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Abstract
& Key message Intrinsic water use efficiency of Pinus
canariensis (Sweet ex Spreng.) growing at a semi-arid
treeline has increased during the past 37 years. Tree ring
width by contrast has declined, likely caused by reduced
stomatal conductance due to increasing aridity.
& Context Rising atmospheric CO2 concentration (Ca) has
been related to tree growth enhancement accompanied by in-
creasing intrinsic water use efficiency (iWUE). Nevertheless,

the extent of rising Ca on long-term changes in iWUE and
growth has remained poorly understood to date in
Mediterranean treeline ecosystems.
& Aims This study aimed to examine radial growth and phys-
iological responses of P. canariensis in relation to risingCa and
increasing aridity at treeline in Tenerife, Canary Islands, Spain.
& Methods We evaluated temporal changes in secondary
growth (tree ring width; TRW) and tree ring stable C isotope
signature for assessing iWUE from 1975 through 2011.
& Results Precipitation was the main factor controlling sec-
ondary growth. Over the last 36 years P. canariensis showed a
decline in TRWat enhanced iWUE, likely caused by reduced
stomatal conductance due to increasing aridity.
& Conclusion Our results indicate that increasing aridity has
overridden the potential CO2 fertilization on tree growth of
P. canariensis at its upper distribution limit.

Keywords Climate change .Mediterranean climate .

Drought . Stable carbon isotope .Canary islandpine . Treeline

1 Introduction

The current rising atmospheric CO2 concentration (Ca) is a
central driver of climate change leading to substantial increase
in temperature and altered annual precipitation patterns
(Körner 2000). Ca has increased from 303 μmol mol−1 in
1920 (McCarroll and Loader 2004) to 391 μmol mol−1 in
2011 (IPCC 2013). Increased Ca may stimulate plant growth
by reduced water loss upon stomatal closure and enhanced
photosynthesis (Morgan et al. 2004; Norby et al. 2005).
Consequently, intrinsic water use efficiency (iWUE), being
the ratio of net carbon gain (A) versus leaf conductance for
water vapor (gw), should increase (Farquhar et al. 1989).
iWUE can be inferred from stable carbon isotope signature
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in tree ring wood or cellulose (McCarroll and Loader 2004).
Only few studies have integrated long-term trends in climate,
Ca, iWUE, and growth (Linares et al. 2009; Linares and
Camarero 2012; Granda et al. 2014; Liu et al. 2014). Peñuelas
et al. (2011) listed 47 studies related to changes in tree ring-
derived iWUE and/or growth of mature trees growing in tropi-
cal, arid, Mediterranean, temperate, and boreal biomes, although
only seven studies had analyzed iWUE together with growth.
These latter studies implied that the observed increase in Ca and
iWUE did not translate into tree growth enhancement (Peñuelas
et al. 2011), suggesting other factors such as warming-related
drought to override potential benefits of rising Ca (Silva and
Anand 2013; Levesque et al. 2014; Wu et al. 2014).

Mediterranean forest ecosystems are expected to drastically
modify gas exchange and tree growth under rising Ca (Huang
et al. 2007; Linares and Camarero 2012; Granda et al. 2014),
while drought impact is likely to intensify (Sarris et al. 2013).
For the upcoming three decades, modeling predicts increase in
surface air temperature by 1 °C and decrease in soil water
availability by 15 to 20 % for Mediterranean ecosystems
(Sabaté et al. 2002; IPCC 2013), as precipitation may decline
by more than 30 % (Giorgi 2006; Somot et al. 2008).
Evapotranspiration is expected to increase so that soils may
dry, affecting resource acquisition for growth and reproduc-
tion (Durante et al. 2009).

Contrasting tree-species specific growth responses to cli-
mate change have been reported for cont inental
Mediterranean forest trees. While some studies reported on
growth enhancement in response to increasing Ca

(Rathgeber et al. 2000; Kuotavas 2008; Linares et al. 2009),
other studies show declining growth trends at increasing Ca

and iWUE (Tognetti et al. 2000; Maseyk et al. 2011). Such
inconsistency may arise from species-related peculiarities in
growth and iWUE adjustments, linked to long-term acclima-
tions to increasing Ca or additional competing factors such as
drought stress limiting the expected CO2-induced growth en-
hancement (Linares and Camarero 2012; Granda et al. 2014).

In the present study, we used tree ring width and stable C
isotope analysis to evaluate the effects of rising Ca and
drought on growth and iWUE of Pinus canariensis (Sweet
ex Spreng.) at the semi-arid treeline in Tenerife, Canary
Islands, Spain. At present, no other tree species can compete
with P. canariensis an endemic conifer of the Canary
Archipelago, which is well adapted to xeric conditions exem-
plified by xenomorphic needles (Grill et al. 2004) and tap
roots extending down to 15 m belowground (Luis et al.
2005; Climent et al. 2007). Our specific objective were (1)
to determine themain limiting climatic factor for radial growth
of P. canariensis at its upper distribution limit and (2) to test if
rising atmospheric CO2 concentrations and changing environ-
mental conditions (temperature and precipitation) at the semi-
arid treeline of Tenerife have caused changes in tree growth
and iWUE during the past 37 years (1975–2011).

2 Material and methods

2.1 Study site and climate data

The study was conducted in a reforested even-aged
P. canariensis forest growing at treeline (2070 m a.s.l.) in
Las Cañadas near the Visitors Centre (El Portillo) of Teide
National Park (28° 18′ 21.5″ N, 16° 34′ 5.8″ W), Tenerife,
Canary Islands, Spain. In Las Cañadas, the treeline is formed
by sharp line of isolated upright P. canariensis trees, and seed-
ling establishment is severely impeded due to topsoil desicca-
tion for about 5 months during the dry summer and frequent
night frosts during the winter (Höllermann 1978; Srutek et al.
2002;Wieser et al. 2016). In 2011, the trees were 61-years old.
This avoided possible age-dependent differences in growth-
climate relationships, which may occur with trees of diverse
ages (Carrer and Urbinati 2004).

The climate is typically semi-arid Mediterranean, with an
alternation of a warm and dry period from June to September
and a cold and wet period from October to May. During the
period 1921–2011, mean annual precipitation was 466 mm,
with 95 % falling during the cold and wet season and almost
no rain in summer. Mean annual temperature was 9.7 °C, with
summer maxima of up to 30.5 °C and winter minima down to
−9.8 °C. Temperature and precipitation data (annual and
monthly means or sums) were obtained from the Izaña weath-
er station, 5 km east of the study site (28° 18′ 21.5″ N, 16° 30′
35″ W; 2367 m a.s.l.; http://izana.aemet.es/) for the period
1974–2011. We also calculated an aridity index (AI) as pre-
cipitation divided by (temperature + 10) following De
Martonne (1926) for the study years, where lower AI values
correspond to higher aridity.

The geological substrate is of volcanic origin (basalt), and
the soil is classified as a Leptosol, a soil type typical for dry
regions at high elevations in Tenerife (Arbelo et al. 2009). The
water holding capacity of the topsoil (5–35 cm depth) at sat-
uration (−0.001 MPa) is 0.46 m3 m−3, and the corresponding
values for field capacity (−0.033 MPa) and the wilting point
(−1.5 MPa; sensu Blume et al. 2010) are 0.23 and
0.09 m3 m−3, respectively (Brito et al. 2014). Due to frequent
precipitation during the cold and wet season, soil water poten-
tial at 25–30 cm soil depth rarely drops below −0.02 MPa and
remains close to the wilting point throughout the dry summer
(Brito et al. 2014).

2.2 Sampling and dendrochronological procedure

Dendrochronological methods were used to assess changes in
stem radial growth. In fall 2011, we sampled five trees which
were previously used for stem CO2 efflux and sap flow mea-
surements (Brito et al. 2010, 2015). Two cores per tree (S and
W exposure) were taken at diameter at breast height (DBH)
using a 5-mm-diameter increment borer. For contrast
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enhancement of tree ring boundaries, the cores were dried in
the laboratory, non-permanently mounted on a holder, and the
surface was prepared with a razor blade. Ring widths were
measured to the nearest 1 μm using a reflecting microscope
(Olympus SZ61) and the software package TSAP WIN
Scientific. Tree ring chronologies of the single cores were
plotted and cross-dated visually and statistically, respectively.
The TSAP software was used for statistically cross-dating by
assessing the Gleichläufigkeit (=synchronicity between time
series). Gleichläufigkeit is the percent agreement in the signs
of the first difference of time series data (Eckstein and Bauch
1969). Agreement was also quantified parametrically using
the product–moment correlation coefficient, which in turn
was adjusted for the amount of overlap between tree ring
series using the standard t statistic, whereby the threshold for
acceptable statistical quality was suggested to be 3.5 (Baillie
and Pilcher 1973). Ring widths of both cores from each sam-
ple tree were averaged, and the quality of the chronologies
was evaluated with the ARSTAN software (Cook 1987;
Holmes 1994) through calculation of the Expressed
Population Signal (EPS; Wigley et al. 1984).

2.3 Stable isotope analysis, 13C discrimination,
and intrinsic water use efficiency

δ13C analyses for the years 1975–2011 were performed on
same cores as used for TRW assessment. Preventing juvenile
effects on isotopic tree ring signatures (Heaton 1999; but see
McDowell et al. 2011), only the most recent 37 years (1975–
2011) of ring formation were sampled. Annual rings (early
wood plus late wood) were cut exactly at ring boundaries by
use of a scalpel and a reflecting microscope (Wild 308700).
For each of the five study trees two samples per tree ring were
pooled and homogenized with a swing mill (Retsch MM301,
Retsch Haan, Germany). In a subsample, we compared iso-
tope signatures in bulk wood with those in cellulose for deter-
mining the necessity of cellulose extraction in our study trees.
Cellulose extraction was performed using a modified version
of the method of Brendel et al. (2000.). This methodological
comparison corroborated a significant correlation (R2 =0.93;
P<0.001; Fig. 1). On average, δ13C in cellulose was higher by
1.4±0.1‰ than in bulk wood, and differences between wood
and cellulose δ13C were almost constant amongst trees and
tree ring age (see Online Resource Fig. OR1) as reported
earlier for other conifer species (Borella and Leuenberger
1998; Jaggi et al. 2002; Sohn et al. 2013; Weigt et al. 2015).
Therefore, we corrected the isotope offset of 1.4‰ between
cellulose and bulk wood, as we used bulk wood instead of
extracted cellulose for our isotope analysis (c.f. also Saurer
and Siegwolf 2007).

For analyzing δ13C, 2.0 ±0.02mg of homogenized samples
were weighed into tin capsules (3.5 × 5 mm, IVA
Analysentechnik e. K., Meerbush, Germany) and combusted

to CO2 in an elemental analyzer (Eurovector EA3000) con-
nected to an isotope ratio mass spectrometer (Isoprime,
Elementar, Hanau, Germany). The isotope signature is
expressed in the delta (δ) notation in parts per thousand rela-
tive to the Vienna Pee-Dee Belemnite (V-PDB) standard:

δsample ¼ Rsample

.
Rstandard−1

� �
*1000 ð1Þ

where Rsample and Rstandard represent the
13C/12C ratios of the

sample and the V-PDB standard, respectively. The analytical
precision was <0.12‰ (expressed as standard deviation of an
internal laboratory standard using identical sample mass).Tree
ring specific δ13C was corrected for the progressive decline in
atmospheric δ13C through calculating 13C discrimination
(Δ13C):

Δ13C ¼ δ13Catm−δ13Ctring

� �.
1þ δ13Ctring

.
1000

� �
ð2Þ

where δ13Catm and δ13Ctring are the 13C/12C ratios in atmo-
spheric CO2 and tree rings, respectively. Δ13C can also be
calculated as follows in order to relate Δ13C with physiologi-
cal responses:

Δ13C ¼ aþ b–að Þ*Ci

.
Ca ð3Þ

where a (=4.4‰) refers to the slower diffusivity of 13CO2

relative to 12CO2 in air, b (=27‰) is the isotopic fractionation
caused by enzymatic C fixation, and Ci and Ca are the CO2

concentrations in the intercellular space of the needles and the
atmosphere, respectively. The long-term trend in δ13Catm from
1980 to 2011 was obtained from direct atmospheric measure-
ments (www.scrippsco2.ucsd.edu) and extrapolated for the

Fig. 1 Comparison of δ13C in bulk wood and cellulose of annual growth
rings of P. canariensis. Points were fit by linear regression analysis:
y= 1.04× +2.14; R2 = 0.93; P< 0.001. The dashed line reflects the one-
to-one line for comparison
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years 1975 through 1979. Ca was obtained from published
data (http://cdiac.ornl.gov/trends/co2/sio-mlo.html; 1975–
2011) and regional data back to 1991 at Izaña taken from
the Earth System Research Laboratory website (www.esrl.
noaa.gov/gmd/about/aboutgmd.html; code-IZO). It should
be noted that Δ13C is determined by the ratio of chloroplast
to the ambient CO2 mole fraction (Cc/Ca) rather than Ci/Ca, as
used in Eq. 3, making here the calculated value sensitive to
mesophyll conductance (gm; Seibt et al. 2008). The latter
varies in accordance to changes in environmental conditions
such as temperature, irradiance, water, and CO2 availability
(Flexas et al. 2008). Consequently, using Ca may be problem-
atic if gm to CO2 is not constant (Seibt et al. 2008). However,
as information on mesophyll conductance of P. canariensis is
not available and published means of gm would not improve
results (Cernusak et al. 2013), we chose using the simplified
linear model of Farquhar et al. (1982). Hence, intrinsic water
use efficiency (iWUE), i.e., the ratio of the net carbon gain (A)
versus leaf conductance for water vapor (gw), was calculated
as follows:

iWUE ¼ A
.
gw ¼ Ca b–Δ13C

� �.
1:6* b−að Þð Þ ð4; Þ

where 1.6 is the ratio between the diffusivities of water vapor
and CO2 in air.

2.4 Data analysis

We assessed Pearson’s correlations for assessing the climatic
impact on the tree ring variables TRW and Δ13C throughout
the study period (1975–2011). These statistical analyses were
based on seasonal and annual calculations of mean air tem-
perature (°C), total precipitation (mm), and AI for the prior
and current growing year using the SPSS 16 software package
(SPSS Inc., Chicago, USA). A probability level of P<0.05
was considered as statistically significant. As suggested by
Sarris et al. (2013) we did not remove any age-related trend
from our tree ring chronologies by conventional detrending
procedures, thus, avoiding the risk of removing any environ-
mental signal or trend captured by our tree ring series.

3 Results

3.1 Inter-annual trends in environmental conditions,
TRW, and Δ13C

Climate analysis reveal that at our treeline site mean air tem-
perature had increased by 0.3 °C per decade during the period
1975–2011 (Fig. 2a), in particular during spring and summer
(see Online Resource Table OR1). Precipitation by contrast
declined by 77 mm per decade (Fig. 2b), especially during
spring (see Online Resource Table OR1). On an annual scale,

increasing temperature coupled with a decrease in precipita-
tion patterns therefore also caused a decline in the aridity
index of 4.1 per decade (Fig. 2c; Online Resource Table OR1).

The five study trees were even-aged and the mean ring
w i d t h w a s 2 . 6 8 ± 0 . 1 7 mm . S y n c h r o n i c i t y
(“Gleichläufigkeit”) between the ring width series reached
values >73 %, and t values >5.3 (see Online Resource
Table OR2). The expressed population signal (EPS) was
0.91, suggesting adequate replications and a strong common
climate signal in our treeline chronology.

We detected a significant decline in TRW from 1975 to
2011 (P= 0.002) reaching a minimum in 2008 (Fig. 3a).
Tree ring Δ13C did not vary considerably during the past
37 years. Δ13C averaged 14.2 ± 0.3‰ and varied between
14.8±0.2‰ in 1976 and 13.2±0.6‰ in 1984 (Fig. 3b).

3.2 Climate growth relationships

Pearson’s correlations revealed strong links between climatic
parameters and the TRW chronology (Table 1; Online
Resource Table OR3 and OR4). The main factor controlling
TRW was precipitation (Table 1). At a seasonal scale, the

Fig. 2 Temporal variation in amean annual air temperature (Tair), b total
annual precipitation (P), and c the aridity index during the period 1975
throughout 2011. Regression analysis: mean annual air temperature:
y = 0.031 × −52.6, R2 = 0.298, P < 0.001; total annual precipitation:
y = −7.6 × +15,672, R2 = 0.173, P = 0.01; aridity index: y = −0.42 × +
856.5; R2 = 0.20, P= 0.005
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TRWwas significantly favored by winter (previous Dec–Feb;
r=0.396, P=0.015) and spring (r=0.387, P=0.018) precip-
itation (Table 1). Interestingly, rainfall of the previous fall had
no significant effect on TRW. Correlations between TRWand
precipitation, however, improved when we extended the inte-
gration period from seasonal to longer time scales, covering
(1) winter and spring (r=0.511, P=0.009), (2) calendar year

(r = 0.419, P = 0.010), (3) hydrological year (r = 0.579,
P<0.001), and (4) multiple year precipitation (all r<0.502,
and P<0.020), respectively (Table 1). Spring precipitation
also significantly favored Δ13C (r=0.351, P=0.036; Table 1).

Pearson’s correlation indicated a significantly negative ef-
fect of summer temperature on TRW (r=−0.424, P=0.009),
as well as significantly negative effects of autumn (r=−0.444,
P = 0.007) and calendar year temperature (r = −0.400,
P=0.016) on Δ13C (Online resource Table OR3). Pearson’s
correlation also indicated a significant positive effect of winter
(r=0.378, P=0.021), spring (r=0.381, P=0.020), calendar
year (r=0.426, P=0.009), and hydrological year (r=0.579,
P<0.001) aridity index (AI; where lower values correspond to
a higher aridity) on TRW, and of spring AI (r = 0.358,
P=0.032) on Δ13C (Online Resource Table OR4).

3.3 Inter-annual trends of Ca, Ci, Ci/Ca, and iWUE

Global atmospheric CO2 concentration (Ca) increased from
331 μmol mol−1 in 1975 to 392 μmol mol−1 in 2011
(Fig. 4a), being in agreement with local Ca increase as record-
ed at the Izaña Observatory from 1991 throughout 2011
(R2 = 0.99; P < 0.001; see Online Resource Fig. OR2).
Paralleling atmospheric CO2 enhancement, tree ring-derived
intercellular CO2 concentration (Ci) increased significantly
(R2=0.619, P<0.001) from 1975 through 2011 from 142 to
169 μmol mol−1 (Fig. 4a). The trend of Ci/Ca revealed no

Fig. 3 Chronologies of a tree ring width (TRW) and b Δ13C of
P. canariensis from 1975 throughout 2011. Values are the mean ± SE of
five trees

Table 1 Pearson’s correlation coefficients calculated between tree ring
chronologies (tree ring width, TRW; and 13C discrimination, Δ13C) and
integrated periods of precipitation for the period 1975–2011. (−1)
indicates the season of the previous year. Spring: March–May, Summer:
June–August, Autumn: September–November, Winter: previous year
December–February, Calendar year: January–December, hydrological
year: October (−1)–September

Season TRW Δ13C

Autumn (−1) 0.303 −0.043
Winter 0.396* 0.038

Spring 0.387* 0.351*

Summer −0.147 0.153

Autumn −0.057 −0.028
Winter and spring 0.511** 0.191

Calendar year 0.419** 0.180

Hydrological year 0.579*** 0.160

Multi-year

2 years 0.560*** 0.198

3 years 0.502** 0.295

4 years 0.513** 0.327

Significant correlations are set in italics (*P < 0.05, **P < 0.01,
***P< 0.001)

Fig. 4 Temporal variation in a global (thin line) and local (open circles)
atmospheric CO2 concentration (Ca), internal CO2 concentration (Ci;
solid circles); b Ci/Ca, and c intrinsic water use efficiency (iWUE)

iWUE and growth of P. canariensis at treeline 745



significant trend over the past 36 years (R2=0.009, P=0.58),
with Ci/Ca averaging 0.43±0.01 (Fig. 4b). P. canariensis sig-
nificantly increased their iWUE (R2=0.80; P<0.001) from
1975 through 2011 (Fig. 4c).

4 Discussion

Our results indicate a warming trend at our treeline site for the
period 1975–2011, coupled with reduced precipitation, and
therefore also increasing aridity (Fig. 2; Online Resource
Table OR1), which is in agreement with recent climate change
models forecasting similar trends towards 2100 (IPCC 2013).
Although we only sampled five even-aged trees, the correla-
tions between the single TRW chronologies were highly sig-
nificant (Online Resource Table OR2) and the EPS was 0.91.
Thus, the EPS for our TRW chronology is within the range of
0.84 and 0.98 estimated for 12 young P. canariensis stands of
growing between 1120 and 1930 m a.s.l. on the Cordillera
Dorsal of Tenerife (Rozas et al. 2013). Our estimated EPS of
0.91 is also considerably above the threshold of 0.85 sug-
gested by Wigley et al. (1984) and thus suggests adequate
replications and a strong common climate signal in our
treeline chronology with respect to radial growth and the
δ13C signal (c.f. also Borella and Leuenberger 1998 and
Levesque et al. 2014). Furthermore, there is also evidence that
young P. canariensis trees are more sensitive to limiting cli-
matic conditions than older ones (Rozas et al. 2013), as has
also been reported for the Mediterranean conifers Juniperus
thurifera (Rozas et al. 2009) and Pinus pinaster (Vieira et al.
2009). In addition, young P. canariensis trees have no missing
rings, and thus contrasting with mature trees, where missing
tree rings are a major limitation for the successful dating of
tree ring series (Jonsson et al. 2002).

Stem radial growth variability was mainly controlled by
precipitation. The positive responses of TRW to winter,
spring, calendar year, and especially to hydrological year
and multiple years precipitation (Table 1) are in line with
findings from other leeward P. canariensis plantations
established between 1950 and 1970 between 1130 and
2100 m a.s.l. (Rozas et al. 2013) and indicates that water
availability constraints tree growth at treeline in Tenerife
(Gieger and Leuschner 2004). The beneficial effect of winter,
spring, and hydrological year precipitation is due to a pro-
nounced water deficit at treeline, as 95 % of the annual pre-
cipitation falls during the cold and wet season (October–May).
The beneficial effect of hydrological year and multiple year
precipitation on TRWof P. canariensis (Table 1; Jonsson et al.
2002) supports the idea that P. canariensis is able to tap water
from deeper soil layers originating from years prior the grow-
ing season (Brito et al. 2015) as has also been documented for
Pinus halepensis subsp. brutia at a dry low elevation site at
Samos, Greece (Sarris et al. 2013). Indeed, net primary

production at our treeline site has been shown to be consider-
ably higher in a hydrological moist as compared to a hydro-
logical dry year (Wieser et al. 2016).

We also observed a negative response of TRW to warm
summers (Table 1) which may be due to drought-induced
stomatal closure, a loss in photosynthetic efficiency (Brito
2016) and enhanced respiratory carbon losses of aboveground
woody tissues (Brito et al. 2010, 2013). Ample soil water
availability and a lower evaporative demand as compared to
the warm and dry summer (Brito et al. 2015) may help explain
the lack of a significant response of TRW to winter and spring
temperatures. The lack of any significant positive correlation
between TRW and temperature may be attributed to the fact
that mean annual air temperature at treeline (Fig. 2; 10.6
±0.5 °C) is noticeably higher than the mean air temperature
range of 5.5 to 7.0 °C suggested to limit growth in continental
treelines worldwide by Körner (2003, 2012). A higher tem-
perature limit for tree growth in Mediterranean climates has
also been suggested by Vieira et al. (2013).

Although radial stem increment at treeline in Tenerife ter-
minates round mid-June (Brito et al. 2010), stem radial incre-
ment may be prolonged till late fall in hydrological moist
years (Brito 2016). Under conditions of severe summer
drought when stomata are completely closed (Brito et al.
2014, 2015), stem radial growth however does not extend into
the peak of the dry season (Brito et al. 2010). This may help
explain the lack of any significant positive correlations be-
tween climatic parameters and Δ13C, except for spring precip-
itation in Table 1 and AI (Online Resource Table OR4), the
period when maximum radial growth normally takes place in
P. canariensis at treeline (Brito et al. 2010; Brito 2016).

It has been shown that in dry years trees photoassimilates
accumulate in Pinus brutia (Körner 2003), and recent work in
drought-exposed Pinus sylvestris confirm that nonstructural
carbohydrates during periods when cambial activity is close
to zero (Gruber et al. 2012), opposite to the often assumed C
starvation under drought. Probably, some C was fixed during
the dry summer (Brito 2016). As there was commonly no
growth during the dry summer, these stored carbohydrates
were used for late wood production in autumnwhen soil water
availability permits growth. As we used complete tree rings
(early and late wood milled together), the isotopic signal cor-
responding to summer drought was retained in the annual
isotopic signature of the whole tree ring (c.f. also Sarris et al.
2013).

At our treeline site P. canariensis showed a constant
Ci/Ca ratio over time, leading to a moderate increase in
iWUE under rising Ca (Fig. 3). The increase in iWUE
observed at our study site is within the range of rising
iWUE values of about 8 to 25 % reported for various
Mediterranean forest trees since the 1970s (Ferrio et al.
2003; Peñuelas et al. 2011; Linares and Camarero 2012;
Granda et al. 2014). Although iWUE increased over
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time (Fig. 3c), radial growth has been declining, and
thus suggesting that a reduction in stomatal conductance
has prevailed which however does not rule out the pos-
sibility of changes in C allocation patterns or post-
photosynthetic processes (Voltas et al. 2013). The de-
cline in TRW reported here for our treeline site is in
agreement with recent studies showing warming-induced
growth reductions in spite of increasing iWUE for a
variety of tree species at dry sites in the Iberian penin-
sula (Peñuelas et al. 2008; Linares and Camarero 2012;
Granda et al. 2014). Thus, our results suggest that a
drought-induced stomatal closure resulting from increas-
ing temperature and aridity has reduced tree transpira-
tion at the price of reducing net assimilation rate, thus
overriding the potential CO2 fertilizer effect. This could
have been intensified at our treeline site by low soil
water availability resulting from low soil water holding
capacity of the topsoil (Brito et al. 2014).

Conversely, soil drying does not necessarily imply
P. canariensis to suffer from water limitation as shown by
Brito et al. (2015). Drought conditions at our study site are
related to reduced winter rainfall which typically supplies
more than 95 % of the annual precipitation. When winter
rainfall is small, tree growth is low as evidenced at our study
site by low annual increment in radial growth (Brito et al.
2010). Once topsoil moisture pools are exhausted, the ability
to tap water from deeper soil moisture pools determines annu-
al growth (Brito et al. 2010), water loss (Brito et al. 2015), and
hence also gw (Wieser et al. 2016). Moreover, remaining car-
bon not used for maintenance of metabolic processes during
drought may be allocated into roots (Dewar et al. 1994), be-
cause during periods of drought stress C investments into
below ground growth are of higher priority than aboveground
growth (Kotzlowski and Palladry 2002) to ensure water ac-
quisition (Saxe et al. 1998).

P. canariensis also adapts to soil drought by developing
deep tap roots extending down to 15 m belowground
(Luis et al. 2005; Climent et al. 2007) allowing trees to
use soil water reserves in deep soil layers when topsoil
moisture pools are exhausted (Brito et al. 2015). For the
next three decades, climate change and ecophysiological
models for Mediterranean ecosystems predict an increase
in surface air temperature of 1 °C and a 15–20 % lower
soil water availability (Sabaté et al. 2002; IPCC 2013) due
to a more than 30 % reduction in precipitation (Giorgi
2006; Somot et al. 2008). In this case growth will primar-
ily depend on the recharge of deep soil water pools, the
latter originating from rainfall prior the current year’s
growth available later in the growing season. Canopy tran-
spiration (Brito et al. 2015) data underpin the significance
of deep soil water reserves on the physiological behavior
of P. canariensis at its upper distribution limit during the
dry summer (Brito 2016).

5 Conclusions

Our results indicate that water availability was the main factor
controlling TRW of P. canariensis at its upper distribution
limit. During the past 37 years increasing aridity reduced
TRW, while iWUE increased over time. Although it may not
completely be ruled out that observed changes in TRW and
iWUE are at least partly due to tree aging, our findings agree
with recent studies from the Iberian Peninsula (Peñuelas et al.
2008; Linares and Camarero 2012; Granda et al. 2014) indi-
cating reduced stomatal conductance and carbon uptake under
xeric conditions despite risingCa. Finally, our study highlights
the importance of deeper soil moisture pools on TRW.
Therefore, a solid knowledge on precipitation patterns, soil
water pools and source water utilized for tree growth (Sarris
et al. 2013; Levesque et al. 2014) is essential for understand-
ing tree response to changes in ambient CO2 concentration
and water availability in semi-arid and arid environments.
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