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Abstract
& Key message Knowing the uncertainty for biomass equa-
tions is critical for their use and error propagation of
biomass estimates. Presented here is a method to estimate
uncertainty for equations where only n andR2 values from
the original equations are available.
& Context Tree allometric equations form the basis of research
and assessments of forest biomass. Frequently, uncertainty

estimations do not propagate errors from these equations since
the necessary information about sampling and tree measure-
ments is not included in the original publication. Many bio-
mass studies were conducted decades ago and the original,
raw data is unavailable.
&Aims Because of this information deficiency, and to improve
error estimates in applications, a system to estimate the error
structures of such equations is presented.
& Methods A pseudo-data approach involving the creation of
possible (pseudo) data using only R2 and n with a simple
Monte-Carlo process generates probable error structures that
can be used to propagate errors.
& Results In a test of five different species with varying n input
data and population variability, the original error structures
were successfully recreated.
& Conclusion This method of creating pseudo-data is simple
and extensible and requires commonly published information
about the original dataset. The method can be employed to
create new ecosystem-level equations from species-specific
equations, implemented in systems to select allometric equa-
tions to reduce uncertainty, and aid in the design of large-scale
campaigns to generate new allometric equations for improv-
ing local to national scale estimates of forest biomass. The R
code will be made freely available to anyone upon request to
the authors.

Keywords Allometric equations . Uncertainty estimation .
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1 Introduction

1.1 Global importance of tree allometric equations

Biomass estimates for large forested regions are important to
our understanding of the global carbon cycle and climate, and
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there are several emerging reasons to predict as accurately as
possible the amount of carbon stored in forested ecosystems
and exchanged with the atmosphere (IPCC 2013). There is
increasing recognition that changes in the land surface may
significantly affect climate, and earth systemmodeling studies
have revealed the importance of accurately representing
changes in terrestrial biomass to improve global climate pro-
jections which currently focus mainly on emissions from
wildfire from land use change (Oleson et al. 2010;
Shevliakova et al. 2009). Biomass estimates and quantifica-
tion of uncertainties are also critical for mitigation strategies,
because carbon markets and other mechanisms for reducing
atmospheric CO2 concentrations through forestry require
monitoring and reporting systems including quantification of
the uncertainty associated with these estimates (Birdsey
et al. 2013). Beyond the realm of climate, global de-
mands for energy increasingly consider use of biomass
for fuel to be a cost-effective alternative to fossil fuels
in some areas (US Department of Energy 2011). Current and
prospective users of biomass energy require accurate esti-
mates of biomass supply to support their operations or strate-
gic siting of facilities.

Studies in the USA have shown that the selection of
biomass equations for regional studies may make a
significant difference in the resulting biomass estimates,
with differences ranging up to 30 % (Domke et al.
2012). However, lack of quantitative error estimates
for the selected equations hinders ability to make a
selection appropriate to the intended use. Often, generalized
biomass equations are used when local equations are lacking,
but these rarely include assessment of uncertainty and
guidance for appropriate application (Jenkins et al. 2003;
Chave et al. 2005).

1.2 Importance of understanding allometric equation
uncertainty

Estimation error is important to understand across all scales,
especially when the sample number is low. Propagated uncer-
tainty estimates that account for allometric equation error
facilitate comparisons with other components of the total error
in a system. For example, it is useful to know if allometric
equation error is small compared to sampling error when
reporting biomass stocks from large inventories and over large
areas (Johnson et al. 2014). Additionally, tree-level error
propagation is even more important when estimates and their
uncertainties are required for decisions based on inventories of
small areas (e.g., a community-managed forest) or for a pixel-
level validation of biomass maps with individual plots. Most
allometrics generated for forest areas having smaller size
classes with few large trees show a greater variance in biomass
per diameter at breast height (DBH), i.e., heteroscedasticity,
and may introduce large biases in biomass estimates.

Propagating errors for biomass estimates using tree allometric
equations from published literature requires detailed fit infor-
mation (fit parameters’ confidence intervals, sum of square
errors (SSEs), R2, n, etc.) from the original published work.

1.3 Pseudo-data approach to tree allometric model uncertainty
estimation

The uncertainty of predicted values cannot be propagated
from incomplete allometric model fit statistics. Often, re-
searchers today rely on allometric models published decades
ago where little information beyond the number of trees
harvested and the R2 of the model fit were included. To
overcome this limitation, pseudo-data that mimic underlying
sample populations can be generated using limited fit infor-
mation, providing insight into the variance of the data
used to create the original allometric model. This
pseudo-data can then be used to estimate the uncertainty
for the original allometric model. The result is not a
perfect recreation of the model fit statistics, but it al-
lows a better understanding of the error structures for
the original allometric model and error propagation. It
must be made clear that the technique described in this
research is to be used only when all other options for recov-
ering the proper fit statistics are exhausted. The original, raw
data should be sought out, but after many decades, much of
that data has been lost.

Pseudo-data have been used widely for a variety of
purposes. It is most often used in meta-analysis studies
to combine information from a variety of sources where
the models cannot be mathematically combined due to
different forms and parameters (Bowden et al. 2006;
Blunden et al. 2010), improving model estimations (Ooi and
Chetty 2005) and in simulations (Wood et al. 1994;
Rigby et al. 2012).

For tree allometric models the R2 of the fit, n, and range of n
information are generally available. The R2 of the fit provides
information about the residuals of the fit with respect to the
published model. Using this basic statistic, pseudo-
populations can be generated that mimic the original data
and then be used to generate estimates of model uncertainty,
most notably error bounds for the model’s parameters that are
used to propagate model error. It is important to note that in
creating tree allometric equations using non-linear methods,
the R2 is a less reliable statistic than others; however, in many
cases, it is the only statistic published to indicate quality of the
resulting model.

The aim here is to present detailed methods for the
creation of pseudo-data in the context of tree allometry
using a Monte-Carlo technique, compare the pseudo-
data method against model fits using raw, destructive
harvest data and provide specific recommendations for the
application of this method.
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2 Methods

2.1 Pseudo-data generation for allometric equations

In general, the process of pseudo-data generation, selection,
and uncertainty estimation for allometric equations where
only the R2 and n are known is shown in Fig. 1. To create a
pseudo-dataset of points from which the allometric equation
could have been generated, several steps are required:

1. A large number (10,000 in this case) of DBH values
within the DBH range of the original allometric equation
are generated from a uniform distribution. These DBH
values are then used to calculate biomass values from the
original equation. Generating DBH values from a uniform
distribution allows for later selection of n-sized subsets
using different distributions for subset selection described
in step 4. At the end of this step, according to our exam-
ple, there are 10,000 DBH values distributed evenly over
the range of diameters from the harvested trees and their
calculated biomass values.

2. Biomass values generated in step 1 are then randomly
“fuzzed” by small, random steps drawn from a normal
distribution multiplied by the original biomass to create a
pseudo-population with varying biomass as a function of
DBH. If the original equation is linear or log-transformed
to use a linear fitting process, no further random disper-
sion is introduced. If the original equation is non-linear
and was fit using a non-linear routine, heteroscedasticity
is introduced using a dispersion function based on DBH.
Since the variability in the biomass of trees grows larger
as the diameter increases (i.e., it is heteroscedastic) the
process must present a wider range of biomass values as
the diameter increases. The function to introduce this
effect here is very simple and generic. If the user has
information of this relationship from other data, species,
etc., they should use that instead. Figure 2 shows what
hypothetical pseudo-data might look like with different R2

values and heteroscedasticity. Note how the variance in
biomass increases as the DBH increases in both cases,
but also the overall dispersion of the data is less with the
higher R2 value. The dispersion increments should depend
on the precision with which the original R2 was reported;
smaller increments should be used with a higher precision
R2 reported (e.g., four or five decimal places). Usually,
1000 pseudo biomass sets are sufficient, ranging from very
low to high variance. At the end of this step, the user will
have 1000 (or more) pseudo-datasets, each containing
10,000 (or more) DBH biomass points plus the original
set of 10,000 points calculated from the original equation.

3. For each of the sets of pseudo-data, the R2 is calculated
using the starting DBH and biomass values (from step 1).
To avoid fitting a curve to each of the 1000 new datasets

from step 2, the coefficient of determination can be de-
fined as follows:

R2≡1−
SSresiduals
SStotal

ð1Þ

where

SSresiduals ¼
X

i

biomasspseudoi−biomassorigi
� �2 ð2Þ

and:

SStotal ¼
X

i

biomasspseudoi−biomasspseudo
� �2

ð3Þ

The logic here may seem reversed, but the pseudo-data
are considered our observed data and the original biomass
is the predicted value. The pseudo-dataset with the R2

most closely matching the published R2 is then selected.
This step results in one final pseudo-dataset that may look
like one of those shown in Fig. 2. This is the dataset used
in the following steps.

4. From the chosen pseudo population in step 3, a subsample
of n data points is drawn, where n is the number of trees
harvested in the original experiment that is being recreat-
ed. Here, a truncatedWeibull distribution (Weibull 1951a,
b) without replacement, was used 10,000 times. The
truncated Weibull distribution was selected since most
tree allometric equations are created using destructive
harvests where more trees are cut toward the lower end
of the diameter range than the larger end for reasons of
practicality. If the original DBH distribution can be in-
ferred from the original manuscript, e.g., “trees were
chosen uniformly across the DBH range,” then that
should be used instead of what is presented here. The
result of this step is 10,000 sets of DBH and biomasses
each containing n values.

5. Each subset from the pseudo-populations from step 4 is then
fit using the original equation form, and all fit parameters
and error statistics are saved. This step requires a model
fitting routine that can be automated as repeating a curve fit
procedure 10,000 times individually would be very onerous.

6. SE, R2, adjusted R2, root mean square error (RMSE), and
model parameters are calculated as the mean of the 10,000
trials. Standard deviations are also calculated for examina-
tion of simulation dispersion. The number of trials follows
good practice guidance (IPCC 2006) when using Monte-
Carlo simulations for uncertainty estimations. However,
usually ∼100 simulations are sufficient to converge on the
estimate of uncertainty. The distributions of the resulting
means and parameters are checked for normality as a qual-
ity control step.

Steps 1 through 3 can be vectorized in the computer code,
and the creation of the pseudo-populations is nearly
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instantaneous. Steps 4 though 6 generally require the use of
programmatic loops for the calculations, but can be processed
using parallel computing code to increase overall speed.

2.2 Validation

2.2.1 Experimental data

Raw destructive harvest data for DBH and biomass were
obtained from the ENergy from the FORest research program
(ENFOR) of the Canadian Forest Service (Ung et al. 2005,
2008). Five species from this dataset were selected based on n,
DBH range, and distribution (Table 1).

2.2.2 Validation process

As a validation exercise, the biomass and standard errors of
the generated allometric equations from the raw, known data

and the pseudo-data approach were compared for five selected
species from the ENFOR dataset.

To create the “original” allometric equation, DBH and bio-
mass data for each species from the dataset were fit to the
equation:

biomass ¼ e β0þβ1ln DBHð Þð Þ ð4Þ

with the biomass in kilograms and the DBH in centimeters.
The non-linear regression was solved iteratively by the Gauss-
Newton method, and the parameters and fit statistics were
calculated using MATLAB R2013b (MathWorks 2013).

The pseudo-data generation process outlined above was im-
plemented using MATLAB for each species using only input
information from the original fit of R2 and n. Since the original
equation is the result of a non-linear fit, the creation of the
“fuzzed” biomass sets of pseudo-data was of the following
form:

biomasspseudo ¼ biomassorig þ svarrnormDBH ð5Þ

where svar is a scaling factor that increments from 1 to 200
by step 0.2 and rnorm is a random number drawn from a normal
distribution, mean 0, variance 1. This equation, at lower DBH
values, can produce illogical negative numbers, but these were
not removed from the pseudo-data.

The selected pseudo-data population for each species was
then re-fit to each subsample from the Weibull distribution
10,000 times, and the fit information was summarized. The
Weibull distribution was chosen following the assumption that,
against best practice guidelines, more, smaller trees would have

Original biomass
equation information
Parameters, n trees,

DBH Min/Max, R2

Create 10,000 
Random DBH

Calculate Biomass

Compare calculated 
vs. published R2

 Select pseudo data 
with minimum 

difference

DBH Min/Max

R2

Equation & Parameters

Estimate parameter 
errors by selecting n
tree samples x 1000. 
Sub-sample pseudo 
data using truncated 
Weibull distribution 

n trees

Results
Error estimates

Introduce random error 
into calculated biomass

Vary standard deviation 
in small increments 
(1,000 steps)
Multiply each biomass by 
standard deviation 
increment (if eq. is 
nonlinear use a DBH-
based scaler for 
heteroscedasticity)

eq. form
Calculate R2

Fig. 1 Pseudo-data generation
process flow chart highlighting
the steps involved in the process

Fig. 2 Example of pseudo-data dispersion with lower (left) and higher
(right) R2 values used in the pseudo-data generation process
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been chosen for allometric model generation. The shape of the
distribution was given generic values from the researchers’
experience and scaled to the DBH range. The standard errors
of the model curves were generated using JMP v.9 software
(SAS 2007) and distribution of biomass each pseudo-data trial
(subsample) and ENFOR datasets were compared by creating
cumulative distribution functions and calculating Kolmogorov-
Smirnov (KS) statistics. The KS statistic is a metric of the
maximum distance between two cumulative distribution func-
tions (CDF), where higher values reflect poorer agreement
(Riemann et al. 2010).

3 Results

Biomass versus DBH (Fig. 3) plotted by species for both
datasets with the original model and harvested data for each
species shows that the pseudo-data approach encompasses the
range of input data well. The model fit summary for the sub-
sampled pseudo-data is not included for clarity. While the DBH
and biomass relationship is useful, it is the underlying structure
of the error of the model fit that is most important. As seen in
Fig. 4, the underlying error structure does vary by DBH as
expected, with higher error generally at higher DBH in both

Table 1 Summary statistics of the ENFOR data used for validation of the pseudo-data method. The validation datasets were chosen to encompass a
range of n and sample distributions

Common name Species n DBH min (cm) DBH max (cm) DBH mean (cm) DBH skewness DBH kurtosis

Black spruce Picea mariana 1871 0.7 38.4 13.41 0.2341 2.9151

Aspen Populus tremuloides 820 0.7 47.2 17.67 0.5816 2.6211

Red maple Acer rubrum 179 1.1 56 19.85 0.6061 2.8408

Red spruce Picea rubens 55 6.5 43.5 22.93 −0.0805 2.2065

Black cottonwood Populus trichocarpa 19 7.4 30.6 16.66 0.6391 2.1469

Fig. 3 Biomass versus DBH
for each species showing the
fitted model (dashed line), the
overall range of pseudo-data
(background), and the raw,
harvested data for comparison
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the original fitted model and in the pseudo-data. The relation-
ship between the original model and the pseudo-data errors
varies by species and with n. However, the relative error as a
function of biomass is greater at lower DBH values for all
species (not shown).

While visual inspection is useful to understand the trends,
Table 2 shows the comparison between the original model and
the summary of the 10,000 pseudo-data trials. In terms of the
model parameters, the pseudo-data process produced nearly
identical estimates to the original model. The 95% confidence
intervals of those parameters show a wider range for the
pseudo-data except in the case of black cottonwood. Black
cottonwood estimates for SSE and RMSE are lower than those
of the original model, and elsewhere, the SSEs and RMSEs
between the original model and the pseudo-data are similar. R2

and adjusted R2 are nearly identical except in the case of red
maple where it is higher, which is unexpected. Overall, esti-
mating the original model errors from using only R2 and n as
inputs into the pseudo-data process seems valid.

The KS summary (Table 3) shows that as n de-
creases, the agreement between the CDFs tends to decrease

(i.e., increasing KS), indicating that biomass distributions are
more difficult to replicate with the pseudo-data approach
when sample sizes are small.

4 Discussion

4.1 Validation experiment

For three of the five species tested (black spruce, aspen, and
red spruce), creating pseudo-data from just R2 and n result in
error structures, goodness of fit statistics, and parameter
values that are indistinguishable from the original model fit
information. Not coincidentally, the KS statistics for these
species are the lowest of the five species examined here. The
pseudo-data creation process for red maple and black cotton-
wood produce parameter estimates equal to those for the
original model fit; however, the goodness of fit statistics are
different from the original equation. These differences are also
reflected in the confidence intervals around the β0 and β1
model parameters where in an error propagation exercise, the

Fig. 4 Standard error curves
of the original model
(dashed line) and pseudo-data
trials (background)
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pseudo-data results overestimate uncertainty for red maple
and underestimate uncertainty for black cottonwood.

For these two species, the differences in uncertainty from the
original model could be due to two main processes or a combi-
nation of each. The biomass and DBH distributions of the
harvested data for red maple and black cottonwood are shown
in Figs. 5 and 6, respectively. For red maple, the pseudo-data
contain a proportionally larger number of diameters on the
lower end than the raw data, especially below 20 cm DBH. In
Fig. 4, red maple, from 20 to 36 cm, the error of the pseudo-data
model is consistently higher than the original model. Due to the
relatively larger numbers of data points in this range, the overall
parameter confidence intervals are affected. Also, the lower
errors estimated from the pseudo-data at higher DBH than the
original data suggest that red maple as a species is more variable
at higher DBH (i.e., more heteroscedastic) and the function
chosen to recreate this for pseudo-data generation did not intro-
duce enough variance at higher DBH.

Black cottonwood (Figs. 6 and 4) shows the opposite trend,
with the pseudo-data model error, on average, higher with a
wider range. Either the general Weibull distribution is sam-
pling the overall pseudo-data in a non-optimal sense to match
the original data, the model form on which the original equa-
tion is based is not appropriate for the input data, or, more
likely, a mix of both. This result, while not optimal, does not
invalidate the approach. The original data are known here, but

in a real-world case, none of this comparative information
would be available. Improper model choice by the original
researcher cannot be addressed by this technique, but altering
the sample distribution for the Monte-Carlo subsampling can
be examined. Figure 7 shows the comparison of errors from
pseudo-data against the original model where a uniform sam-
ple distribution was used. The pseudo-data, on average, tend
to overestimate the error across all DBH values, but the shape
more closely fits that of the original error structure. However,
the improvement is slight.

4.2 Recommendations for pseudo-data use with tree
allometric models

4.2.1 Heteroscedasticity function:
fuzzy wuzzy… but how fuzzy?

The function presented in the validation exercise to randomize
the biomass data and introduce heteroscedasticity is not based
on any ecological premise. It is a simple step scalar with a
random component, and yet, the generation of the pseudo-
population performed reasonably well. If nothing is known
about the relation between DBH and biomass and the variance
of the target species of the allometric model, a simple assump-
tion as used here is sufficient. While not required, if this
information can be determined or inferred from other sources,

Table 2 Result comparison between original and pseudo-data allometric models for a range of fit parameters

95 % confidence intervals

SSE R2 Adjusted R2 RMSE β0 β1 β0Lower β0Higher β1Lower β1Higher n

Black spruce

Original 441,586.3036 0.9544 0.9543 15.4917 −2.116572 2.333806 −2.1953 −2.0379 2.3088 2.3588 1871

Mean pseudo 498,924.9285 0.9547 0.9547 16.3335 −2.106873 2.330674 −2.2334 −1.9803 2.2888 2.3725

Std pseudo 24,778.9052 0.0030 0.0030 0.4057 0.064566 0.021342

Aspen

Original 1,613,214.6520 0.9501 0.9501 44.4360 −2.062734 2.352142 −2.2368 −1.8886 2.3026 2.4017 820

Mean pseudo 1,398,491.5670 0.9500 0.9499 41.3175 −2.098686 2.361678 −2.3298 −1.8675 2.2929 2.4305

Std pseudo 107,384.9630 0.0048 0.0048 1.5853 0.117933 0.035093

Red maple

Original 603,082.8682 0.9592 0.9590 58.3716 −1.982576 2.359587 −2.3036 −1.6615 2.2715 2.4477 179

Mean pseudo 619,968.5144 0.9746 0.9745 58.9027 −1.963953 2.354351 −2.4228 −1.5051 2.2282 2.4805

Std pseudo 121,228.2581 0.0055 0.0055 5.7551 0.234088 0.064352

Red spruce

Original 43,584.0562 0.9708 0.9702 28.6765 −2.706694 2.488505 −3.2305 −2.1829 .3384 2.6386 55

Mean pseudo 36,113.1791 0.9733 0.9728 25.9134 −2.716549 2.491141 −3.2890 −2.1441 2.3220 2.6602

Std pseudo 8775.5668 0.0081 0.0082 3.1430 0.292055 0.086273

Cottonwood

Original 17,213.6131 0.9269 0.9226 31.8208 −2.622430 2.471129 −4.3681 −0.8767 1.9432 2.9990 19

Mean pseudo 6273.8066 0.9384 0.9348 18.7684 −2.675772 2.487688 −4.0923 −1.2592 2.0252 2.9502

Std pseudo 2765.6486 0.0344 0.0364 4.0981 0.722726 0.235989

Allometric equation pseudo-data method 831



it will improve the overall results as would be the case for
red maple.

In selecting a function to randomize the biomass data, the
user should take care to not introduce unreasonable variance
into the process as; at times, 1000 pseudo-populations would
not be enough to produce a pseudo-dataset with an R2 close to
the target (published) R2. When implementing this system, the
differences in published R2 and selected pseudo-data R2

should be examined to ensure the process results in a credible
pseudo-population.

The step interval incorporated into the biomass randomi-
zation process should also be small enough to create subtle
differences in each pseudo-population so that the difference in
published and pseudo R2 is as small as possible. In general,
this difference should be on the order of 0.0005 or less for an
R2 reported to four significant figures. If this is not the case,
modifying the randomization routine to generate more subtly
different pseudo-populations is recommended.

4.2.2 Subsample distribution: to Weibull or not to Weibull?

When subsampling the pseudo-population to estimate param-
eter errors, the choice of distribution is important. Any exter-
nal data or inference about the sample distribution used to
create the original allometric model should be used. In the
validation exercise here, a general, truncated Weibull distribu-
tion was used as most allometric model generation work

involves selecting trees for harvest that fit this distribution. It
is important to remember that the choice of distribution should
match the harvested data distribution. This is not to be con-
fused with the diameter distribution of the target population.
Tree allometric equations are designed to describe the rela-
tionship between some easily measured characteristic of a tree
(e.g., DBH height) and some useful metric (e.g., biomass and
volume) that cannot be directly measured in the population of
interest.

4.2.3 What pseudo-data cannot do

The method presented has its limitations. The uncertainty
information produced is only an estimate derived from the
original model error. Thus, it should not be used to generate
new allometric models of different form, as the pseudo-
population is just a large dataset that should contain a reason-
able representation of the original data. Effectively, there exist
an infinite set of combinations of input data that could have

Table 3 Kolmogorov-
Smirnov results Species n KS (mean)

Black spruce 1871 0.055

Aspen 820 0.073

Red maple 179 0.170

Red spruce 55 0.156

Black cottonwood 19 0.267

Fig. 5 Red maple biomass and DBH distributions for the raw and
pseudo-data for comparison

Fig. 6 Black cottonwood biomass and DBH distributions for the raw and
pseudo-data for comparison

o

Fig. 7 Black cottonwood standard error of the original model (dashed
line) and pseudo-data trials (background) where trials were drawn from a
uniform distribution
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produced the published R2. Other uncertainty due to the tree
allometric model such as bias from model form, input data
selection (e.g., range, distribution, and n), and fitting method
are not explicitly included in estimates produced using this
method.

5 Conclusions

Creating pseudo-populations that mimic the range of possible
DBH versus biomass relationships based on very little infor-
mation (R2 and n) is possible. Therefore, the uncertainty can
be propagated using this information for older equations
so that individual allometric equation errors can be
aggregated at the plot level and added to sampling
errors, and then be included in local- to regional-scale
estimates (e.g., Johnson et al. 2014). The uncertainty
estimated by this method is most likely an overestimate de-
pending on the forest DBH distributions and error propagation
technique used.

The method presented here is simple and extensible and
requires little information about the original dataset. It can
easily be adapted for use with models that have multiple
independent variables simply by using multidimensional ar-
rays. Implementation is straightforward, and the use of a
Monte-Carlo method is easy to understand. The code will be
made available online at both the Quantifying Uncertainty in
Ecosystem Studies (http://www.esf.edu/quest) and
Globallometree (http://www.globallometree.org) websites.

While these methods are useful for estimating uncertainty,
they do not replace well-designed, large-scale field campaigns
for generating allometric equations using a standardized ap-
proach. Field campaigns are critical for reducing errors asso-
ciated with allometric equation development so that the prin-
ciple source of uncertainty is from natural variability.

Biomass estimates for large forested regions are important
to our understanding of the global carbon cycle, especially
now that there is a need to predict as accurately as possible
carbon stored in forested ecosystems to improve global
models of CO2 for climate change. Also, national greenhouse
inventories, mitigation strategies, carbon markets, and other
mechanisms require knowledge about the uncertainty associ-
ated with these estimates at national, regional, and smaller
scales. Uncertainty estimates are required to be associated
with these values. In order to use existing allometric equa-
tions, a method like this is a valuable tool for these efforts.

In the future, aggregate allometric equations for functional
groups (e.g., Jenkins et al. 2003;Woodall et al. 2011) can have
robust uncertainty estimations useful for propagating errors
associated with them. A slight modification to this process
would also allow for minimizing errors of functional groups’
allometric equations. Through Monte-Carlo experiments, the
groupings can be changed and the effects on uncertainty can

be examined. Uncertainty can be minimized a priori to
select a level of uncertainty to meet and functional groups can
be created.
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