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Abstract
& Key message We show that joint multivariate analyses of
leaf morphological characters and molecular-genetic
markers improve the taxonomic assignment in hybridizing
European white oaks. However, model-based approaches
using genetic data alone represent straightforward alterna-
tives to laborious, detailed morphological assessments.

& Context In European white oaks, species delimitation is de-
bated because of large overlap of morphological characteristics
likely due to hybridization.
& Aims We tested whether joint multivariate analyses of leaf
morphology and molecular markers improve the identification
of three oak species (Quercus petraea, Quercus pubescens,
Quercus robur) compared to approaches using morphological
or genetic variables only.
& Methods We assessed 13 leaf morphological characters and
applied eight nuclear microsatellite markers in almost 1400 trees
of 71 oak populations across Switzerland. We performed two
multivariate approaches with three variable sets (morphology, ge-
netics, combined) and assessed their performance in separating the
taxa. We also compared the taxon assignment to a model-based
clustering approach (STRUCTURE) based on genetic data alone.
& Results A joint use of morphological and genetic variables led
to an improved taxon assignment.WhereasQ. robur could clearly
be separated from the two other taxa, there was a certain overlap
betweenQ. petraea andQ. pubescens. The STRUCTURE clustering
led to the same taxon assignment in 85 % of the individuals.
& Conclusion It is important to consider both morphological
and genetic properties in morphologically similar and hybridiz-
ing species. However, it might be more efficient to concentrate
only on geneticmarkers than on time-consumingmorphological
assessments.

Keywords Factor analysis of mixed data . Introgression .

Linear discriminant analysis . Nuclearmicrosatellitemarkers .

Species assignment

1 Introduction

The identification of a species is of crucial importance not
only for scientists that study, for example, biodiversity,
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hybridization, or paleoecology, but also for practitioners deal-
ing with, e.g., species conservation or forest management.
Ideally, species assignment is done directly in the field with
diagnostic morphological characters. This is, however, not
always possible, since in many genera (see below for exam-
ples) several morphologically similar taxa exist that are diffi-
cult to separate on the basis of a single or few morphological
parameters. Moreover, especially in plants, some taxa hybrid-
ize and backcross (Mallet 2005; Whitney et al. 2010), leading
to a morphological gradient along the character expression of
the parental species involved.

In cases as described above, using molecular-genetic infor-
mation can help in the delimitation of species. For example, the
threatened butternut from eastern North America (Juglans
cinera) is hardly distinguishable morphologically from its hy-
brid with the exotic Japanese walnut (Juglans ailantifolia), but
two randomly amplified polymorphic DNA (RAPD) markers
can clearly differentiate between the two taxa (Ross-Davis
et al. 2008). In the polyploid Cardamine digitata species ag-
gregate, Jørgensen et al. (2008) used six microsatellite markers
(hereafter referred to as nuclear simple sequence repeats,
nSSRs) to separate four taxa of this controversial species com-
plex. Other well-known examples come from the animal king-
dom like the water flea species complex of Daphnia
longispina (Petrusek et al. 2008; Rellstab et al. 2011) or dif-
ferent species of fruit fly (Drosophila spp., Harr et al. 1998;
Routtu et al. 2007), whose members are difficult to distinguish
morphologically and for which genetic markers helped for
taxon assignment. In recent times, DNA barcoding—taxon
identification using standardized DNA regions from organellar
genomes (Valentini et al. 2009)—has become a common ap-
proach for identifying species that are morphologically diffi-
cult to assign or whose samples are hard to obtain. DNA
barcoding, however, often uses rather conserved regions of
the genome (like chloroplast or mitochondrial DNA) with
low taxonomic resolution and uniparental inheritance.

In forest trees, the most prominent example comes from
European white oaks, including the hybridizing Quercus
petraea, Quercus pubescens, and Quercus robur. There has
been a long debate of how to differentiate among these three
species and which parameters are best suited to do so.
Hybridization is known to occur between all three species
pairs (Curtu et al. 2007a; Lepais and Gerber 2011) but is often
asymmetric and depends on the local relative abundance and
the mixture of the parental species (Bacilieri et al. 1996; Curtu
et al. 2007a; Gerber et al. 2014; Lepais et al. 2009). Q. robur
and Q. petraea show distinct differences in leaf morphology
(Kremer et al. 2002), fruit structure (Rushton 1983), and neu-
tral nSSR allele frequencies (Curtu et al. 2007b; Gugerli et al.
2007; Guichoux et al. 2011; Muir et al. 2000). In contrast,
Q. petraea andQ. pubescens rather represent a morphological
continuum than two morphologically distinct species
(Dupouey and Badeau 1993; Viscosi et al. 2009). Although

some species-specific micromorphological characteristics ex-
ist (Fortini et al. 2015), they often greatly overlap (Bruschi
et al. 2000). Moreover, genetic differentiation was found to
be very low between Q. petraea and Q. pubescens (Bruschi
et al. 2000; Curtu et al. 2007b; Neophytou et al. 2015; Viscosi
et al. 2009), in contrast to the two other species pairs.

In all the examples described above, a joint, simultaneous
analysis of morphology and genetic information was not ap-
plied. Instead, the two approaches were often performed in a
stepwise procedure, by using one approach to confirm or sup-
port the other (e.g., Curtu et al. 2007a; Gugerli et al. 2007) or
by using morphologically identified reference individuals to
help in resolving the clustering or delimitation obtained by the
genetic analysis (like in the case of Daphnia in Rellstab et al.
2011). A joint analysis, however, will most likely improve the
classification of individuals and result in a higher resolution of
species delimitation. If no single morphological or genetic
diagnostic trait exists, multivariate analyses are ideal tools to
identify parameters that differentiate among groups of individ-
uals, which in turn can then be assigned to taxa.

In the present study, we aimed at thoroughly assessing both
leaf morphology and nuclear genetic markers in all three white
oak species occurring in Switzerland to clarify how the two
types of parameters and their joint application support taxon
identification.We sampled leaves of 71 Swiss oak populations
and used 13morphological parameters, eight nSSRs, andmul-
tivariate statistics to answer the following questions: Does the
joint application of morphological parameters and neutral ge-
netic markers in multivariate analyses improve the species
assignment compared to using only morphological or genetic
parameters? Which are the main parameters that differentiate
among the species? We also performed a model-based clus-
tering approach (STRUCTURE) using genetic data only and
checked if it leads to congruent results compared to the mul-
tivariate analyses. Our study shows that the combination of
morphological and genetic parameters improves species as-
signment in a hybridizing species complex including morpho-
logically similar taxa. However, at least in the case of the oak
species investigated here, model-based clustering using only
genetic information already leads to a relatively accurate spe-
cies assignment and may be considered as an alternative ap-
proach to the labor-intensive morphological measurements,
especially since it allows more precise taxonomic assignment
in the case of hybrids that do not always exhibit intermediate
morphology.

2 Material and methods

2.1 Study species

European white oaks are represented in Switzerland by the
three widely distributed Q. petraea (Matt.) Liebl. (hereafter
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sometimes abbreviated as Pet), Q. pubescens Willd. (Pub),
and Q. robur L. (Rob). Q. petraea and Q. robur are largely
sympatric, though they are often locally separated according
to their ecological niche. While Q. petraea is more drought-
tolerant, Q. robur is often associated to deep, moist soil that
expands into riparian hardwood forests. In turn, Q. pubescens
as a sub-Mediterranean species grows mainly in the low-
elevation inner alpine area (Valais) and along the calcareous,
south-exposed dry Jura slopes within its Swiss range and can
often be found in mixed stands with Q. petraea.

2.2 Sampling and genotyping

From May to July 2013, we sampled 71 oak tree populations
(max. 20 individuals per population) from their entire distri-
bution range within Switzerland (Table S1). We aimed at
collecting all three species in all biogeographic regions of
Switzerland if present. Information about potential popula-
tions were retrieved from previously published studies (e.g.,
Mátyás et al. 2002; Mátyás and Sperisen 2001), the Swiss
National Forest Inventory (Brändli 2010), and the forest soil
database of the Swiss Federal Institute WSL (described in
Walthert et al. 2013). The minimum distance between sam-
pled trees was 20 m. For morphological analyses, we collect-
ed, if possible, one sunlit twig with extendable loppers and
used a herbarium press to dry the leaves. For the genetic anal-
yses, we dried four to five young leaves per tree on silica gel.

Per tree, DNA from 25mg dried leaf tissue was extracted by
LGC Genomics (Berlin, Germany) with a KingFisher 96
(Thermo Scientific, Waltham, USA) using the sbeadex maxi
plant kit optimized for oak tree leaves (LGC Genomics). We
genotyped all individuals with the eight nSSR markers of mul-
tiplex kit 2 from Guichoux et al. (2011) as described in the
Appendix. Null allele frequencies were calculated with
GENEPOP 4.2.2 (Rousset 2008). No marker exhibited substan-
tially increased null allele frequencies across all populations;
only in 23 of 568 cases, estimated null allele frequencies were
above 10 %. To convert the genetic data (alleles) for use in
multivariate analyses, we used GENALEX 6.5 (Peakall and
Smouse 2012) to perform a principal coordinates analysis
(PCoA) on pairwise co-dominant genotypic distances
(Smouse and Peakall 1999). The resulting six principal compo-
nents (accounting for 100 % of the variation) were later used as
genetic parameters (PCo1 to PCo6) in themultivariate analyses.

2.3 Morphological parameters

Per tree, we analyzed the morphology of three intact
leaves. In total, we measured nine parameters as described
and denoted in Kremer et al. (2002): number of lobes (NL),
number of intercalary veins (NV), basal shape of the lam-
ina (BS), lamina length (LL), petiole length (PL), lobe
width (LW), sinus width at the first lobe (SW), and length

of the lamina at the widest lobe of the leaf (widest point,
WP). Additionally, similar to SW, we measured the width
at the sinus above the widest lobe (SWW).

Since many of the above-described characteristics are de-
pendent on the size of the leaves, we calculated seven relative
parameters (of which two were transformed to meet the as-
sumption of the methods applied) from those measured, sim-
ilar as described and denoted in Kremer et al. (2002): lamina
shape or obversity (OB = 100 *WP/LL), petiole ratio
(PR = 100 * PL/(LL + PL)), lobe depth ratio at first lobe
(LDR=100* (LW−SW)/LW), lobe depth ratio at widest lobe
(LDRW=100* (LW−SWW)/LW), square root-transformed
percentage of venation (RPV=SQRT(100 *NV/NL), lobe
width ratio (LWR=100*LW/LL), and natural log of lobe
number ratio (LLNR= ln(NL/LL)), the number of lobes rela-
tive to the length of the lamina.

Moreover, all leaves were inspected for the presence or
absence of the following five hair types (for examples, see
Fortini et al. 2015; Kissling 1977) using a stereo lens: stellate
hair on the lamina (LS), clustered (fasciculate) hair on the
lamina (LC), intermediate (between stellate and clustered) hair
on the lamina (LI), stellate hair on the vein (VS), and clustered
hair on the vein (VC). Single hairs were ignored.

For the multivariate analyses, we finally used (a) the seven
relative parameters (OB, PR, LDR, LDRW, RPV, LWR,
LLNR) and basal shape (BS), all averaged per tree; (b) the five
hair parameters (LS, LC, LI, VS, VC) as presence/absence data
per tree (presence = present on at least one leaf of the tree); and
(c) the scores of the six principal components (PCo1 to PCo6)
of the PCoA. For all analyses, we used only the samples with
complete morphological measurement and more than five suc-
cessfully scored nSSR loci (only ten samples yielded less than
five loci), resulting in a total of 1369 samples (Table S1).

2.4 Multivariate analyses

All multivariate analyses were run in R 3.2.2 (R Development
Core Team 2015). We performed two different approaches: a
factorial analysis of mixed data (FAMD) followed by a hier-
archical clustering on principal components (HCPC) using the
FACTOMINER package (Lê et al. 2008) and a linear discriminant
analysis (LDA) using MASS (Venables and Ripley 2002).
Both multivariate analyses were run for three different
datasets: using only morphological variables, using only ge-
netic variables, and using all variables.

FAMD is a principal component method to explore data
comprising both continuous and categorical variables (Pagès
and Camiz 2008). FAMD does not require a prior division into
groups. In our case, the continuous variables were the eight
morphological variables and the scores of the six PCs on the
basis of the genetic data as described above, and the categor-
ical variables were represented by the five hair variables. After
analysis, HCPC (Husson et al. 2010) was used to divide the

Species assignment in hybridizing oak species 671



data into clusters keeping the first ten dimensions of the
FAMD. The actual number of clusters is suggested by
HCPC based on inertia gain. HCPC was performed with a
minimum number of clusters of three, as suggested by the
authors. Note that the FAMDwith only genetic variables does
not contain categorical variables and thus represents a princi-
pal component analysis (PCA).

LDA is a multivariate analysis that creates discriminant
functions that best describe a priori defined groups using a
training dataset. Subsequently, it uses these discriminant func-
tions to assign individuals of a separate or larger dataset. In our
analysis, we used hair types (that were shown to be important
in the FAMD and HCPC, see Section 3) to define the groups
(species) in the training dataset. We ignored the presence of
intermediate hairs and hairs on the vein and used the samples
having only one lamina hair type (stellate lamina hair for Pet,
clustered lamina hair for Pub, no hairs on the lamina for Rob,
as described in Kissling 1977) as training data. After
performing the LDA with standardized and centered values
for all parameters (except hair types used for defining the
groups), the linear discriminant function was used to predict
the entire dataset. In contrast to the FAMD, LDA calculates
posterior probabilities of each tree to belong to each of the
groups. We used two different probability thresholds to assign
trees to a group. First, we applied the “majority rule” where
each tree is assigned to the taxon with the highest assignment
probability. Second, we used a probability threshold of 0.8.
Trees above this threshold were assigned to the respective
taxon. All others were tagged as “unclassified”; they represent
intermediate, possibly hybrid trees.

2.5 Model-based clustering using genetic data

We used STRUCTURE 2.3.3 (Pritchard et al. 2000) and
STRUCTURE HARVESTER 0.6.93 (Earl and vonHoldt 2012) to
group individuals into genetic clusters based on genetic data
only. We ran ten simulations with different seeds for K (num-
ber of clusters) from 1 to 20, using 1,000,000 repetitions after
a burn-in period of 100,000 runs, admixture model, correlated
allele frequencies, and no prior location information.
Assignment probabilities to the clusters were calculated with
CLUMPP 1.1.1 (Jakobsson and Rosenberg 2007) using the
Greedy algorithm.We then had a closer look at the assignment
probabilities for K=3 (i.e., the number of species involved).
Every tree was assigned to a cluster according to the majority
rule and the clusters were assigned to taxa based on hair types.

2.6 Comparison among different variable sets
and approaches

We tested—for both the FAMD/HCPC and LDA (majority
rule)—which variable set (morphological variables only, ge-
netic variables only, all variables) best separates among the

different clusters. We used the separation/cohesion ratio (de-
scribed in, e.g., Janert 2010) as quality criterion. A high
separation/cohesion ratio indicates that the distance between
clusters is large and/or the variation within clusters is small,
leading to a good separation of the clusters. Separation
(among clusters) and cohesion (within clusters) were calculat-
ed after Davies and Bouldin (1979) using distances calculated
from the first two dimensions of the multivariate analyses.
Separation was calculated as the average distance between
the centroids of each cluster. Cohesion was assessed by using
the average distance (weighted by cluster size) of each point to
the centroid of its cluster. Finally, we calculated how well all
six multivariate and the STRUCTURE approach corresponded.
To do so, we compared the clustering obtained from the soft-
ware STRUCTURE (K=3) with the grouping/clustering of the
FAMD/HCPC and LDA. For both STRUCTURE and LDA, clus-
ter assignment was done according to the majority rule.

3 Results

3.1 Comparison among different variable sets
and approaches

HCPC suggested three clusters for all three variable sets.
Species assignment of these clusters was done according to
hair types (see below). For the FAMD, the joint application
of both morphological and genetic parameters (Fig. 1) led
to the best separation of the clusters (Table 1). The average
distance among clusters (separation) was almost four times
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Fig. 1 Taxon assignment of 1369 Quercus individuals using factor
analysis of mixed data (FAMD) and subsequent hierarchical clustering
of principal components (HCPC). This multivariate procedure combines
13 morphological and six synthetic genetic variables. Shown is the
position of each tree along the first two dimensions of FAMD, with the
clustering of HCPC in different colors and symbols. Species assignment
of the three proposed clusters was done according to hair types. Factor
coordinates of the presence (1) or absence (0) of hair types (V = on the
vein, L = on the lamina, C = clustered, S = stellate, I = intermediate, see
also Table 3) are also shown
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higher than the average distance among points within the
clusters (cohesion). FAMD/HCPC based on morphological
data alone (Fig. S1a) also showed a high separation/
cohesion ratio, while the analysis based on genetic data
alone (Fig. S1b) showed the lowest values. The separation
using genetic data only is, however, markedly improved
when looking at the first two principal coordinates of the
initial PCoA (Fig. S2). Separation/cohesion ratios of the
LDA were mostly lower than for the FAMD/HCPC
(Table 1). Also here, the joint use of both leaf morphology
and genetic data led to the highest separation of the clusters
(Fig. 2a), followed by the LDA using genetic data only
(Fig. S3b) and morphological variables only (Fig. S3a).

The overlap in species assignment using different variable
sets and statistical approaches varied from 66 to 95 %
(Table 2). For all comparisons, Q. robur reached the highest
congruence in all three approaches (results not shown).
For example, FAMD/HCPC or LDA using all variables led to
the same species assignment in 85 % of the cases. However,
96 % of all Q. robur trees (assigned by FAMD/HCPC) were
also identified as the same species by LDA (compared to 83 %
for Q. pubescens and 74 % for Q. petraea). The differences in
species assignment therefore derive mainly from the classifica-
tion of Q. petraea and Q. pubescens. STRUCTURE had its best
congruency with the multivariate approaches that used all vari-
ables (overall 87 and 85 % for FAMD/HCPC and LDA, respec-
tively). The following two sections will concentrate on this
combined variable set because for both multivariate approaches,
a joint application of morphological and genetic variables
proved to deliver the best results in terms of cluster separation.

3.2 Factorial analysis of mixed data and hierarchical
clustering on principal components

After performing the FAMD with all variables, we used the
first ten dimensions, which accounted for 78.6 % of the total

Table 1 Separation of the clusters (representing oak species) using two multivariate approaches with three variable sets (all, only morphological, only
genetic)

Approach Variable set n (Pet) n (Pub) n (Rob) Cohesion
within clusters

Separation
among clusters

Separation/
cohesion ratio

FAMD All variables 466 428 475 1.01 3.87 3.84

Morphological variables only 431 437 501 1.01 3.47 3.43

Genetic variables only 510 439 420 1.10 1.19 1.09

LDA All variables 430 471 468 0.90 2.99 3.33

Morphological variables only 388 450 531 0.97 2.38 2.45

Genetic variables only 419 476 474 0.90 2.80 3.13

n = number of trees assigned to the different species (Pet = Quercus petraea, Pub = Q. pubescens, Rob = Q. robur) based on HCPC (hierarchical
clustering of principal components) for FAMD or highest probability (majority rule) for LDA. Cohesion represents the weighted average distance within
clusters. Separation is the average distance among clusters. A large separation/cohesion ratio indicates good separation among species. Distances are
based on the first two axes of the multivariate analyses

FAMD factor analysis of mixed data, LDA linear discriminant analysis

a

b

Fig. 2 Taxon assignment of 1369 Quercus individuals using linear
discriminant analysis (LDA) with different thresholds of species
assignment probability. This multivariate approach combines eight
morphological and six synthetic genetic variables. Unambiguous
species-specific hair types were used to predefine the groups of the
training dataset. Shown are the position and classification of each tree
along the two discriminant functions, using a highest probability
(majority rule) and b 80 % as probability threshold for species
assignment.
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variation, for the clustering (HCPC). The three clusters sug-
gested by HCPC contained relatively equal numbers of trees
(475 for cluster 1, 428 for cluster 2, and 466 for cluster 3). All
five hair parameters were significantly different among the
clusters, with presence/absence of clustered and stellate hair
on the lamina having the lowest p values (Table S2).
Therefore, clusters were assigned to species according to hair
type (Table 3). Intermediate hairs were frequent inQ. petraea,
but also occurred in 30% ofQ. pubescens. Additionally, all 14
continuous variables significantly differed among clusters de-
fined by the HCPC (Table S2).

We then used the clustering of the HCPC described above
to interpret the FAMD on the total dataset. The first two di-
mensions of the FAMD accounted for 33.4 % of the variation
(Fig. 1). Dimension 1 of the FAMD clearly separatedQ. robur
from the two other species (Figs. 1 and S4) and was mainly
influenced by the nSSR data (PCo1), petiole ratio (PR), and
venation (RPV, Table 3). In general, Q. robur had shorter
petioles and a higher proportion of intercalary veins
(Fig. S5). Also, other parameters clearly distinguished be-
tween Q. robur and the rest, like hair parameters, lobe depth
ratio (LDR), basal shape (BS), and lobe number ratio (LLNR).
Dimension 2 separated all three species (Figs. 1 and S4), with
Q. pubescens and Q. petraea on the extremes of the axis and
Q. robur in the middle. Hair parameters had the highest con-
tribution (Table 3), followed by PCo2 (and also PCo3 and
PCo4), lobe depth ratio at the widest lobe (LDRW), and lobe
number ratio (LLNR). Q. pubescens exhibited higher sinus
depth at the widest width and a higher number of lobes per
leaf compared to Q. petraea (Fig. S5), but variation within
taxa was large. Overall, 35 of 71 populations represented pure
populations, and in only 11 populations, the frequency of the
most abundant species was below 80 % (Fig. 3).

3.3 Linear discriminant analysis

For the LDAwith all variables, we used a training dataset of
1286 a priori grouped trees (346 Q. petraea, 414

Q. pubescens, and 526Q. robur) with unambiguous hair types
and produced two linear discriminant functions that accounted
for 83.0 and 17.0 % of the variation. LD1 split the dataset into
Q. robur and the rest (Fig. S6) and was mainly influenced by
(in this order) PCo1, RPV, PR, PCo4, and PCo5 (Table 3).
LD2 represented a gradient between Q. petraea and
Q. pubescens (while Q. robur had intermediate values,
Fig. S6); the most important variables were PCo2, PCo3,
PCo4, LDRW, and LLNR (in decreasing order). Thus, the
importance, average, and range of morphological and genetic
variables characterizing the three groups (Table 3) were very
similar to the ones described for the FAMD. Applying the LD
functions on the training dataset led to grouping confirmation
of 79.3% of the trees using the majority rule.We then used the
two LD functions to predict the whole dataset, resulting in 430
Q. petraea, 471Q. pubescens, and 468Q. robur trees with the
majority rule (Figs. 2a and 4). Only 1 of the 83 trees with
mixed hair types was assigned to Q. robur, and the rest was
equally assigned to the other two species.

In general, the maximum probability to belong to a certain
species was much higher in Q. robur than in the other two
species (Fig. S7). Consequently, with the higher probability
threshold of 0.8 for species assignment, the number of
Q. petraea and Q. pubescens trees was substantially small-
er, while the number of Q. robur trees remained more or
less the same. The proportion of unclassified trees was
40.0 %; these intermediate forms mostly and equally de-
rived from the original Q. petraea and Q. pubescens
clouds, dissolving this taxon cluster (Fig. 2b). With a prob-
ability threshold of 80 %, only 11 populations consisted of
only one species (all Q. robur populations), and the max-
imum proportion of intermediates in a population was as
high as 73.7 % (Fig. S8).

3.4 STRUCTURE

STRUCTURE returned the highest L(K), which is the model
choice criterion proposed by Pritchard et al. (2000), with

Table 2 Proportion of agreement
in species assignment of 1369
Quercus individuals using seven
different analytical approaches

No. Approach 2 3 4 5 6 7

1 FAMD/HCPC (all variables) 0.95 0.78 0.85 0.75 0.81 0.87

2 FAMD/HCPC (morphological variables only) 0.74 0.80 0.73 0.76 0.82

3 FAMD/HCPC (genetic variables only) 0.85 0.66 0.88 0.79

4 LDA (all variables) 0.78 0.90 0.85

5 LDA (morphological variables only) 0.69 0.71

6 LDA (genetic variables only) 0.84

7 STRUCTURE (genetic data only)

Shown is the congruence among two multivariate analyses (FAMD/HCPC = factor analysis of mixed data with
subsequent hierarchical clustering of principal components; LDA = linear discriminant analysis) using three
different sets of variables (all, only morphological, only genetic) and a model-based approach (STRUCTURE with
K= 3) using only genetic data
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K=8. However, the increase in likelihood for K>3 was only
minimal (Fig. S9). In this study, we were mainly interested in
K= 3 to compare the population genetic clustering to the
groups and clusters in the multivariate analyses. To assign
the three clusters from STRUCTURE to species, we looked at
the lamina hair types occurring in the different clusters;
85.9% of the trees in cluster 1 had clustered hair on the lamina
and were therefore assigned toQ. pubescens. Most of the trees
in cluster 2 (90.3 %) were hairless and therefore assigned to
Q. robur. In cluster 3, 68.4 % of the trees had stellate hair on
the lamina, whereas 27.5 % had clustered hair. This cluster
was assigned to Q. petraea. Across the study range, 15 of the
71 populations were pure populations (3 Pet, 2 Pub, and 10
Rob), and in 52 populations, the frequency of the most abun-
dant taxon was at least 80 % (Fig. 5). In general, posterior
probabilities to belong to a specific cluster were high, espe-
cially in Q. robur (Fig. S10).

4 Discussion

Scientists and practitioners often rely on rapid and accurate
species identification. In some genera, however, species as-
signment is not so straightforward, because there might be a
lack of reliable and unambiguous morphological characters
and because hybridization among species might lead to inter-
mediate forms or a combination of parental characters. In
these cases, species identification cannot be reliably done in
the field, and additional effort is needed. Popular approaches
to resolve such complex patterns are the use of multivariate
statistics based on many morphological characters or the use
of genetic markers. However, the joint application of these
two approaches, which might result in the highest resolution
in taxon identification, is rarely found in the literature. In the
present study, we tested whether joint multivariate analyses
(FAMD/HCPC and LDA) of leaf morphological characters

Pet

Pub

Rob

Fig. 3 Species composition of
the 71 investigated populations of
Quercus in Switzerland using
factor analysis of mixed data
(FAMD) and subsequent
hierarchical clustering of
principal components (HCPC).
Species assignment of the clusters
was done according to hair types
(Fig. 1). Pet = Q. petraea, Pub =
Q. pubescens, Rob = Q. robur

Pet

Pub

Rob

Fig. 4 Species composition of
the 71 investigated populations of
Quercus in Switzerland using
linear discriminant analysis
(LDA). Species assignment was
done according to the highest
assignment probability (majority
rule). Pet = Q. petraea, Pub =
Q. pubescens, Rob = Q. robur
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and genetic markers improve the species assignment of the
three morphologically similar and hybridizing oak species
Q. petraea,Q. pubescens, andQ. robur compared to the same
approaches using only morphological or genetic variables. We
then compared the results to a model-based clustering method
(STRUCTURE, Pritchard et al. 2000) that only takes genetic in-
formation into account.

For both the FAMD/HCPC and LDA, the combination of
leaf morphological and genetic parameters led to the highest
degree of separation among the three species (Table 1). This
result suggests that joint multivariate analyses may improve
taxon delimitation in closely related species such as the white
oaks. Notably, Q. robur is more different from the two other
species than Q. petraea from Q. pubescens (Figs. 1 and 2). It
has been shown thatQ. robur is morphologically more distinct
from Q. petraea and Q. pubescens than are the latter two spe-
cies (e.g., Curtu et al. 2007a; Dupouey and Badeau 1993).
However, there might be more reasons for the challenging
discrimination between Q. petraea and Q. pubescens. First,
the genetic markers used in this study were designed to max-
imize differentiation between Q. robur and Q. petraea
(Guichoux et al. 2011, see also Fig. S2). Nevertheless, a part
of these markers has previously shown discrimination power
for all three taxa (Gugerli et al. 2008). Second, hybrids be-
tween Q. pubescens and Q. petraea might be more common
than hybrids between Q. robur and the other two species, at
least within the study range. Several studies favor this hypoth-
esis (e.g., Semerikov et al. 1988), but the degree and direction
of hybridization in these three species, and in white oaks in
general, is still under debate (e.g., Dupouey and Badeau 1993;
Guichoux et al. 2013).

Our results show that several parameters can be used to
reliably identify Q. robur. In general, Q. robur is hairless on
the lamina and has short petioles, a high proportion of inter-
calary veins, a high lobe depth, an ear-like basal shape, and a

low number of lobes. Moreover, the nSSR markers clearly
differentiate between Q. robur and the other two species.
This result is in line with earlier studies (Curtu et al. 2007a;
Gugerli et al. 2007; Kremer et al. 2002). The distinction be-
tween Q. petraea and Q. pubescens is more complex.
Although the two species generally differ in hair type
(Q. pubescens has mostly clustered hair on the lamina, where-
as Q. petraea normally has stellate hair), hair types are not
easy to classify due to intermediate forms. Therefore, addi-
tional parameters are needed to resolve the taxonomic assign-
ment. Besides hair type and nSSR markers, the main differ-
ence between the two species are the lobes, withQ. pubescens
having a higher lobe depth at the widest width and a larger
number of lobes compared to Q. petraea (and Q. robur).
However, overlap among species was still considerable. This
means that the identification in the field on the basis of a few
single leaf morphological characters, without the availability
of acorns, is problematic, and genetic data as presented in this
study improves taxonomic resolution.

The three analytical approaches we used differ in the way
they can identify the taxa. FAMD can combine continuous
and categorical variables and needs no a priori species infor-
mation or training dataset. However, the subsequently applied
hierarchical clustering (HCPC) does not directly allow for the
recognition of intermediate forms or hybrids (this could be
done a posteriori with additional methods). Species assign-
ment of the resulting clusters has to be done with additional
evidence, e.g., reference samples or previously known diag-
nostic parameters. Here, hair type proved to be the best pre-
dictor for the different groups. In contrast, LDA needs a
training/reference dataset with individuals assigned to a spe-
cific species. Since hair presence/type was the most discrimi-
nating factor in FAMD and is known to be a good character-
istic for species differentiation in general (Kissling 1977), we
built the training dataset based on these characters. An

Pet

Pub

Rob

Fig. 5 Species composition of
the 71 investigated populations of
Quercus in Switzerland using

STRUCTURE (Pritchard et al. 2000).
Species assignment of the K= 3
clusters was done according to
hair types. Pet = Q. petraea, Pub
= Q. pubescens, Rob = Q. robur
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advantage of LDA is that it specifically aims at finding the
best separation among the predefined groups, in contrast to
FAMD that maximizes the variance without prior knowledge
of groups of data. LDA yields an assignment probability for
each individual, thus allowing the identification of the propor-
tion of intermediate/hybrid forms. The threshold to belong to a
certain taxon, however, is arbitrary and has substantial conse-
quences on the outcome of the analysis (Fig. 2). Finally,
STRUCTURE is a model-based approach that clusters individuals
with no a priori knowledge based on genetic data and popula-
tion genetic theory, also delivering assignment probabilities. In
this approach, markers with alleles that are—at best—diagnos-
tic for a taxon may reliably indicate hybrid origin of particular
individuals, even when backcrossing is involved (Lepais et al.
2009). All three methods (using a majority rule for species
assignment and all variables in the case of multivariate analy-
ses) resulted in more or less congruent outcomes (overall aver-
age 85–87 %, Table 2), depending on the species (74–98 %).

The fact that 85–87 % of the sampled trees were assigned
to the same species using STRUCTURE and the two multivariate
analyses using bothmorphological and genetic variables show
that a model-based test of species identification using solely
genetic data may represent an alternative to morphological
approaches. This is especially interesting if genetic analyses
are anyway performed to answer specific study questions.
Moreover, purely morphological approaches have several dis-
advantages, especially when intermediate forms and hybrids
are present (Lopez-Caamal and Tovar-Sanchez 2014). First,
morphological expression to a certain degree depends on the
environment. Second, morphological intermediacy may orig-
inate from other processes than hybridization. Finally, hybrid
individuals do not necessarily show intermediate phenotypes
(Viscosi et al. 2009) because not all characteristics are under
polygenic control with simple additive effects. Purely genetic
approaches, on the other hand, can reliably identify hybrid
taxa if highly differentiating markers and alleles can be
established. Besides the nSSR markers applied in the present
study (Guichoux et al. 2011), one possibility is to use species-
diagnostic single-nucleotide polymorphisms (SNPs), for ex-
ample from those identified in Lepoittevin et al. (2015) for
white oaks. Using a relatively high number of SNPs would
not only help in identifying species but also in quantifying
levels of backcrossing and introgression. This has recently
been exemplified in six stands of Q. robur and Q. petraea
genotyped at 262 SNPs (Guichoux et al. 2013), showing
asymmetric introgression toward Q. petraea.

5 Conclusions

For the taxonomic delimitation of the European white oaks
species described here, varying degrees of phenotypic plastic-
ity, hybridization, backcrossing, and introgression lead to

patterns that are only resolvable with a sufficient number of
morphological and/or genetic parameters. Approaches based
on pure genetic data are also promising and offer the possibility
of a more accurate assignment of hybrids. In contrast to the low
taxonomic resolution of classical DNA barcoding (further com-
promised by uniparental inheritance of the organellar-based
markers applied), approaches using highly variable and abun-
dant nuclear markers like nSSRs and SNPs can also give in-
sights into aspects such as mating patterns, backcrossing, and
levels of introgression.
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