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Abstract
• The key message N addition decreased soil inorganic P
availability, microbial biomass P, and acid phosphatase
activity in the larch plantation. Soil inorganic P availabil-
ity decreased after N addition due to the changes in both
microbial properties and plant uptake.
• Context Soil phosphorus (P) availability is considered an
important factor in influencing the biomass production of
plants. Sustained inputs of nitrogen (N) through atmospheric

deposition or N fertilizers, particularly in temperate forests,
may change the composition and availability of P and thus
affect long-term forest productivity.
• Aims The objective of this study was to assess soil P avail-
ability, P fractions, and microbial properties including micro-
bial biomass P and acid phosphatase activity after 9 consecu-
tive years of N addition in a larch (Larix gmelinii) plantation,
northeastern China.
• Methods From 2003 to 2011, NH4NO3 was added to repli-
cate plots (three 20 m×30 m plots) in the larch plantation each
year at a rate of 100 kgN ha−1 year−1. Soil samples from 0–10-
cm and 10–20-cm depths were collected in N addition plots
and control (no N addition) plots.
• Results N addition significantly decreased soil NaHCO3-Pi
(Pi is inorganic P), microbial biomass P, and acid phosphatase
activity but increased the NaOH-Pi concentration. N addition
appeared to induce a decrease in soil inorganic P availability
by changing pH and P uptake by trees. In addition, N addition
significantly decreased the NaOH-Po (Po is organic P) con-
centration, possibly because of increased P mineralization.
However, the total P and other P fractions were unaffected
by N fertilization.
• Conclusion Our results suggested that N addition enhanced
P uptake by trees, whereas it reduced soil inorganic P avail-
ability as well as microbial biomass and activity related to soil
P cycling in the larch plantation.
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1 Introduction

Nitrogen (N) is generally believed to be the one nutrient
limiting primary productivity in a wide variety of terrestrial
ecosystems (LeBauer and Treseder 2008), particularly in
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temperate forest ecosystems with relatively young soils
(Vitousek and Howarth 1991). Thus, fertilization with N often
stimulates tree growth, resulting in increased plant production
in such ecosystems (Thomas et al. 2010). Recently, increased
plant production after N enrichment has led to a concern that
forest ecosystems may be limited by other important nutrients
such as phosphorus (P) (Braun et al. 2010). Although studies
have focused on the impact of increased N on carbon (C)
cycling (Sinsabaugh et al. 2005; Nave et al. 2009; Cusack
et al. 2010), the question of how increased N affects the
availability and cycling of P in forest soils receives little
attention. Given that P is an important structural component
of nucleotides, phospholipids, and nucleic acids in plants
(Schachtman et al. 1998), it is important to understand the
effect of N addition on the forms and availability of P in soils.

The P in terrestrial ecosystems exists in many complex
chemical forms, including inorganic mineral forms and organ-
ic forms, which differ markedly in their behavior, mobility,
and bioavailability in the soils. Studies have reported that soil
P availability, especially inorganic P, is directly linked to net
primary productivity (Herbert and Fownes 1995; Paoli and
Curran 2007; Baribault et al. 2012). In forest soils, N addition
may stimulate primary production and increase biotic P de-
mand, therefore decreasing soil inorganic P availability
(Vitousek et al. 2010). Mycorrhizae may play an important
role in the plants because they may affect uptake of relatively
immobile nutrients, such as P, then changing soil P availability
(Clark and Zeto 2000). It has been suggested that N inputs
may significantly enhance nutrient cycling in the terrestrial
ecosystems via stimulation of root growth and mycorrhizal
functioning (Tu et al. 2006). In addition, N addition decreases
soil pH, which then mobilizes soil aluminum and iron, there-
fore reducing available P through increased P sorption and
decreased mineralization of organic matter (Carreira et al.
2000). The content and forms of soil organic P may also be
influenced by N addition through changes in organic matter
input (Khan et al. 2008). Taken together, if continued N
addition changes the soil P cycle, then understanding how
the soil P status changes in response to N addition will be
important for predicting forest ecosystem function.

Nitrogen addition could influence soil P availability
through microbial changes, especially phosphatase enzyme
activity (Marklein and Houlton 2012). For example, phospha-
tase enzyme is rich in N, meaning that soil microorganisms
must sacrifice N to get P via this path (Olander and Vitousek
2000). In addition, from a functional perspective, the phos-
phatase enzyme response to N addition has received consid-
erable attention because this enzyme contributes to the pro-
cesses controlling organic P mineralization (Criquet et al.
2004). Studies that examined phosphatase enzyme activities
after N addition in different forests have produced contradic-
tory results. One study reported that soils underlying a Euca-
lyptus dunnii plantation after N addition increased in both

phosphatase activity and P availability (Wang et al. 2008),
while another study showed no significant change in phos-
phatase activity after N addition in young spruce stands in
Sweden (Clarholm 1993). Importantly, the response of phos-
phatase enzyme activity to added N has direct effect (increase
in N availability) or indirect effects (changes in pH or con-
centrations of cations/anions other than N availability). To
better illustrate soil P status after N addition in temperate
forests, we need to understand how soil phosphatase enzyme
activity was affected by added N.

During the last few decades, rapid economic development
in China has resulted in accelerated N deposition (Lü and Tian
2007). Northern China is considered one of the main N
deposition areas in Asia. The N deposition levels in northern
China are in the range of 28.5–100.4 kg N ha−1 year−1 (Pan
et al. 2012). Larch species are widely distributed throughout
northern Asia, and many are important forestry species (Wang
et al. 2006; Ohsawa and Shimokawa 2011). In previous stud-
ies, the effects of N addition on soil respiration, microbial
properties, and methane and nitrous oxide fluxes have been
investigated (Hu et al. 2010; Jia et al. 2010; Kim et al. 2012).
However, little is known about how N addition may alter soil
P status in larch plantations.

In this study, we investigated soil P forms and the microbial
properties affecting P cycling and transformation (i.e., micro-
bial biomass P and acid phosphatase activity) in response to 9
consecutive years of N addition in a larch (Larix gmelinii)
plantation in northeastern China. At this site, previous study
has shown that N addition significantly decreased soil pH and
microbial biomass (Hu et al. 2010) but increased P concen-
tration in plant tissues (Zhao et al. 2010). We hypothesized
that soil P availability and P fractions would change after N
addition due to the changes in both biochemical (pH and
microbial biomass and activity) properties and plant uptake.

2 Material and methods

2.1 Study site and experimental design

This study was conducted at the Maoershan Experimental
Station of Northeast Forestry University, located in a moun-
tainous area, Heilongjiang Province, China (45° 21′–45° 25′
N, 127° 30′–127° 34′ E). The region has a continental mon-
soon climate with mean annual temperature of 2.8 °C, mean
minimum temperature of −19.6 °C in January, and mean
maximum temperature of 20.1 °C in July. The growing season
is from early May to late September. Mean annual precipita-
tion is approximately 700 mm, with >60 % falling between
June and August. The frost-free period is between 120 and
140 days (Zhou 1994). The soil is Hap-Boric Luvisol (Gong
et al. 1999). Soil depth of the study site exceeds 50 cm and
with high organic matter content. The soil is a loam soil in the
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0–10-cm depth and a sandy loam soil in the 10–20-cm depth.
More details about the soil were given by Wang et al. (2006).

Larch is the key commercial tree species and represents
65 % of conifer plantations in northeast China (Wang et al.
2006). In this study, a larch (L. gmelinii) plantation was
selected on a southwest facing slope of approximately 13°,
with an elevation ranging from 450 to 500 m above sea level.
The plantation was established in 1986 by planting 2-year-old
seedlings using a 1.5 m×2.0 m planting grid. At the beginning
of the experiment, the tree density, mean tree diameter at
breast height, and tree height were 2267 trees ha−1, 10.9 cm,
and 11.3 m in the larch plantation; see Mei et al. (2010) for
more details on stand characteristics.

Nitrogen addition plots were established in the plantation
in May 2002. Three 20 m×30 m ammonium nitrate
(10 g N m−1 year−1) fertilized plots were paired with control
plots of the same size, with each plot surrounded by ≥10-m-
wide buffer strip. Therefore, a total of six plots were
established for soil sample collection. N addition experiments
were initiated in 2003. Ammonium nitrate was applied in
pellet form each year between 2003 and 2011. All of the
10 g N m−1 year−1 was applied each year during the growing
season, with 15.25 % of the fertilizer added in May and in
September, 21 % in June and in August, and 27.5 % in July.
The amount of fertilizer applied each month was designed to
track the natural temporal patterns of N mineralization that
occurs at the site in each particular month (Chen et al. 1999).

2.2 Soil sampling

Soils were sampled from each plot in August (approximately
3 weeks after the last addition of N in July) 2011. Fifteen soil
cores (5 cm in diameter) were taken randomly from each plot
after removal of the forest floor litter and sectioned into 0–10-
cm and 10–20-cm depths. The cores were then mixed to form
a composite soil sample for each soil depth. Soil was sieved
(<4 mm) and stored at 4 °C for later analysis after visible roots
and plant residues were removed. Soil samples were further
divided into three sets of sub-samples. One set of the sub-
samples was processed to pass through a 2-mm sieve and
stored at 4 °C for measurement of microbial biomass P and
acid phosphatase activity, one set was air-dried and passed
through a 0.5-mm sieve for analysis of soil pH and P fraction-
ation, and the remaining set of sub-samples was oven-dried
and homogenized and passed through a 0.25-mm sieve for
analyses of soil organic carbon (C) and total nitrogen (N). The
selected soil chemical properties are listed in Table 1.

2.3 Soil analyses

Soil organic C and N were analyzed by dry combustion using a
Vario EL III elemental analyzer (Elementar Analysensysteme
GmbH, Hanau, Germany). Ammonium (NH4

+-N) and nitrate

(NO3
−-N) were extractedwith 2MKCl and analyzed on an auto

analyzer (Auto Analyzer III, Bran+Luebbe GmbH, Germany).
Extractable Al and Fe were extracted with acid ammonium
oxalate, and extracts were analyzed by inductively coupled
plasma mass spectrometry (Agilent Technologies Co. Ltd,
USA). Soil pH was estimated from a 1:2.5 soil-water slurry.

Soil P was sequentially fractionated following a modified
version of the Hedley et al. (1982) fractionation scheme.
Briefly, 0.5 g of soil was successively extracted with 30 mL
deionized water, 0.5 mol L−1 NaHCO3 (pH 8.5), 0.1 mol L−1

NaOH, and 1 mol L−1 HCl for 17 h each. The inorganic P (Pi)
concentration of each extract was determined and referred to
as either water-soluble (H2O-soluble) or NaHCO3-, NaOH-,
or HCl-extractable Pi fractions. The residue was digested
using H2SO4+H2O2 at 360 °C for the measurement of resid-
ual P (Tiessen and Moir 1993). The total P concentration of
each extract was also determined after acid persulfate diges-
tion (autoclaving for 30 min at 121 °C and 1.05 kg cm−1

pressure). The organic P (Po) concentration of these extracts
was calculated as the difference between total and inorganic P,
referred to as the H2O-, NaHCO3-, NaOH-, or HCl-extractable
Po fractions. The soil total P was the sum of all P fractions.

Soil microbial biomass P was determined using the chlo-
roform fumigation extraction method. The microbial biomass
P was estimated from the relationship EP/KEP, where EP is the
difference between inorganic P extracted from fumigated and
unfumigated soils and KEP=0.40 (Brookes et al. 1982). The
correction for chloroform-released P that was absorbed by soil
colloids during extraction was made by adding 25 mg P kg−1

soil during extraction and then correcting for its recovery
(Brookes et al. 1982).

Acid phosphatase activity was determined according to the
method of Tabatabai (1994). Briefly, soil samples were incu-
bated with p-nitrophenyl phosphate (p-NPP) as the substrate
for 1 h, the reaction was terminated with 0.5 M NaOH and
0.5 M CaCl2, and the absorbance was determined spectropho-
tometrically at 400 nm. Controls without enzymes were proc-
essed in parallel to determine non-enzymic hydrolysis of the
substrate and to correct for background coloration. Enzyme
activities are expressed as mgp-NPP kg−1 soil h−1. Controls
without soil were processed in parallel to correct for back-
ground coloration.

2.4 Statistical analyses

Analysis of variance (ANOVA) of a split-plot design with
the treatments as the whole plot and the sampling depths
as the split plot was performed to determine whether N
addition significantly affected soil P fractions, microbial
biomass P, and acid phosphatase activity. These statistical
analyses were conducted using SAS version 9.2 (SAS
Institute Inc., Cary, NC, USA).
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3 Results

3.1 Soil properties

Of the selected soil chemical properties, soil organic C and N,
NH4

+-N, and extractable Fe were not affected by N addition
(Table 1). By comparison, the soil-extractable Al and C-to-N
ratio increased significantly after N addition at a depth of 0–
10 cm. Soil NO3

−-N increased significantly after N addition in
both 0–10-cm and 10–20-cm depths. The soil pH value at the
0–10-cm depth in the N addition plots was 0.5 units lower
than those in the control plots. Soil chemical properties
changed with soil depth (Table 1). Soil organic C and N and
the soil C-to-N ratio at the 0–10-cm depth were greater than
those at the 10–20-cm depth for both the control and the N
addition plots. However, differences in soil pH between the 0–
10-cm and 10–20-cm depths were only observed in the N
addition plots.

3.2 Soil total P and P fractions

Soil total P concentrations, i.e., the sum of the concentrations
of all P fractions, at both sampling depths were not affected by
N addition (Fig. 1). Soil total P at the 0–10-cm depth was
greater than that at the 10–20-cm depth for both the control
and N addition plots. The relative size of the P pools increased

in the order H2O-Pi≈H2O-Po<HCl-Po<NaHCO3-Pi<
NaHCO3-Po<HCl-Pi<NaOH-Pi<NaOH-Po<Residual-P
(Figs. 2 and 3) for both the control and N addition plots.

N addition significantly reduced the NaHCO3-Pi concen-
tration that is commonly considered as labile P pool (Fig. 2).
In contrast, the NaOH-Pi concentration at the 0–10-cm depth
in the N addition plots was significantly higher than that in the
control plots. There were no significant changes in the H2O-Pi
and HCl-Pi concentrations in the N addition plots. The Pi
fractions extracted by H2O, NaHCO3, and NaOH at the 0–
10-cm depth were markedly higher than those at the 10–20-
cm depth for both treatments but not for the HCl-Pi fraction.

The NaOH-Po concentration at the 0–10-cm depth in the N
addition plots was significantly lower than that in the control
plots. However, the Po fractions extracted by H2O, NaHCO3,
and HCl were similar between the control and N addition plots
for a given depth (Fig. 3). The H2O-Po concentration was also
significantly higher at the 0–10-cm depth than at the 10–20-
cm soil depth, but the other three Po fractions were similar

Table 1 Changes in selected soil chemical properties after 9 years of N addition in the larch plantation

Soil depth/treatments Organic C
(g kg−1)

Total N
(g kg−1)

Soil C:N NH4
+-N

(mg kg−1)
NO3

−-N
(mg kg−1)

Extractable Al
(%)

Extractable Fe
(%)

pH

0–10-cm depth

Control 80.8 a 7.2 a 11.2 b 3.5 a 23.9 b 0.231 b 0.309 b 5.8 a

N addition 85.4 a 7.3 a 11.7 a 3.0 a 91.7 a 0.254 a 0.316 b 5.3 b

10–20-cm depth

Control 48.1 b 5.0 b 9.6 c 2.6 a 12.3 c 0.255 a 0.358 a 6.0 a

N addition 46.6 b 4.6 b 10.0 c 2.4 a 48.6 b 0.278 a 0.353 a 5.8 a

Values are means for n=3. Different letters within a column indicate significant differences at P<0.05
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Fig. 1 Changes in soil total P concentration (the sum of the
concentrations of all fractions) after 9 years of N addition in the larch
plantation. Bars represent means with standard errors for n=3. Different
letters indicate significant differences at P<0.05
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Fig. 2 Changes in soil inorganic phosphorus (Pi) fractions (extracted by
H2O, NaHCO3, NaOH, and HCl) after 9 years of N addition in the larch
plantation. Bars represent means with standard errors for n=3. Different
letters indicate significant differences at P<0.05
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between the two sampling depths. The residue P concentration
did not change with N addition in both 0–10-cm and 10–20-
cm soil depths.

3.3 Soil microbial biomass P and acid phosphatase activity

Soil microbial biomass P decreased approximately 40 % after
9 years of N addition at the 0–10-cm soil depth (Fig. 4). There
was no difference in microbial biomass P concentration be-
tween the control and N addition plots at the 10–20-cm soil
depth. The microbial biomass P concentration at the 0–10-cm
depth was greater than that at the 10–20-cm depth in same
treatment.

N addition also significantly reduced acid phosphatase
activity at the 0–10-cm depth. However, soil acid phosphatase
activity in the N addition plots was not different from that in
the control plots at the 10–20-cm depth (Fig. 5). The acid
phosphatase activity was approximately 1.5-fold greater at the
0–10-cm depth than that at the 10–20-cm depth in both the
control and N addition plots.

4 Discussion

Our results show that the soil P fraction, microbial biomass P,
and acid phosphatase activity are highly responsive to changes
in N applied to the larch plantation. This study has yielded two
main findings. First, added N decreased the concentration of
labile inorganic P in the soil, especially the NaHCO3-Pi con-
centration. Second, soil acid phosphatase activity decreased
after N addition, and this result contradicts most of our current
understanding of the interaction between nutrient availability
and microbial function. Based on allocation theory and prior
studies conducted in forest ecosystems (Treseder and Vitousek
2001; Saiya-Cork et al. 2002; Marklein and Houlton 2012), N
addition should increase acid phosphatase activity. However,
we found that N addition resulted in decreased acid phospha-
tase activity in the larch plantation.

4.1 N addition changes soil P fractions

After 9 years of N addition, soil total P did not change
significantly in the N addition plots. Total P content represents
the net result between the input of litter and the output of plant
uptake. In our study, no significant change was observed in
soil total P between the control and N treatment, suggesting
that the input and output of P via aboveground and below-
ground may be in balance. However, the application of N
fertilizer to the larch plantation resulted in a significant de-
crease in the NaHCO3-Pi concentration in the topsoil com-
pared with the control. This finding disagreed with the result
from northern hardwood forests in the eastern USA, where
soil P availability and biotic P sufficiency differed by tree
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species but were unaffected by N fertilization (Weand et al.
2010b). Weand et al. (2010b) reported that P concentrations in
foliar, litter, and fine roots were not affected by N fertilization.
In this study, N addition stimulates potential net N minerali-
zation and potential net nitrification processes (Hu et al. 2010)
and may increase biotic P demand. A recent study in our study
area showed that N addition could increase the N and P
concentrations in the stem, branch, and roots of the larch
plantation (Zhao et al. 2010; Table 2). N addition enhanced
P uptake by trees and might account for the decease of soil
NaHCO3-Pi concentration. In this study, the aboveground and
belowground biomass, including stem, branch, and coarse
root (>2 mm in diameter) biomass, increased approximately
20 % after N addition in our study area (Gu, Northeast
Forestry University, data not published), which may also be
attributed to the decrease of soil NaHCO3-Pi concentration.
Therefore, N addition increased plant growth and root P
uptake and then assigned to the different parts of the trees
could be responsible for the decrease in the soil NaHCO3-Pi
concentration (Zhao et al. 2010). However, it should be noted
that the decrease in the NaHCO3-Pi concentration observed in
this study could also be influenced by soil microbial biomass
and activity. A recent study also reported that the contents of
microbial biomass and Olsen-P (i.e., NaHCO3-Pi) showed a
highly significant linear relationship under different manage-
ment conditions (Khan and Joergensen 2012). This finding
disagreed with the result from an evergreen Mediterranean
forest that the decrease in soil available P would reduce the P
uptake (Sardans and Peñuelas 2004). Our result was the
opposite and such discrepancies may be explained by differ-
ences in soil labile inorganic P concentration. In our study, the
labile inorganic P concentration was high, and N addition
might not result in P limitation or saturation of tree demand
for N. Furthermore, mycorrhizae play an important role in the
P uptake by trees. In our study area, we know little regarding
mycorrhizal associations important for P acquisition, or mech-
anisms of P uptake. Future investigations comparing mycor-
rhizal communities between the control and the fertilized
plots, and their abilities to access P, could further elucidate
the decline of labile inorganic P.

The NaOH-Pi fraction is generally considered the less
readily available P associated with Fe and Al oxides and
may represent P adsorption sites (Cross and Schlesinger
1995). In the present study, the NaOH-Pi fraction was signif-
icantly increased following long-term N application. NH4NO3

addition likely enhances soil nitrification, a microbially medi-
ated process of ammonia oxidation with H+ as the by-product
resulting in soil acidification. The low pH values in the N
addition plots might enhance the solubility of Al3+ and Fe3+

and then increase the P binding byAl and Fe in the soils (Chen
2003; Dossa et al. 2010). Therefore, the overall combination
of changes in the inorganic P fractions observed in our study
demonstrates that N input may induce a decrease in soil P
availability through changes in plant P uptake, microbial
biomass, and inorganic P solubilization.

N fertilization did not increase soil organic P fractions,
although biomass inputs, including stem, branch, and coarse
root biomass, increased in the fertilized plots (Gu, Northeast
Forestry University, data not published). In the present study,
the NaOH-Po content was the dominant organic P fraction.
The high content of NaOH-Po in the larch plantation was
consistent with previous research in Pinus radiata forest soil
(Liu et al. 2004). Interestingly, the larch plantation in this
study depleted the NaOH-Po fraction, but other organic P
fractions were unaffected by N addition, suggesting that the
NaOH-Po pool is important in providing plant-available P
through mineralization. Therefore, the increased growth of
L. gmelinii after N addition, and hence higher nutrient de-
mand, is reflected in the NaOH-Po fraction in the soil. It has
been suggested that the NaOH-Po pool can be the major sink
of available P in the soil and may maintain the levels of plant-
available P through P mineralization (Beck and Sanchez
1994).

4.2 N addition effects on microbial biomass P and acid
phosphatase activity

Soil microbial biomass is an important component influencing
plant nutrient availability. In this study, N addition caused
microbial biomass to decrease in fertilized larch plots,
supporting the previous finding of Hu et al. (2010) that soil
microbial biomass was lower in fertilized plots in the same
study site. There are two potential mechanisms to explain the
decrease in soil microbial biomass with N addition. On the
one hand, N addition could retard mineralization of old and
humified soil organic matter (Neff et al. 2002; Hagedorn et al.
2003) then reduce soil labile organic C, which is the energy
source for soil microorganisms (Sjöberg et al. 2003). On the
other hand, soil pH is an important factor regulating microbial
properties. Generally, soil acidification after N addition could
reduce soil microbial biomass and activity (Liu et al. 2011). A
recent meta-analysis using 82 field studies after N addition
concluded that microbial biomass declined 15 % on average

Table 2 Effects of N addition on nutrient contents in leaf, branch, stem
and roots of Larix gmelinii

Nutrient contents Treatment Leaf Branch Stem Roots

N (g kg−1) Control 11.34 2.84 b 0.92 b 7.41 b

N addition 11.35 3.46 a 1.37 a 8.39 a

P (g kg−1) Control 2.71 0.61 b 0.22 b 1.56 b

N addition 2.54 0.83 a 0.40 a 2.79 a

Plant tissues were sampled in August 2007. Values are means for n=3.
Different letters for N or P within a column indicate significant differ-
ences at P<0.05. Data in Table 2 are cited from Zhao et al. (2010)

440 K. Yang et al.



under N fertilization, and these declines in microbial biomass
were more evident in studies of longer duration and with
higher total amounts of N addition (Treseder 2008). Our study
site receives a high N dose compared with other N addition
studies in forest ecosystems (Will et al. 2006; Kritzler and
Johnson 2010). Therefore, it is not surprising that microbial
biomass was reduced by approximately 40 % after 9 years of
N addition in our study site.

Phosphatase plays a critical role in catalyzing the hydroly-
sis of organic P compounds in soil. In general, N addition is
thought to influence P availability through the N-rich phos-
phatase enzymes produced by plant roots and microbes. Biota
can invest N into the production of hydrolytic enzymes such
as phosphatase for acquiring P when N availability is suffi-
cient (Houlton et al. 2008). In addition, the decrease in soil P
availability after N addition would induce higher phosphatase
activity. However, we observed that N addition depressed acid
phosphatase activity. This finding disagreed with the results
that increasing N availability or increasing N deposition in-
creased phosphatase activity (Clarholm and Rosengren-
Brinck 1995; Turner et al. 2002). Enzyme activity is known
to decline with increasing acidity (Weand et al. 2010a), and N
application may have acidified the fertilized plots to the point
where enzyme activity is suppressed. Therefore, the decrease
in acid phosphatase activity observed in the N addition plots
than those in control plots was mainly indirect effect caused
by the added N, such as the decrease in pH, rather than a direct
result of the increase in soil N availability.

4.3 Implications

This study extends our knowledge of soil P status in the
larch plantation with long-term N addition. Unlike other
studies (Finzi 2009; Weand et al. 2010b), we found that N
addition altered P distribution and availability in the larch
plantation. The soil labile P pool significantly decreased
following long-term N application. High N input in some
forest ecosystems can increase the growth and nutrient
uptake of tree species, thereby leading to a decline in soil
P availability (Will et al. 2006). Soil pH appears to be
another important factor affecting the sorption of Al- and
Fe-associated P and accordingly P availability in terrestrial
ecosystems (Waldrip et al. 2011). In the larch plantation, N
addition inhibited soil acid phosphatase activity and mi-
crobial biomass P. The results suggest that N addition
reduced soil P availability as well as microbial process
related to soil P cycling in the L. gmelinii plantation.
Although soil types and seasonal effects of N addition
were not investigated, our study confirms soil P status
about responses of larch plantation to N addition and
provides new insights into the causes of these responses.
Further research that examines the impact of N addition on
P status in larch plantation ecosystem with different soil

characteristics and sampling time would help assess the
generality of our results.

Funding This study was financially supported by the National Basic
Research Program of China (2012CB416906), and the National Natural
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