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Abstract
• Context Despite the economic importance of Castanea
sativaMill. in northwest Spain, studies of its growth and yield
are practically non-existent.
• Aims A compatible system formed by a taper function, a total
volume equation, and a merchantable volume equation was
developed for chestnut (C. sativa Mill.) coppice stands in
northwest Spain.
• Methods Data from 203 destructively sampled trees were
used for the adjustment. Outliers were removed with a non-
parametric local adjustment, providing a final data set of
measurements taken from 3,188 sections which was used to
test five taper models (compatible and non-compatible). A
second-order continuous autoregressive error structure was
used to model the error term and account for autocorrelation.
Presence of multicollinearity was evaluated with the condition
number. Comparison of the models was carried out using
overall goodness-of-fit statistics and graphical analysis.
• Results Results show that the models developed by Fang
et al. in For Sci 46: 1–12, 2000 and Kozak in For Chron 80, N

4: 507–515, 2004 were superior to other equations in
predicting diameter for chestnut coppice stands.
• Conclusion The compatible volume system developed by
Fang et al. in For Sci 46: 1–12, 2000 was finally selected as it
provided the best compromise between describing stem pro-
file and also estimating merchantable height, merchantable
volume, and total volume and therefore provides the first
specific tool for more effective management of chestnut cop-
pice stands.

Keywords Chestnut coppice . Volume system . Segmented
model . Compatible equations

1 Introduction

Sweet chestnut (Castanea sativa Mill.) covers more than 2.5
million hectares in Europe, with a distribution reaching from
the Southern Mediterranean to central, Atlantic, and Eastern
Europe (Conedera et al. 2004). Chestnut forests have been
recognized as habitats of interest in the European Natura 2000
network and are considered characteristic cultural landscapes
of the Mediterranean and Atlantic regions (Díaz Varela et al.
2009). In northwest Spain, chestnut is the most important
forest species, covering over 100,000 ha, mainly as coppice
stands (DGCONA 2013). This area accounts for over 95 % of
the potential area for chestnut coppice stands in Spain.

Although chestnut fruit production has traditionally driven
management in the region, changes in markets and local
economies have resulted in timber production becoming the
main objective in most exploitation nowadays (Álvarez et al.
2000). The vitality of the chestnut root system, with stools
capable of sustainably producing an abundance of shoots, and
high productivity (8–16 m3 ha−1 year−1 depending on site
conditions) facilitate management under a coppice system
(Giudici et al. 2000). Chestnut coppice produces valuable
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timber in relatively short rotations (20–40 years) compared to
other hardwoods (Gallardo et al. 2000; Kerr and Evans 1993).
The total volume (with bark) of sweet chestnut stands (high
forest and coppice stands together) harvested in Spain during
2011 was 58,090 m3 (MARM 2011), with more than 42.46 %
of this total volume being formed by trees from coppice stands
in northwest Spain.

Estimating timber volume stocks as accurately as possible
is essential in forest management. It is therefore necessary to
develop tools that allow the reliable estimation of tree volume
using variables which are easy to measure in the field, such as
diameter at breast height (D) and total height (H). One such
tool is individual tree volume equations. However, these
equations have the disadvantage of not being able to predict
tree volume for wood products which are classified by mer-
chantable size depending on log dimensions.

There are a number of ways to address this issue, the two
most important of which are developing volume-ratio equa-
tions that predict merchantable volume as a percentage of total
volume (Burkhart 1977; Clutter 1980; Reed and Green 1984)
or using taper functions.

Taper functions describe stem taper (Brink and Gadow
1986; Kozak 1988; Riemer et al. 1995) and provide forest
managers with estimates of (a) diameter at any point
along the stem, (b) total stem volume, (c) merchantable
volume and merchantable height to any top diameter and
from any stump height, and (d) individual volumes for
logs of any length at any height above the ground (Kozak
2004). Such functions can be implemented in different
computer software specially developed for this type of

calculation, such as GesMO (Diéguez-Aranda et al.
2009) or CubiFOR (Rodríguez et al. 2008). To develop
this type of function, it is necessary to have a longitudinal
data structure, that is, multiple measurements for each
individual (Lindstrom and Bates 1990).

Ideally, a taper equation should be compatible, meaning
that the volume computed by integration of the taper function
should be equal to that calculated by a total volume equation
(Clutter 1980; Demaerschalk 1972; Fang et al. 2000). Exam-
ples of compatible volume-estimating systems are the works
carried out by Demaerschalk (1972), Goulding and Murray
(1976), and Fang et al. (2000).

Prediction tools are essential to understand the devel-
opment of forest stands and subsequently decide on the
best management strategy. In Spain, many taper functions
have been developed for different forest species (Barrio-
Anta et al. 2007; Crecente-Campo et al. 2009; Diéguez-
Aranda et al. 2006); however, there is currently no taper
function available for chestnut coppice, either in Spain or
elsewhere in the world. This work is a result of looking to
remedy this gap in provision, and its main objective is to
develop a taper function able to correctly describe the
profile of and ensure appropriate estimates of stem vol-
ume using chestnut coppice stands in northwest Spain as a
baseline. Specifically, we wish to focus on two questions:
(a) Is it possible to correctly describe the huge variability
of stem profiles in chestnut coppice stands given the high
number of stems which may grow from a single stool, and
(b) which model best describes this type of profile and its
variability?

Fig. 1 Map showing cover rates
for chestnut coppice stands in the
study area. Fitting plots are
indicated by red dots
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2 Material and methods

2.1 Data

The data used in this study were collected in 70 coppice stands
covering the existing range of ages, stand densities, and sites
of this species in the region. Figure 1 shows the map with the
locations of the stands used for the fitting data.

A total of 203 trees were felled and destructively sampled.
Trees had to be healthy and of a standard shape (i.e., not
forked nor excessively branched) and were selected in order
to ensure a representative distribution of diameter and height
classes (Table 1).

Before felling, diameter at breast height D (diameter at
1.3 m above the top of the stool, in cm) was measured to the
nearest 0.1 cm for each tree. The trees were then felled and
total bole length, that is, total height H, (in m) measured to
the nearest 0.1 m. The trees were cut into 1-m logs, up to a
top diameter of 7 cm, and measured to the nearest centime-
ter. Two perpendicular over bark diameters (d, cm) and two
perpendicular bark thicknesses were measured to the nearest
0.1 cm in each cross section (at height h, in m, above the top
of the stool). Over bark log volumes were calculated in
cubic meters using Smalian’s formula, and the top section
was treated as a cone. Over bark total stem volume was
obtained by summing the over bark log volumes and the
volume of the top section. Finally, 3,282 pairs of diameter
(d) at a certain height (h) measurements were used for the
original fitting data set.

Data from an independent network of plots (established by
the Atlantic Forest Systems Research Group (GIS-Forest),
Department of Organisms and Systems Biology, University
of Oviedo) was used for validation purposes. The height-
diameter distributions for the fitting and validation samples
are very similar (Fig. 2), indicating that robust conclusions can
be reached from the validation analysis.

The scatterplot of relative diameter (d/D) against relative
height (h/H) was examined visually to detect possible anom-
alies in the data. This first analysis detected a number of
outliers (many of them corresponded to trees with abnormal-
ities) which were removed. A second analysis was carried out
with the systematic procedure proposed by Bi (2000) to detect
and remove other possible outliers, whereby local adjustment

Table 1 Descriptive statistics of tree and stand data sets used in the analysis for fitting and validation

Fitting Validation

n Mean Min Max Std. dev. n Mean Min Max Std. dev.

Individual tree

Nº logs 3,188 16.30 6 25 3.89 719 11.83 3 20 4.07

D 3,188 25.69 10.20 44.50 7.94 719 19.65 6.90 49.15 8.12

H 3,188 19.26 9.54 31.02 3.37 719 16.68 8.35 26.08 3.84

ntree_a 3,188 1.87 1 8 1.39 719 2.43 1 7 1.33

hstump 3,188 0.12 0 0.60 0.10 719 0.14 0.020 0.68 0.14

V 3,188 0.35 0.011 1.85 0.30 719 0.19 0.020 1.01 0.19

Stand

nree_b 63 2.19 1 26 2.25 30 2.73 1 24 2.42

N 63 1,692.52 410.26 4,753.42 942.07 30 2,025.51 222.82 8,244.23 1,762.97

G 63 40.01 16.33 65.33 11.30 30 10.29 3.41 35.40 6.79

Hm 63 16.93 10.63 24.16 3.09 30 – – – –

H0 63 19.91 12.15 28.17 3.09 30 16.52 10.75 23.37 3.27

D diameter at breast height (cm), H height (m), ntree_a number of stems from the stool where the sampled tree was cut, hstump stump height (m), V total
over bark stem volume (m3 ), ntree_b number of stems in the stool, N number of stems per hectare (stems ha−1 ), G basal area (m2 ha−1 ),Hmmean height
(m), H0 average height of the 100 thickest trees per hectare (m)
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Fig. 2 Plot of diameter at breast height against total height of sampled
trees (black dot) and validation sample (multiplication sign)
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was performed by the LOESS procedure of SAS/STAT®
(SAS Institute Inc. 2004a) with a smoothing factor of 0.25.

Using this approach, the number of extreme values accounted
for 2.83 % of total taper measurements. A small percentage of
the extreme data points were the result of errors in measuring
bole sections or in the transcription of field notes, but most
were the result of measurements in sections where the tree was
deformed due to abnormal growth or damage caused by the
presence of chancre (Cryphonectria parasitica (Murr.) Barr.).
Since taper functions are not intended for deformed stems,
these data points were excluded from further analysis,
resulting in a final total number of observations of 3,188, from
190 trees.

Figure 3a, b shows relative height against relative
diameter together with the LOESS regression curve, the
upper graphic showing all the collected data and that
below, the data excluding outliers, respectively. Summary
statistics of the final data used in this study for tree and
stand variables, together with model validation data, are
shown in Table 1.

2.2 Equations tested

We analyzed a total of five models, which are described below
and whose expressions are shown in Table 2:

– Fang et al. (2000). Compatible system formed by a taper
function, a total volume equation, and a merchantable
volume equation. The taper equation is segmented with
two attachment points and three form factors, one for
each segment.

– Bi (2000). Non-compatible variable-exponent taper
function.
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Fig. 3 Data points of relative diameter and relative height plotted with a
local regression LOESS smoothing curve (smoothing factor=0.25) for all
data (a) and after the elimination of outliers (b)

Table 2 Fitted taper equations and their corresponding mathematical expression

Model Expression

Fang et al. (2000)
d ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H k−b1ð Þ=b1 1−qð Þ k−βð Þ=βαI1þI2

1 αI2
2

q
c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0Da1Ha2−k=b1

b1 r0−r1ð Þþb2 r1−α1r2ð Þþb3α1r2

q

r0 ¼ 1−hstump=H
� �k=b1 r1 ¼ 1−p1ð Þk=b1 r2 ¼ 1−p2ð Þk=b2

β ¼ b1− I1þI2ð Þ
1 bI12 b

I2
3 α1 ¼ 1−p1ð Þ

b2−b1ð Þk
b1b2 α2 ¼ 1−p2ð Þ

b3−b2ð Þk
b2b3

I1=1 if p1≤q≤p2, 0 in all other cases
I2=1 if p2<q≤1, 0 in all other cases
p1=h1/H y p2=h2/H

Bi (2000)

d ¼ D
lnsin π

2qð Þ
lnsin 1:3π

2Hð Þ
� �a1þa2sin π

2qð Þþa3cos 3π
2 qð Þþa4sin

π
2
qð Þ

q þa5Dþa6q
ffiffiffi
D

p þa7q
ffiffiffi
H

p

Kozak (2004) d ¼ a0Da1Ha2X b1q4þb2 1=eD=Hð Þþb3x0:1þb5Hwþb6x

Demaerschalk (1972) di ¼ b0d
b1 h−hið Þb2hb3

Thomas and Parresol (1991) di
d

� �2 ¼ b1 q−1ð Þ þ b2sin b4πqð Þ þ b3cotan
πq
2

� �

D over bark diameter at breast height (at 1.30 m above the top of the stool, cm), d over bark diameter at height h (cm), H total tree height (m), h height
from top of the stool to top diameter d (m), hstump stump height (m), V total over bark stem volume (m3 ), a0,…, a2,…, b0,…, b6, p1, p2 parameters to be
estimated, k equal to π/40000, q is equal to h/H
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– Kozak (2004). Non-compatible variable-exponent taper
function.

– Demaerschalk (1972). Power function whose main ad-
vantage is that the volume equations obtained by integrat-
ing are algebraically compatible with classic taper
functions.

– Thomas and Parresol (1991). Trigonometric compatible
model.

2.3 Model fitting and selection

The models tested were fitted by non-linear regression with
the MODEL procedure of SAS/ETS® (SAS Institute Inc.
2004b) using generalized least squares for non-linear models.

Of the different options to estimate the parameters in
the systems where the taper equation includes a total
volume equation (Fang and Bailey 1999; Fang et al.
2000; Goulding and Murray 1976), in this study we
prioritized the taper function, setting this first and
subsequently performing the predicted volume calcula-
tion from the estimation parameters obtained.

To avoid problems in the estimation of the parame-
ters, a value of 0.001 was assigned to the final diameter
of the top section. Similarly, a value of 0.001 was also
subtracted from the heights equal to the total height,
that is h=H−0.001; values which are lower than the
appreciation limit are used in the data collection. This
approach allows the use of the entire data set for fitting
and does not significantly change parameter estimates
(Diéguez-Aranda et al. 2006).

There are several problems associated with stem taper
and volume equation analyses that violate the fundamen-
tal least squares assumption of independence and equal
distribution of errors with zero mean and constant

variance. One of the most common is the presence of
autocorrelation in the data as a result of working with
multiple observations on each tree. To resolve this prob-
lem, the error term was modeled using a continuous
autoregressive error structure (CAR(x)), which allows
the model to be applied to irregularly spaced, unbalanced
data (Zimmerman and Nuñez-Antón 2001).

Another problem in taper functions is multicollinearity,
which refers to the existence of high intercorrelations among
the independent variables in multiple linear or non-linear
regression analyses. To evaluate the presence of
multicollinearity, we used the condition number (CN). Ac-
cording to Belsey (1991), if the condition number is between 5
and 10, collinearity is not a major problem; if it is in the range
of 30–100, then there are problems associated with collinear-
ity; and if it is in the range of 1,000–3,000, the problems are
severe.

The criteria used for the comparison of the models
were based on the residual plot analysis and statistical
analysis of the goodness-of-fit statistics: adjusted coeffi-
cient of determination (R2

adj), root mean square error
(RMSE), and Akaike’s information criterion in differences
(AICd).

Table 3 Parameter estimates (approximated standard error in parentheses) for the models analyzed

Parameter Fang et al. (2000) Bi (2000) Kozak (2004) Demaerschalk (1972) Thomas and Parresol (1991)

a0 5.542×10−5 (3.7×10−6) 0.8600 (0.029)

a1 1.914 (0.015) 0.9781 (0.0084)

a2 0.936 (0.027) 0.08444 (0.015)

b0 1.520 (0.061)

b1 9.869×10−6 (1.61×10−7) Convergence was not achieved 0.7844 (0.029) 0.9567 (0.0098) −1.00228 (0.0065)

b2 3.362×10−5 (2.99×10−7) −0.3341 (0.040) 0.8898 (0.0070) 0.1107 (0.0036)

b3 2.667×10−5 (3.79×10−7) 0.4866 (0.016) −0.9378 (0.019) 3.851×10−7 (2.93×10−8)

b5 −0.01954 (0.0021)

b6 0.2318 (0.026)

p1 0.07191 (0.0014) 0.7258 (0.025) 0.8367 (0.024)

p2 0.5590 (0.0101) 0.3936 (0.020) 0.3639 (0.019)

Table 4 Goodness-of-fit statistics and condition number of the taper
functions evaluated

Model RMSE AICd R2
adj CN

Fang et al. (2000) 1.188 0 0.9838 62.40

Kozak (2004) 1.223 184.24 0.9828 62.57

Demaerschalk (1972) 1.537 1638.71 0.9728 62.81

Thomas and Parresol (1991) 2.055 3490.69 0.9515 3.74

RMSE root mean square error, AICd Akaike’s information criterion in
differences, R2

adj adjusted coefficient of determination, CN condition
number

Taper functions for chestnut coppice stands 765



Although the goodness-of-fit statistics reflect the be-
havior of the data for the different models evaluated, they
may not indicate which model is the best for practical
purposes (Diéguez-Aranda et al. 2006); hence, this deci-
sion should be made after analyzing each model’s behav-
ior according to the different stem sections. To evaluate
this, the bias and the root mean square error were calcu-
lated and plotted for diameter estimation by relative
height classes (intervals of 15 %) and for height estima-
tion by diameter classes (intervals of 5 cm). To estimate
the height at which the different diameters are achieved,
the iterative bisection method was used.

2.4 Model validation

Quality of fit does not necessarily reflect the quality of
future prediction (Myers 1990). Only validation with an
independent data set enables the accuracy of the selected
model to be known (Huang et al. 2003; Kozak and Kozak
2003). In this study, the validation process was carried out
with an independent data set consisting of 70 trees (from a
network of plots established by the Atlantic Forest Sys-
tems Research Group (GIS-Forest), Department of Organ-
ism and Systems Biology, University of Oviedo), which
produced a total of 719 height/diameter data pairs. Trees
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were felled and destructively sampled following the same
methodology as used for the fitting data set. Two valida-
tion statistics were calculated to assess the overall predic-
tion performance of the fitted equations on this validation
data set: (a) an estimate of the average prediction error
(APE) (Eq. 1) (Weisberg 1985) and (b) mean bias (Eq. 2)
estimated as an overall average and summarized by diam-
eter class, similar to that used by Zhang (1997). Both
statistics present errors in the same units as the variable
used, in this case centimeter for diameters and cubic meter
for volumes. The APE statistic in the validation process is
similar to the RMSE in the fitting.

APE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Y i−bY i

� �2

n

vuut
ð1Þ

Bias̄ ¼
Xn

i¼1
Y i−bY i

� �
n

ð2Þ

where Yi is the observed or real value, bY i is the estimated value
with the model, and n is the sample size of the validation data.

To examine the performance of the models in greater detail,

the values of Bias were plotted against diameter and total
volume. These graphs are of interest since they illustrate areas
in which the adjustedmodels provide poor or good predictions
according to the diameter class of the evaluated trees.

3 Results

Table 3 shows the parameters for the taper functions fitted, all of
which were significant at the 5% level, except for the Bi (2000)
model, where convergence was not achieved. The model of
Kozak (2004) was modified by removing the b4 parameter in
order to adapt it to local and species conditions (Kozak 2004).

All models performed well, each explaining more than
95 % of the total variability, with mean error below 2.05 cm
(Table 4). Comparison of goodness-of-fit statistics indicates
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that the best-fitting models are those of Kozak (2004) and
Fang et al. (2000), which each explaining more than 98 % of
the total variability. In both cases, the presence of
multicollinearity was observed (CN around 62) but it was
considered to be within acceptable limits.

A trend in the residuals depending on the distance and the
relative position of the measurement along the stemwas found
in the model fitting. Therefore, autocorrelation was corrected
applying a second-order autoregressive structure (because
using a first-order structure proved to be insufficient) with
the aim of obtaining unbiased and efficient estimates, which
did not invalidate statistical tests. Following this correction,
the trends in residuals virtually disappeared. Figure 4 provides
an example using the model of Fang et al. (2000).

Statistics are good indicators of the global performance of
the taper function, but alone, they do not allow the best model
to be selected. To do this, the evolution of bias and mean
square root error in diameter estimation by relative height
classes at intervals of 20 % (Fig. 5a, b) and in height estima-
tion by diameter class (Fig. 6a, b) was analyzed for the two
best-fit models, Fang et al. (2000) and Kozak (2004).

Graphical analysis of the bias in predicting diameters
(Fig. 5a) confirmed the good performance of both models
(with bias under ±0.1), with a certain advantage seen for the
model of Fang et al. (2000), which showed lower bias at
different heights, especially in the lower part of the stem (that
with the highest merchantable value). In relation to the evo-
lution of RMSE in predicting diameters (Fig. 5b), both models
were very similar, although the model of Fang et al. (2000)
was slightly better.

With regard to the evaluation of bias in predicting heights
(Fig. 6a), the model of Fang et al. (2000) showed lower bias
until diameter class 35, at which point the model of Kozak
(2004) performed better, although the model of Fang et al.
(2000) again showed the best fit at class 45. For both models,
however, there was bias, although up to and including diam-
eter class 25 it was always below 0.3 cm, and for the classes

above this, always less than 0.4 cm. The behavior of both
models in terms of RMSE was very similar (Fig. 6b).

Taking into account the results and in particular the practi-
cal utility of the compatibility between the classic two inputs
volume equation and the taper function, the model of Fang
et al. (2000) was selected as the most appropriate for chestnut
coppice stands in northwest Spain.

The plotting of values from predicted diameter in the
selected taper function against the residuals is shown in
Fig. 7, where no systematic trend in the distribution of resid-
uals was observed. Figure 8 shows, as an example, the profile
of three trees—one small (d=11.15 cm and h=12.19 m), one
medium sized (d=24.5 cm and h=18 m), and one large (d=
36 cm and h=24.12 m) generated from the observed values
(solid lines) and predicted values (dashed lines) for the model
of Fang et al. (2000). Figure 9 shows predicted values of total
volume for the selected taper function against the observed
volume values, verifying the accuracy of the estimates (ac-
counting for 98.38 % of the total variability).

3.1 Model validation

Table 5 shows the statistics used in model validation, calculated
for different diameter classes. APE generally increased with
diameter class in the trees evaluated for the variable diameter
and volume and provided good results (average prediction error
of 2.14 cm for diameter and 0.059 m3 for volume).

The graphs of mean prediction bias are shown in Fig. 10.
All values obtained, in the case of both diameter and volume,
were similar and close to zero, indicating that the selected
equation fits well with the real profile of the tree. Up to
diameter class 25, the statistics were very close to zero,
although, it is important to note that from diameter class 35,

the Biasvalues in predicting diameter were far from zero. Bias
values indicate that both diameter and total tree volume are
overestimated (negative values).

4 Discussion

Currently, detailed information is available as regards the
different functions and methodologies for the correct estima-
tion of diameters at different heights and total or merchantable
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Fig. 9 Plot of predicted values against observed values for total tree
volume from the taper function proposed by Fang et al. (2000)

Table 5 APE and Bias statistics generated from the assessment of
prediction error for the taper function fitted in the validation process

APE
Bias

Diameter (d) 2.14 −0.41
Total volume (V) 0.059 −0.019

APE average prediction error, Bias mean bias
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stem volume for different species (e.g., Barrio et al. 2007;
Diéguez-Aranda et al. 2006). However, no such tools are yet
available for chestnut, neither for high forest nor for coppice
stands, hence the relevance of this work, which facilitates a
better understanding and management of the species.

The final selected model explained more than 98.4 %
of total variability and had mean errors below 1.20 cm.
The estimates obtained in the models analyzed were
similar to those obtained for other species. The model
of Fang et al. (2000) has shown good performance, as
much for broadleaf species as for conifers (e.g., Barrio-
Anta et al. 2007; Diéguez-Aranda et al. 2006; Pompa-
García et al. 2009).

Significant variability in chestnut stem profiles occurs
in this study due to the high number of stems (up to eight)
which were growing from each stool. Previous studies
(e.g., Muhairwe 1994) have already demonstrated that
factors such as site index, size and position of the crown,
and stand density affect the profile of the tree. Modeling
the profile of chestnut, in particular in coppice stands,
presents an additional difficulty. Due to the fact that often
many stems come from the same stool, it seems logical
that stool density (number of stems per stool) as well as
stand density might also be a key factor because internal
competition affects the profile of the tree. Despite this, the
selected model explained over 98 % of total variability,
above the values obtained in previous broadleaf studies
(Barrio-Anta et al. 2007; Pompa-García et al. 2009).
Moreover, as the bias values in predicting diameters show,
the results perform well in relation to the basal part of the
tree, thereby solving one of the main problems associated
with the use of taper functions in trees with prominent
basal zones.

Validation with an independent data set confirmed the
applicability of the selected taper function and the compatible
volume equation for chestnut coppice stands in northwest

Spain. Both statistics, APE and Bias, increased with diameter

class in the trees evaluated. Bias values did not vary greatly
until diameter class 35, after which range slightly increased.
This can be attributed in part to a relatively lower number of
sampled trees in this diameter class, that is, 4 trees from a total
of 70 in the whole validation data set.

5 Conclusions

A taper function for chestnut coppice stands in northwest Spain
was developed to estimate diameter at any point along the stem,
along with a total volume equation compatible with the fitted
taper function. A total of five models were evaluated: the
segmented model of Fang et al. (2000), the variable exponent
functions proposed by Bi (2000) and Kozak (2004), the power
function proposed by Demaerschalk (1972), and the trigono-
metric compatible model proposed by Thomas and Parresol
(1991). In the end, the Bi (2000) model was not compared to
the other models because convergence was not achieved in this
case. All the other functions analyzed had good performance in
estimating diameter along the stem, all of them appropriately
describing the stem profile for chestnut coppice stands.

The compatible system to estimate volume proposed by
Fang et al. (2000) was finally selected as the best taper
function to explain the profile of chestnut coppice, as much
for its goodness-of-fit statistics (R2adj of 0.98 and mean error
of 1.19 cm) as for its prediction ability for diameter and height
along the stem. This system has the advantage of being
formed by a taper function, a total volume equation, and a
merchantable volume equation, all of which are compatible
between themselves.

Validation using an independent data set reflected the qual-
ity of predictions and confirmed the ability of the selected
taper function to describe the stem profile in chestnut coppice
stands in northwest Spain.

The taper function finally selected could be used for coppice
stands in the rest of the country or elsewhere in the first
instance, until new adjusted taper functions are developed to
ensure the most accurate estimations possible for specific areas.
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