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Abstract
& Key message The selection of stable metrics can generate
reliable models between different data sets. The height
metrics provide the greatest stability, specifically the
higher percentiles and the mode. Height metrics transfer
more predictive power than density metrics.
& Context In forestry, there is an increasing development of
aerial laser scanning (ALS). The flight missions that permit to
record ALS point clouds are not yet standardized. Therefore,
there is a need to identify the metrics that permit to infer robust
forest stand estimates from the different point cloud
acquisitions.

& Aims The aim of this study is to identify stable metrics
derived from different ALS data sets to be used as independent
variable in stand volume models.
& Methods Three different ALS data sets were taken from the
same Eucalyptus plantation on the same day, each differing
from the others in terms of flight altitude, laser power, and
pulse frequency rate. Two sets of best predictive models were
obtained for each data set based on two approaches: a basic
approach using noncollinear metrics and an exhaustive search,
and a second approach that added a pairwise Kolmogorov-
Smirnov test to select stable metrics.
& Results Height metrics proved more stable, especially
higher percentiles (>50 %) and the mode. Models developed
with stable metrics had similar performance compared to the
basic approach.
& Conclusion Percentiles higher than 50 % and the mode
proved stable for that 6-year-old Eucalyptus plantation with
a very homogeneous vertical structure. Further research wid-
ening the scope in terms of age and heterogeneity of vertical
profiles is needed.
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1 Introduction

A goal of remote sensing in forestry is the reliable prediction
of key vegetation parameters from data gathered using aircraft
and satellite-borne instruments. In recent years, airborne laser
scanning (ALS), otherwise referred to as light detection and
ranging (LiDAR), has emerged as the leading technology for
the construction of high resolution three-dimensional maps
(Lim et al. 2008; Montaghi et al. 2013).

The technology works by sending out short pulses of laser
light downward from an airborne platform (airplane). Part of
the light is reflected back to the platform from features on the
ground, with the return time giving the distance from the plat-
form to the feature. At the moment each laser pulse is sent out,
the position of the platform, obtained from an on-board GPS
unit, is logged together with the direction of propagation of the
light pulse from a highly sensitive inertial measurement unit
attached to the beam steering optics (Baltsavias 1999a, b). In
practice, a single outgoing pulse may generate multiple
returns. This arises when there are partially transmitting strata
of objects, such as the leaves and branches of trees, above the
ground. Reflected pulses will come from these strata as well as
from the light which reaches and is reflected from the ground.
The raw vertical heights of the points in the 3D cloud are
relative to a geo-fixed level. These heights can be normalized
by subtracting the altitude of the ground (available from the
pulses reflected at the ground). This post-processing of the
ALS data yields a ground-referenced cloud showing the posi-
tions, heights, and shapes of partially transmitting objects,
such as trees. It is these unique capabilities which have made
ALS a useful remote sensing technology for forestry monitor-
ing and a potential source of vegetation structure information.

Since the number of points in an ALS cloud is very high,
for the evaluation of forest, it is usual to reduce the point cloud
over each plot to a set of metrics. These metrics are statistics
that describe the distribution of the ALS returns. Each return is
basically characterized by a ground position, a height above
the ground, and an intensity. The point height records for a
plot generate a discrete distribution of number of returns for
different heights above the ground. The characterization of
this distribution is achieved through height metrics of location
(for example, mean and percentile boundaries), height metrics
of dispersion and form (for example, standard deviation and
skewness) (Dalponte et al. 2009), and density metrics (for
example, the fraction of points in the distribution with heights
greater than the mean) (Næsset 2009).

The distribution of return intensities, relative to the inten-
sity of the incident pulse, for a plot can also be extracted from
an ALS data set and summarized by metrics analogous to

those used to describe the height distribution. However, many
factors influence the intensity of a return, making it hard to
obtain reproducible distributions of return intensities (Bater
et al. 2011). Therefore, intensity metrics were not computed
or analyzed in this study.

The content of an ALS data set is as much influenced by
the laser source, the sensor parameters, and the flight settings
as by the features present on the ground. Considering a given
location on the ground, the number of pulses incident on unit
area perpendicular to the vertical (the pulse density) depends
on the height and speed of the airborne platform over the
ground, the pulse repetition frequency, the angles defining
the path of the incident pulses, and the speeds at which the
laser scanning optics change these angles. All of these factors
are mathematically defined, so that the incident pulse density
can be calculated (Baltsavias 1999a).

Forests are considered semipermeable for the laser beam.
Trees are spatially complex objects capable of generating
many returns from each pulse, thus predicting which of these
many returns will be logged by an ALS sensor that is extreme-
ly challenging and dependent on many factors. One return
point will be recorded when the energy reflected back to the
sensor has power enough to trigger the detection algorithm
(Chasmer et al. 2006). In order to receive a useful signal from
higher-flying heights, both the transmitted power and the di-
mensions of the receiver optics need to be increased, and the
beam divergence decreased (Baltsavias 1999a). It is important
to mention that the capacity to register a return point is not
only reliant solely upon the ALS equipment but also reliant
upon the object. Object reflectivity thus has a fundamental
role concerning the quality of the signal.

Differences in point cloud data and in point cloud proper-
ties (e.g., point density, pulse density, overlap areas) collected
at different times are extremely common, if not inevitable, and
these differences must be considered carefully. The most fre-
quent causes of these differences include the use of different
instruments and modifications of the flight settings (Bater
et al. 2011). A straightforward approach in reducing these
impacts is to adjust the model parameters using new field data
after a particular ALS survey. Keeping these flight settings
constant or collecting a new set of field data will substantially
impact upon the cost of surveys (Næsset 2009).

In this study, we examined data sets corresponding to con-
secutive scans of the same Eucalyptus plantation carried out
on the same day using different settings for the equipment and
flight. Our aim was to identify stable metrics that could serve
as independent variables in stand volume modeling, looking
forward to assist Eucalyptus plantation managers by develop-
ing transferable models.

The idea of model transferability is to use previously esti-
mated model parameters from a different area for model esti-
mation (Ben-Akiva and Bolduc 1987). Although the predic-
tive ability of a model can be robust within the area for which
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the models have been fitted, their transferability into novel
areas is a critical issue (Rödder and Lötters 2010). The iden-
tification of stable metrics is essential to develop models
which may be transferred to novel areas.

2 Material and methods

The study area is located at the geographical coordinates (22°
58′ 04″ S, 48° 43′ 40″W), which lies within the municipality
of Itatinga in the state of São Paulo, Brazil (Fig. 1). It com-
prises a plantation of 7-year-old Eucalyptus grandis, covering
an area of 198.9 ha. The tree spacing was 3.75 m×1.60 m,
resulting in 6 m−2 per tree. The terrain displays gentle undu-
lations (height difference between the highest and lowest
points=57 m), with an average elevation of 750 m above sea
level (Campoe et al. 2012). The mean annual rainfall was
1391 mm, with 75 % concentrated from October to March.
Mean annual temperature was 19.2 °C, ranging from 13.3 °C
in the coldest months (June to August) to 27.2 °C in the
warmest months (December to February) (Alvares et al. 2013).

The study site was formed of evenly planted trees from
superior genetic material; the trees were of the same age and
the mortality rate was low. These forest plantation conditions
suggest a linear relationship between stand volume and met-
rics. To ensure this assumption, we explored the data looking
for the significance of the linear regression models between
ALS metrics and stand volume.

The field data were acquired in July 2009. We used a pre-
vious established 12 rectangular plots based on 84 stems in the
central blocks and then added more 11 plots of 144 stems to

extend the field survey to the entire area (Fig. 1). The plot area
was determined by field tape measurements resulting in a
range from 500 to 900 m2. To avoid losing the plot during
the clear-cut, the limits of each plot were marked by painting
the tree’s base which corresponded to the boundaries. The
height of each tree within a given plot was measured with a
hypsometer Haglof HEC-R for height and the diameter at
1.30 m above the ground with a steel diameter tape. The tim-
ber volume for the tree was then estimated from its height and
diameter using a formula developed by DURATEX S.A. (for-
est manager) for E. grandis established in this region. The
stand volume was standardized in cubic meters per hectare.
Uniform clear-cutting of the entire plantation occurred a few
days after the tree height, and diameter measurements were
completed. The geographical positions of the vertices of each
plot could then be determined by differential GPS, with no
risk of crown interference. At each vertex, GPS signals were
logged using a roving receiver with an external antenna (Trim-
ble Pro XR), and these records were post-processed with cor-
rection data retrieved from the fixed base station in Presidente
Prudente (station number 93900, 22° 07′ 09.9679″ S, 51° 24′
28.9700″Wand altitude of 435.40 m) operated by the Brazil-
ian Institute of Geography and Statistics (IBGE) to give final
plot corner positions. Basic statistics of the diameter, height,
and stand volume over the 23 rectangular plots are presented
in Table 1. The differences between plots are related to the
topography gradient (713–767 m), which directly reflects in
water disposable, and also to the soil characteristics of the area
as detailed by Campoe et al. (2012).

Three ALS data sets (DS) were acquired on April 2009,
with a Leica ALS50-II carried on an EMB 810 C SENECA II

Fig. 1 The study lies within
coordinates (731500, 7457500)
and (734000, 7459000)—
SAD69, Zone 23S, in the
municipality of Itatinga, São
Paulo, Brazil. The rectangular
plots were randomly spread out
over the study area
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aircraft with slightly different settings (Table 2). Each data set
contains the results from a series of parallel sweeps over the
study area, and the following parameters were the same for
every flight: flight speed (140 km h−1), half angle (±7.5°), and
scan rate (74 Hz). The lateral displacement of successive
sweeps over the study area was set to give 30 % overlap.

The altitude of the terrain beneath each point was
subtracted from the altitude of the point. The digital elevation
model of each data set required for this normalization was
obtained based on the Kraus and Pfeifer filter (Kraus and
Pfeifer 2001) to a horizontal resolution of 1 m. The vertical
precision between laser scanning surveys expressed by the
median of absolute deviation to the median (sigmaMAD as
defined by Zlinszky et al. 2013) was in the upper case equal to
0.063 m.

The point cloud regarded to each georeferenced field plot
was subsequently normalized by the DTM and its respective
metrics calculated. The corresponding metrics extracted from
plot level were also calculated for a grid consisting of 20-m
square cells, each encompassing a single data set. The 20-m
cells were used to approximate the small side of the rectangu-
lar field plots.

All metrics were based on the normalized point clouds.
Height metrics (HM) calculated from the first and all returns
data included the following: mean, quadratic mean, cubic
mean, and mode (measures of central tendency); percentiles
of 10, 25, 50, 75, 90, 95, and 99; and standard deviation,
coefficient of variation, skewness, and kurtosis (measures of
dispersion) (Magnussen and Boudewyn 1998; Næsset 2009).
These 15 height metrics were calculated from the height
values of all the points above 1 m in each cloud and from
the heights of the subset of points corresponding to first
returns, giving a total of 30 height metrics for each plot and

data set. The density metrics (DM) are ratios (expressed as
percentages) of a relation between the total number of points
and the numbers of points satisfying the following height-
value criteria: greater than 2 m, greater than the mean for the
plot, and greater than the mode for the plot (Goodwin et al.
2006; Riaño et al. 2004). We generated a total of six density
metrics for each plot and data set. The complete list of metrics
can be found in Appendix.

The best model for estimating stand volume based on the
metrics calculated from all 23 plots was determined for each
particular data set. The statistical sequence to model creation
was adapted from Stephens et al. (2012). Firstly, we examined
the LiDAR metrics to identify highly correlated metrics,
through the direct interpretation of the correlation matrix and
its classification into several colinearity groups. All metrics
with a correlation greater than 90 % were grouped together.
Then, to ensure that at most, one variable from each group was
included as candidate metric when fitting multiple regression
models; the highly correlated metric to stand volume was
chosen to represent each group. All of these metrics were then
used to perform a regression analysis on the stand volume.
Every possible combination was investigated via limiting the
regression size up to three independent variables. The best
regressions were then selected through the Akaike Informa-
tion Criteria (AIC).

After determination of the best models considering all met-
rics for each data set, we started to study the stability of the
metrics amongst the data sets. The similarity between a set of
metrics at plot level does not guarantee stability for the entire
study area, even when the plots are an asymptotically unbi-
ased sample of the population. The ALS data sets, though,
covers the entire area returning a dense cloud point sample
from the population, capturing much more details and
resulting in differences not captured at the plot level. There-
fore, the interest on investigating the stability amongst data
sets via a comparison of the metrics extracted from 20-m cell
grids.

A pairedKolmogorov-Smirnov test (KS) determined which
metrics had nonsignificant differences in the distribution be-
tween data sets. Nonsignificant differences between the pos-
sible paired comparisons identified the stable metrics. The
same method used to group and select variables described to
all metrics was applied to the model creation of the stable
metrics. Then, the best model for estimating stand volume
was fitted considering the candidate stable metrics.

The best models obtained for each data set based on
nondiscriminated metrics and the best models using the most
stable metrics were then compared and evaluated according to
the AIC; the relative root mean square error (rRMSE) was also
supplied.

To ensure the transferability capacity of stable metrics, we
applied the model developed to one particular data set to esti-
mate the volume of the other two data sets. Then, the KS

Table 1 Location statistics of the diameter (cm), height (m), and stand
volume (m3 ha−1) over 23 plots

Minimum First
quartile

Median Mean Third
quartile

Maximum

Diameter 41.3 44.3 47.2 47.0 49.2 52.1

Height 21.5 23.7 24.7 24.6 25.5 27.5

Volume 278.0 354.2 402.4 410.6 471.9 536.6

Table 2 Settings between the three data sets (DS)

DS1 DS2 DS3

Flight height (m) 2485 1658 900

PRF (Hz) 100.7 137.3 109.7

Laser power (%) 77 54 28

Number of strips 4 10 22

Point density average 2.8 5.6 8.7

492 E.B. Görgens et al.



provided a statistical test of equivalence between pairs of 20-
m cell size grids (e.g., the volume map estimated to data set 1
by model 1 against the volume map estimated to data set 2 by
model 1 and the volume map estimated to data set 1 by model
1 against volumemap estimated to data set 3 by model 1). The
same comparison was performed to model 2 while estimating
volume from data sets 1 and 3 and model 3 while estimating
data sets 1 and 2. The complete analyses are illustrated in the
flowchart presented in Fig. 2.

3 Results

The noncollinear groups of metrics varied widely between the
data sets. Metrics derived fromDS1 to DS2 were grouped into
seven different noncollinear groups, while DS3 into nine dif-
ferent groups. Even in the number of noncollinear groups
were the same, the group members showed some interesting
differences however. Whereas HSD, HCV, HSDf, and HCVf
(see Appendix for more information about the metrics) met-
rics formed a separate group in DS1, they were grouped with
the other height metrics for DS2. The metric HP10f was also
included in an isolated group for DS2.

When analyzing the groups formed for DS3, the metric
HP25 went to an isolated group, HP10f remained isolated as
in DS2, and HSD, HCV, HSDf, and HCVf metrics formed a

separate group as in DS1. For all of them, the density metrics
were similarly grouped: PARAMO and PFRAMO together,
PARA2 and PFRA2 together, and another group consisting of
PARAM and PFRAM (Table 3).

Similar to group formation, the metrics which represented
each group also differed between the data sets. The metrics
representing the groups formed for DS1 were HP50f, HSD,
HK, PARA2, PARAM, PARAMO, and HP10. For DS2, the
metrics were HP25f, HS, PARA2, PARAM, PARAMO,
HP10, and HP10f. Finally, for DS3, the representative metrics
were HP25f, HSD, HS, PARA2, PARAM, PARAMO, HP10,
HP10f, and HP25.

The KS test provided a statistical test of equivalence of one
metric at a time between pairs of grids. From 30HM to 12DM
including all and first returns, 10 HM and 1 DM displayed
nonsignificant differences of cumulative probability distribu-
tion between grid cells at a confidence level of 95 % (Table 4).

If considering only the stable metrics established by a KS
test between DS, the noncollinear groups formed and the rep-
resentative metrics of each group are the same. The 11 stable
metrics between data sets were split into two groups. One
containing the height metrics (HMO, HP50, HP75, HP90,
HP95, HP99, HMOf, HP90f, HP95f, and HP99f) and the sec-
ond group containing the density metric PARAMO (Table 5).

We confirmed that the assumption of linearity between the
stand volume and the metrics after the linear regressions

Fig. 2 Stages of the analysis to study the stability of ALS metrics
produced for three different ALS data sets that were taken over the
same Eucalyptus plantation on the same day and that had only three
technical flight parameters altered: elevation, laser power, and pulse

frequency rate. Two sets of best predictive models were obtained for
each data set based on two approaches: a basic approach using
noncollinear metrics and an exhaustive search, and a second approach
that added a pairwise Kolmogorov-Smirnov test to select stable metrics

Table 3 Groups formed by data set considering the correlation matrix to all extracted metrics

DS1 DS2 DS3

Group 1 HM, HMO, HP25, HP50, HP75,
HP90, HP95, HP99, HSQ, HC,
HMf, HMOf, HP10f, HP25f,
HP50f, HP75f, HP90f, HP95f,
HP99f, HSQf, HCf

HM, HMO, HP25, HP50, HP75, HP90,
HP95, HP99, HSQ, HC, HMf, HMOf,
HP25f, HP50f, HP75f, HP90f, HP95f,
HP99f, HSQf, HCf, HSD, HCV,
HSDf, HCVf

HM, HMO, HP25, HP50, HP75, HP90,
HP95, HP99, HSQ, HC, HMf, HMOf,
HP10f, HP25f, HP50f, HP75f, HP90f,
HP95f, HP99f, HSQf, HCf

Group 2 HSD, HCV, HSDf, HCVf HS, HK, HSf, HKf HSD, HCV, HSDf, HCVf

Group 3 HS, HK, HSf, HKf PARA2, PFRA2 HS, HK, HSf, HKf

Group 4 PARA2, PFRA2 PARAM, PFRAM PARA2, PFRA2

Group 5 PARAM, PFRAM PARAMO, PFRAMO PARAM, PFRAM

Group 6 PARAMO, PFRAMO HP10 PARAMO, PFRAMO

Group 7 HP10 HP10f HP10

Group 8 HP25

Group 9 HP10f

In bold, the highest correlated metrics to volume representing each group. The metrics are identified in Appendix, and the data sets in Table 2
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between ALS metrics and stand volume resulted in statistical-
ly significant coefficients and models (Fig. 3). The test for
linearity was found to be significant, and the nonlinear models
(quadratic and cubic) did not increase the explained variance
significantly. Thus, the modeling of stand volume was based
on multiple linear regression.

While considering all 42 metrics (first and all returns) for
both the grouping of metrics and evaluating the best potential
model, we did not find any consistency between the best mod-
el per data set. The best model for DS1 was built with HP50f
and HP10 metrics. For DS2, the best model had one unique
metric, the HP25f, and for the DS3, the stand volume was
regressed against HP25f and HSD. Between the 11 stable
metrics, the metrics that make up the best model were repeat-
edly the HP50 (Table 6).

When investigating the scenario where the model must be
based on one height metric and one density metric, and where
all of the 42 metrics are eligible, the best model for DS1
consisted of the metrics HP50f and PARA2. The best model
for DS2 consisted of the metrics HP25f and PARAM. The best
model for DS3 consisted of the metrics HP25f and PARA2. If
narrowing the eligible metrics to solely the stable group, the
best model was the same across all data sets and was formed
by metrics: HP50 and PARAMO (Table 7).

In the transferability test of the best models based on stable
metrics (V∼EP50), the KS test resulted in a nonsignificant
difference between pairs of 20-m grids (Table 8). The grid of
volume estimated by model developed and applied to DS1
had no statistical differences when applied to DS2 neither
DS3. The same results were obtained to DS2 model applied
to DS1 and DS3, and DS3 model applied to DS1 and DS2.

4 Discussion

Three data sets obtained for the same area in the same day, but
employing different equipment configurations and different
flight settings, generated slightly different metrics. These dif-
ferences appeared both in the correlation between metrics, as
well as in the correlation to the dependent variable (stand
volume). The implication here is that the best model in esti-
mating stand volume also differs between the data sets.

Thomas et al. (2006) found different models for each ALS
data set comparing the coefficient of determination and the
root mean square error. The best model to estimate stem vol-
ume by their low-density data set (0.035 pts m−2) used the first
returns percentile 50 and the best model to their high-density
(4 pts m−2) data set used the all returns percentile 50.
Gonzalez-Ferreiro et al. (2012) have also explored the selec-
tion of height metrics for the prediction of stand volumes from
different LiDAR data sets. The best models for their
0.5 pts m−2 data set were used as predictors of the height
metrics: standard deviation, skewness, and the percentile 5.
In contrast, the stand volume model for the 8 pts m−2 data
set did not include the standard deviation.

Application of the KS test to compare cell metric values
between pairs of data sets showed statistically significant dif-
ferences between the data sets for most metrics. The excep-
tions were the high height percentiles, the mode of the heights,
and the proportion of all returns above mode, which displayed
statistical similarity between all the data sets.

High percentiles are less sensitive to outliers than met-
rics such as maximum height, which can be skewed by a
small portion of the area with abnormally high material
or even by returns from flying birds (Kane et al. 2010).
On the other hand, lower percentiles might be influenced
by the signal attenuation consequence of the higher alti-
tude. The overall control on the magnitude of the return
will be the strength of the pulse energy emitted. Sensor
and flight settings directly control the energy and size of
the emitted pulse, and the recorded intensity is directly
related to the magnitude of the returned peak of the re-
corded backscatter (Hopkinson 2007). As was shown by
Chasmer et al. (2006), who studied the effect of pulse
energy on canopy penetration and found that pulses with

Table 4 p value for the nonsignificant metrics by the Kolmogorov-Smirnov test comparing two-by-two distribution metrics extracted for a grid by
20×20 m superimposed to the study area

HMO HP50 HP75 HP90 HP95 HP99 HMOf HP90f HP95f HP99f PARAMO

DS1×DS2 0.25 0.08 0.02 0.03 0.06 0.19 0.25 0.03 0.03 0.10 0.07

DS2×DS3 0.74 0.81 0.56 0.32 0.20 0.30 0.55 0.31 0.24 0.24 0.33

DS1×DS3 0.45 0.05 0.48 0.72 0.98 0.99 0.62 0.59 0.93 0.99 0.01

The metrics are identified in Appendix, and the data sets (DS) in Table 2

Table 5 Groups formed by data set considering just nonsignificant
metrics under KS test

DS1 DS2 DS3

Group 1 HMO, HP50, HP75, HP90, HP95, HP99, HMOf, HP90f,
HP95f, HP99f

Group 2 PARAMO

In bold, the highest correlated metrics to volume representing the group.
The metrics are identified in Appendix, and the data sets in Table 2
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higher energy penetrate further into the canopy, the ac-
quisition settings of modern small footprint systems do
influence laser metrics.

Flight settings as platform altitude and scan angle
(measured off nadir) are related to pulse return intensity
as greater distances from target to sensor will exponen-
tially reduce the intensity of returned energy given the
assumption of isotropic scattering (Newton’s Inverse
Distance Law). Discrete recording LiDAR systems have
been designed to detect returns above a preset energy
threshold, below which returns cannot be distinguished
from random noise. As a consequence, a reduction in
the detected intensity of laser light will result in the
detection of fewer laser returns. This will have a stronger
effect on soft targets, where the laser light is scattered
from a range of small surfaces at different angles and
the intensity of reflected light from each distinct surface
is characteristically lower (Goodwin et al. 2006).

Hopkinson (2007) also alerts that tall vegetation attenuates
more of the emitted pulse energy, effectively trapping it in the
canopy. The intensity of split returns from multiple small sur-
faces along the pulse path length will tend to be lower than

that of single returns from a single larger backscatter surface.
In general, reduced pulse energy concentration appears to re-
duce pulse penetration through foliage to ground level due to
increased pulse attenuation in the canopy causing a slight
upward bias in last return ground elevations. The important
exception to this observation is in high pulse repetition fre-
quency (PRF) data, where reduced pulse power concentration
effects are overshadowed by increased noise in the data (short
vegetation) and increased sample point density (tall
vegetation).

The sensitivity of density metrics is reflected in the absence
of this group of metrics among the best models selected for
each data set (Table 6). The density metric incorporated a
measure of the number of times the low part of the vegetation
was sensed and a measure of canopy height differences. As
the canopy opens up, the number of pulses direct to ground
and the number of pulses where ground is sensed increases
(Nelson et al. 1988). The reference height may be fixed or
otherwise defined by a function of other height metrics (e.g.,
mean, mode) (Næsset 2002; McGaughey 2013). The density
metric computations depends itself of the height metrics prop-
erties. In case when a fixed reference height is selected, it is
usually close to the lower percentiles, which were considered
unstable between the flights. The unique density metric con-
sidered stable was PARAMO that considers the mode as the

Fig. 3 Linear regression observed between the HP50metric and the stand volume for data sets 1 (a), 2 (b), and 3 (c). The equations used to plot the line
are identified in Table 8

Table 6 The best model to estimate stand volume based on ALS
metrics

DS/metrics Best model AIC rRMSE

DS1/all metrics V=HP50f+HP10 224.7 7.51

DS2/all metrics V=HP25f 220.4 7.14

DS3/all metrics V=HP25f+HSD 223.4 7.31

DS1/stable metrics V=HP50 224.4 7.80

DS2/stable metrics V=HP50 223.8 7.69

DS3/stable metrics V=HP50 225.4 7.97

The metrics are identified in Appendix, and the data sets in Table 2

rMSE relative root mean square error

Table 7 The best model with one height metrics and one density metric
to estimate stand volume based on stable ALS metrics

DS Best model AIC rRMSE

1 V=HP50+PARAMO 226.1 7.74

2 V=HP50+PARAMO 225.3 7.61

3 V=HP50+PARAMO 227.2 7.93

The metrics are identified in Appendix, and the data sets in Table 2

DS data sets, AIC Akaike Information Criteria, rMSE relative root mean
square error
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reference height. In our study, mode was also a stable height
metric.

These high sensitivities also due to the fact that as altitude
increases footprints also increase, returns densities decrease,
and irradiance per unit area decreases. Therefore, as the flight
altitude varies, full waves may be trigged and decomposed
into returns differently from flight to flight. Nonetheless, Bater
et al. (2011), when testing the reproducibility of ALS metrics
with multiple scans over the same location taken on the same
day, found that the majority of the height metrics was not
significantly different. However, the differences for the densi-
ty metrics were highly significant and arose from large
differences in point density between the four flight lines.
They argued that the observed differences in point density
found during their campaign might have been caused by
unintentional variations in the orientation and altitude of the
platform.

Lim et al. (2008) suggested that “changes in point density
(due to changes in scan angle and altitude) only affect laser
canopy height and density metrics that are characterized by
the small percentage of returns from the very top (e.g., max-
imum height; proportion of returns bellow percentile 10th) and
base of the canopy (minimum height; percentile of return
above percentile 90th) (i.e., those metrics that characterize
the tail ends of the distributions of laser canopy heights).”

Once the candidate metrics as explanatory variable for
stand volume had been limited to metrics that were considered
stable, similar models were determined for the data sets, both
in respect to performance and to selected metrics. Even
equipment configurations and flight parameters that resulted
in a higher return density did not show any significant
differences. Thomas et al. (2006) also found that an increase
in point density does not necessarily improve the prediction
accuracy of mean dominant height, basal area, crown closure,
and average aboveground biomass.

Even when restricting the candidate metrics to just the sta-
ble group, the model performances are still very close
(Tables 6 and 7). One particular height metric and one partic-
ular density metric were imposed onto the model in order to
simulate the biological condition, concerning the site quality
and the stand density respectively. The models even in this

scenario maintained a similar level of performance to models
based upon all of the metrics. This biological condition de-
rived from initial studies, which suspected that the laser re-
sponse to a forest canopywas solely not only a function of tree
height but also a function of canopy closure and density (Nel-
son et al. 1984). The relationship between the stand variables
and the laser data was proved dependent not only on the laser
canopy height distribution but also on the canopy cover. Can-
opy density is of particular importance to explain the variabil-
ity in stand density (Næsset 2004). Lefsky et al. (2002) con-
cluded that simple models can reproduce emergent
community-level relationships, starting with the known allo-
metric properties of plants and incorporating competition for
light and space. In a further study, Lefsky et al. (2005) goes
beyond discussing that maximum height whose regression
from the LiDAR canopy structure indices had already ex-
plained 89 % of variance. Therefore, the 15 % of variance in
the normalized residuals could represent no more than 2.65 %
of the overall relationship between canopy structure, environ-
ment, and the stand structure variable.

The use of height metrics and density metrics is very com-
mon but not a consensus. Mean height as height metric and a
crown cover as density metric were used for predicting stand
volume by Holmgren et al. (2003). Usually after a height
metrics was included in the regression model, density metrics
provided a limited significant improvement in model perfor-
mance (Nelson et al. 1988).

Foody et al. (2003) explored the problems associated with
attempts to transfer predictive models of vegetation toward
combined uses with remote sensing data and demonstrated
that there exist many complicating factors. The inability to
transfer these data relationships satisfactorily seriously limits
the contribution that remote sensing can make in environmen-
tal applications. Our study has shown that some metrics do
nevertheless have the desirable property of returning similar
values across different data sets. Once variance in airborne
laser scanner sensors and flight settings is considered, the
scope for metric values to change in response to properties
unrelated to the vegetation being surveyed increases
(Magnusson, Fransson, and Holmgren 2007) and so also does
the difficulties in the search for transferable models. A
straightforward approach toward consistently producing good
models is to always use field data when resetting model pa-
rameters after a LiDAR data survey. However, a more low-
cost method over the long-term would be the discovery and
development of transferablemodels. This would require stable
metrics, such as those which show the greatest similarity be-
tween different data sets and different methods of remote data
gathering.

Even the ALS sensors have evolved over the last decades,
the vegetation quantification remains holding in the metrics
correlation to biophysical parameters. The use of stable met-
rics can improve the compatibility between surveys, making

Table 8 Kolmogorov-Smirnov test comparing the 20-m cell size grid
of stand volume estimated by model (V=HP50) developed from different
a data set and the model applied to its respective data set

DS1 DS2 DS3

DS1/V=−369.31*+27.59* HP50 0.08 0.05

DS2/V=−415.39*+29.39* HP50 0.08 0.81

DS3/V=−396.85*+28.79* HP50 0.05 0.81

The metrics are identified in Appendix, and the data sets in Table 2

*p value <0.001
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the results comparable and reducing noise between data sets
allowing a historical series studies.

This study investigated candidate metrics to form
transferable models based on ALS-derived metrics de-
rived from multiple surveys of data collected at the
same site on a particular date. We have investigated
the stability of metrics at both the plot and grid levels
and have demonstrated how the selection of stable met-
rics can contribute to generate reliable models between
different data sets. According to our results, the height
metrics provide the greatest stability when used in the
models, specifically the higher percentiles (>50 %) and
the statistic mode.
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Appendix

Table 9 List of computed metrics of height and cover

Metric Description/statistic Symbol for all
returns (HM/AR)

Symbol for first
returns (HM/FR)

Height Metrics (HM)

Location “center”

Mean x ¼ 1
n∑xi HME HMEf

Quadratic mean
ffiffiffiffiffiffiffiffiffiffi

1
n∑x

2
i

q

HSQ HSQf

Cubic mean
ffiffiffiffiffiffiffiffiffiffi

1
n∑x

3
i

3

q

HC HCf

Mode Mo=Most frequent value in data set HMO HMOf

Location “percentile”

Percentile Height separating lowest y% of data
from remainder

HPy HPyf

Dispersion

Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n−1∑ xi−xð Þ2

q

HSD HSDf

Coefficient of variation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n−1∑ xi−xð Þ2

p

x

HCV HCVf

Skewness 1
n∑ xi−xð Þ3

1
n∑ xi−xð Þ2ð Þ3=2

HS HSf

Kurtosis 1
n∑ xi−xð Þ4
1
n∑ xi−xð Þ2ð Þ2−3

HK HKf

Cover metrics (CM)

All returns differentiated by height (CM/AR)

Percentage of all returns above a specified height N >h jð Þ
N � 100

PARA2

Percentage of all returns above the mean height N >hð Þ
N � 100

PARAM

Percentage of all returns above the mode height N >Mo hð Þð Þ
N � 100 PARAMO

First returns differentiated by height (CM/FR)

Percentage of first returns above a specified height N1 >h jð Þ
N � 100

PFRA2

Percentage of first returns above the mean height N1 >hð Þ
N � 100

PFRAM

Percentage of first returns above the mode height N1 >Mo hð Þð Þ
N � 100 PFRAMO

Percentage of first returns above the specified height
related to first returns

N1 >h jð Þ
N1

� 100
FR2FR

Stand volume models based on stable metrics as from multiple ALS 497



References

Alvares CA, Stape JL, Sentelhas PC, de Moraes Goncalves JL, Sparovek
G (2013) Koppen’s climate classificationmap for Brazil. Meteorol Z
22:711–728

Baltsavias EP (1999a) Airborne laser scanning: basic relations and for-
mulas. ISPRS J Photogramm Remote Sens 54:199–214

Baltsavias EP (1999b) Airborne laser scanning: existing systems and
firms and other resources. ISPRS J Photogramm Remote Sens 54:
164–198

Bater CW, Wulder MA, Coops NC, Nelson RF, Hilker T, Naesset E
(2011) Stability of sample-based scanning-LiDAR-derived vegeta-
tion metrics for forest monitoring. [article]. IEEE Trans Geosci
Remote Sens 49:2385–2392

Ben-Akiva, M, Bolduc, D (1987) Approaches to model transferability
and updating: the combined transfer estimator (No. 1139)

Campoe OC, Stape JL, Laclau J-P, Marsden C, Nouvellon Y (2012)
Stand-level patterns of carbon fluxes and partitioning in a
Eucalyptus grandis plantation across a gradient of productivity, in
São Paulo State, Brazil. Tree Physiol 32:696–706

Chasmer L, Hopkinson C, Treitz P (2006) Investigating laser pulse pen-
etration through a conifer canopy by integrating airborne and terres-
trial lidar. Can J Remote Sens 32:116–125

Dalponte M, Coops NC, Bruzzone L, Gianelle D (2009) Analysis on the
use of multiple returns LiDAR data for the estimation of tree stems
volume. IEEE J Sel Top Appl EarthObs Remote Sens 2:310–318

Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical
forest biomass from Landsat TM data and their transferability be-
tween regions. Remote Sens Environ 85:463–474

Gonzalez-Ferreiro E, Dieguez-Aranda U, Miranda D (2012) Estimation
of stand variables in Pinusradiata D. Don plantations using different
LiDAR pulse densities. Forestry 85:281–292

Goodwin NR, Coops NC, Culvenor DS (2006) Assessment of forest
structure with airborne LiDAR and the effects of platform altitude.
Remote Sens Environ 103:140–152

Hopkinson C (2007) The influence of flying altitude, beam divergence,
and pulse repetition frequency on laser pulse return intensity and
canopy frequency distribution. Can J Remote Sens 33:312–324

Holmgren J, Nilsson M, Olsson H (2003) Estimation of tree height and
stem volume on plots using airborne laser scanning. For Sci 49:
419–428

Kane VR, McGaughey RJ, Bakker JD, Gersonde RF, Lutz JA, Franklin
JF (2010) Comparisons between field-and LiDAR-based measures
of stand structural complexity. Can J For Res 40:761–773

Kraus K, Pfeifer N (2001) Advanced DTM generation from LIDAR data.
Int Arch Photogramm Remote Sens Spat Inf Sci 34:23–30

Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST
(2002) Lidar remote sensing of above‐ground biomass in three bi-
omes. Glob Ecol Biogeogr 11:393–399

Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic vari-
ability in lidar predictions of forest stand structure in the Pacific
Northwest. Remote Sens Environ 95:532–548

Lim K, Hopkinson C, Treitz P (2008) Examining the effects of sampling
point densities on laser canopy height and density metrics. For
Chron 84:876–885

Magnussen S, Boudewyn P (1998) Derivations of stand heights from
airborne laser scanner data with canopy-based quantile estimators.
Can J For Res 28:1016–1031

Magnusson M, Fransson JES, Holmgren J (2007) Effects on estimation
accuracy of forest variables using different pulse density of laser
data. For Sci 53:619–626

McGaughey, RJ (2013) FUSION/LDV: software for LiDAR Data
Analysis and Visualization. USDA/Forest Service

Montaghi A, Corona P, Dalponte M, Gianelle D, Chirici G, Olsson H
(2013) Airborne laser scanning of forest resources: an overview of
research in Italy as a commentary case study. Int J Appl Earth Obs
Geoinformation 23:288–300

Næsset E (2002) Predicting forest stand characteristics with airborne
scanning laser using a practical two-stage procedure and field data.
Remote Sens Environ 80:88–99

Næsset E (2004) Accuracy of forest inventory using airborne laser scan-
ning: evaluating the first Nordic full-scale operational project. Scand
J For Res 19:554–557

Nelson R, Krabill W, Maclean G (1984) Determining forest canopy char-
acteristics using airborne laser data. Remote Sens Environ 15:201–
212

Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and
volume using airborne laser data. Remote Sens Environ 24:247–267

Næsset, E (2009) Effects of different sensors, flying altitudes, and pulse
repetition frequencies on forest canopy metrics and biophysical
stand properties derived from small-footprint airborne laser data.
Remote Sens Environ 113(1):148–149

Riaño D, Valladares F, Condés S, Chuvieco E (2004) Estimation of leaf
area index and covered ground from airborne laser scanner (Lidar) in
two contrasting forests. Agric For Meteorol 124:269–275

Rödder D, Lötters S (2010) Explanative power of variables used in species
distributionmodelling: an issue of generalmodel transferability or niche
shift in the invasive Greenhouse frog (Eleutherodactylusplanirostris).
Naturwissenschaften 97:781–796

Stephens PR, Kimberley MO, Beets PN, Paul TSH, Searles N, Bell A
et al (2012) Airborne scanning LiDAR in a double sampling forest
carbon inventory. Remote Sens Environ 117:348–357

Thomas V, Treitz P, McCaughey JH, Morrison I (2006) Mapping stand-
level forest biophysical variables for a mixed wood boreal forest
using lidar: an examination of scanning density. Can J For Res-
Rev Can Rech For 36:34–47

Zlinszky A, Ressl C, Timár G, Weber R, Székely B, Briese C, Pfeifer N
(2013) A proof of concept: airborne LIDAR–measured ellipsoidal
heights of a lake surface correspond to a local geoid model. J Conf
Abstr EUG 15:10280

498 E.B. Görgens et al.


	Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Results
	Discussion
	Appendix
	References


