot level), as
done in many previous studies (e.g. Calama and
Montero 2004; Castedo-Dorado et al. 2006; Sharma
and Parton 2007). In this case, the calibration process
has to be done for each species independently, because
each species has a different model (Eq. 11 with the
parameters shown in Table 3).

Hereafter, we include an example for species 1 on plot 1.
The other species and plots would be calibrated in the same
way.

Not that for Eq. 11 and species 1, only the variance for the
random effect v1 was significant, therefore only one random
effect has to be calculated.

The estimated variances and the covariance of the random
effects (Table 3) are the elements of the variance–covariance

matrix bD , conforming a simple (1×1) diagonal matrix (1
random parameter):

bD ¼ 0:05110½ �
The variance–covariance matrix for the random error term

is determined by assuming that all estimations have constant
variance (σ2, Table 3) and that the errors are not correlated. In
this case, it only contains one observation:

bRjk ¼ σ2 � I1 ¼ 5:308½ �

where I1 is the identity matrix with dimension (1×1) equal to
the number of data points used in calibration.

The partial derivatives matrix bZjk with respect to the
random effects is calculated with the partial derivatives of
Eq. 11, which have the same expression as those from Eq. 9.

The values for the partial derivatives are:

Plot Species d (cm) h (m) ∂hjkl
∂v1 j

1 1 15 12 7.7013

Therefore the corresponding matrix is:

bZjk ¼ ∂hjkl
∂v1 j

� �
¼ 7:7013½ �

The matrix bejkl containing the errors obtained with the
fixed-effects model (Eq. 11 with v0jk, v1jk and v2jk equal 0) is:

bejkl ¼ 1:2840½ �

Therefore, the random effect estimated using Eq. 6 was:

bbjk ¼ v11½ � ¼ 0:06060½ �
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This estimation of the random effect can be used to cali-
brate the model to obtain a specific response for the plot and
species of this example, using Eq. 11.

The estimated heights and associated errors using the fixed
effects of Eq. 11 and the calibrated Eq. 11 are, therefore:

Plot Species d (cm) h (m) hjkl fixed ejkl fixed hjkl cal. ejkl cal .

1 1 15 12 10.71 1.28 11.18 0.82
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