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Abstract
& Key message Aboveground and belowground tree basic
densities varied between and within the three mangrove
species. If appropriately determined and applied, basic
density may be useful in estimation of tree biomass.
Predictive accuracy of the common (i.e. multi-species)
models including aboveground/belowground basic density
was better than for common models developed without
either basic density. However, species-specific models de-
veloped without basic density performed better than com-
mon models including basic density.
& Context Reducing Emissions from Deforestation and forest
degradation and the role of sustainable forest management, con-
servation and enhancement of carbon stocks (REDD+) initiatives
offer an opportunity for sustainable management of forests in-
cluding mangroves. In carbon accounting for REDD+, it is re-
quired that carbon estimates prepared for monitoring reporting
and verification schemes should ensure that all known sources of

uncertainty are minimised as much as possible. However, uncer-
tainties of applying indirect method of biomass determination are
poorly understood.
& Aims This study aimed to assess importance of tree basic
density in modelling aboveground and belowground biomass
and examine uncertainties in estimation of tree biomass using
indirect methods.
& Methods This study focused on three dominant man-
grove species (Avicennia marina (Forssk.) Vierh,
Sonneratia alba J. Smith and Rhizophora mucronata
Lam.) in Tanzania. A total of 120 trees were destructive-
ly sampled for aboveground biomass, and 30 among
them were sampled for belowground biomass. Tree mer-
chantable volume and both aboveground and below-
ground basic densities were determined. Biomass models
including basic density as a predictor variable were de-
veloped using the non-linear mixed-effects modelling
approach.
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& Results Results showed that both tree aboveground and
belowground basic density varied significantly between
sites between tree species, among individuals of the same
species and between tree components. The use of tree-
and component-specific aboveground basic density result-
ed in unbiased tree aboveground biomass estimates; how-
ever, uncertainties were high when using aboveground
basic density values from the Global Wood Density
(GWD) database. Predictive accuracy of the common
models including aboveground/belowground basic density
was better than for the common models developed previ-
ously without basic density. However, the species-specific
models developed previously without basic density were
superior to the common models including basic density
developed in the present study.
& Conclusion Tree aboveground and belowground basic den-
sities were useful in modelling tree aboveground and below-
ground biomass, respectively. This is demonstrated by im-
proved goodness of fit associated with inclusion of basic den-
sity. However, species-specific models developed without ba-
sic density performed better than common models including
basic density. If appropriately determined and applied, basic
density may be useful in estimation of tree biomass and hence
contribute to improved accuracy of carbon stock estimates for
REDD+ and sustainable management of mangroves in
general.

Keywords Tree aboveground and belowground biomass .

Inter- and intra-tree basic density variation . Biomassmodels .

Indirect tree biomass estimation .Mixed-effects models

1 Introduction

Mangroves represent about 0.39 % of global forest cover
(FAO 2010) and comprise up to 70 tree species, out of which
14 are growing naturally along the Eastern Coast of Africa
(Saenger et al. 1983; Tomlinson, 1986; Aksornkoae et al.
1992). In Tanzania, mangrove forests cover about
158,100 ha (MNRT 2015) and include ten different species,
namely Avicenia marina (Forssk.) Vierh., Bruguiera
gymnorrhiza (L.) Lamk., Ceriops tagal (Perr.) C. B. Rob.,
Heritiera littoralis Dryand., Lumnitzera racemosa Willd.,
Pemphis acidula J.R. & G. Forst., Rhizophora mucronata
Lam., Sonneratia alba J. Smith, Xylocarpus granatum
Koen. and Xylocarpus moluccensis (Lamk.) Roem. These
species also appear in Kenya and Mozambique (Tamooh
et al. 2008; Fatoyinbo et al. 2008). A. marina, S. alba and
R. mucronata are the most abundant species in Tanzania
(Luoga et al. 2004; Nshare et al. 2007).

Mangroves are important for biological, ecological, eco-
nomic and protection reasons (Kristensen et al. 2008;
Spalding et al. 2010; Nagelkerken et al. 2008; Zhang et al.

2012a). Although mangroves cover relatively small areas,
they hold large quantities of carbon per unit area stored in
aboveground and belowground biomass (Donato et al. 2011;
Duncan et al. 2016). Despite their importance, mangroves are
threatened by deforestation and forest degradation, which led
to a loss of 35% of the world’s mangrove cover between 1980
and 2000 (Valiela et al. 2001; Langner et al. 2007).

Given the valuable services offered by mangrove ecosys-
tems, their sustainable management is imperative.
Unfortunately, most of the services offered by mangroves are
non-market services; which may lead to low motivation for
effective management of mangroves. However, Reducing
Emissions from Deforestation and forest degradation and the
role of sustainable forest management, conservation and en-
hancement of carbon stocks (REDD+) is a potential opportu-
nity with an orientation of supporting conservation and sustain-
able management of forests such as mangroves (Alongi 2011;
Locatelli et al. 2014; Wylie et al. 2016). REDD+ is a system of
financing mechanisms and incentives aimed at mitigating cli-
mate change by reducing deforestation and forest degradation
but also through sustainable management of forests and con-
servation and enhancement of carbon stocks (Angelsen and
Hofstad 2008; UNFCCC 2011). Countries participating in
REDD+ projects are required to produce accurate estimates
for their forest carbon stocks and changes through robust mea-
surement, reporting and verification (MRV) schemes.

The Intergovernmental Panel on Climate Change (IPCC)
emphasises that carbon estimates prepared for MRV schemes
should be accompanied by an appropriate measure of uncer-
tainty, while at the same timeminimising all known sources of
uncertainty (IPCC 2006). Based on previous studies, uncer-
tainties are likely to occur at each of the following stages in
biomass quantification: (i) sampling design, (ii) field measure-
ments, (iii) selection of biomass model and (iv) selection of
basic density values when used as a biomass predictor variable
(Ketterings et al. 2001; Chave et al. 2004; Henry et al. 2010;
Clark and Kellner 2012).

Biomass can be quantified in different ways, but most com-
monly by applying a biomass model to forest inventory data,
leading to single tree or stand and landscape level estimates.
Development of biomass models requires destructive sampling
of trees. Selected sample trees are felled and partitioned into tree
components such as stems, branches, and twigs and leaves. The
merchantable part of the tree, i.e. stem and branches defined by a
minimum top diameter (IPCC 2006), is then crosscut into billets,
which can be measured for fresh weight and/or fresh volume
over bark. Thus, tree aboveground biomass estimates fromwhich
carbon stock is derived may be determined using either (1) direct
tree aboveground biomass determinationmethodwhich involves
determining fresh weight which is converted to dry weight using
a dry to fresh weight ratio or (2) indirect tree aboveground bio-
mass determination method which involves determining fresh
volume which is converted to dry weight using aboveground
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basic density. The indirect method is often suggested for sam-
pling large trees because the directmethod is labour intensive and
costly (Brown 1997; Picard et al. 2012).

For both direct and indirect methods however, the non-
merchantable part of the tree has to be determined for fresh
weight, which is converted to dry weight using a dry to fresh
weight ratio estimate. Merchantable and non-merchantable
dry weights are then summed to get the total tree dry weight.
The total tree dry weight obtained through either of the two
methods of biomass estimation may be used to develop bio-
mass models.

For the indirect aboveground biomass determination meth-
od, however, the accuracy of determining aboveground biomass
based on the volume of part of a tree (merchantable part) is
unknown. Extraction of sub-samples from sample trees for de-
termination of both aboveground and belowground basic den-
sity without knowledge on how it varies between species, with-
in trees, among individuals of the same species and between
sites may introduce uncertainties when such values are applied
as volume to biomass conversion factors or predictor variables.

Most biomass models for mangroves include tree diameter
at breast height (dbh) as the only predictor variable (e.g.
Komiyama et al. 2005), but some models also include total
tree height (ht) as a second predictor variable (e.g. Komiyama
et al. 2008). Yet, other authors take into account that for some
tree species, basic density varies between sites and therefore
include this variable as a second or third predictor variable in
developing models that are valid across sites and species
(multi-species models) (e.g. Chave et al. 2005; Komiyama
et al. 2005).

According to Chave et al. (2005), in decreasing order of
importance, dbh, aboveground basic density and ht are the
most important predictor variables of tree aboveground
biomass. Recently, Njana et al. (2016) reported aboveground
and belowground biomass models for A. marina, S. alba and
R. mucronata in Tanzania with dbh only and both dbh and ht
as predictor variables. The main argument for not including
basic density as predictor variable in the models for the pur-
pose of improving their predictive accuracy was that the non-
linear mixed-effects modelling approach was regarded as suf-
ficiently robust in distinguishing species when using species
as a random-effects variable. Conversely, assuming that basic
density varies between trees and sites, its inclusion may po-
tentially make the models more accurate when applied at a
mangrove site outside the sampling frame.

To minimise propagation of uncertainties in subsequent
stages of biomass estimation at stand or landscape levels, it
is important that uncertainties in tree or sub-tree biomass esti-
mates are identified, quantified and minimised. Focusing on
the three dominant mangrove species in Tanzania, A. marina,
S. alba and R. mucronata, our study therefore aimed (i) to
determine and assess variations of tree aboveground and be-
lowground basic density between and within species; (ii) to

test the hypothesis that during destructive sampling, the indi-
rect method of determining tree aboveground biomass (from
volume using aboveground basic density as a conversion fac-
tor) yields as accurate estimates as does the direct method
(actual weighing) and (iii) to investigate the importance of
including aboveground and belowground basic density as a
predictor variable of tree aboveground and belowground bio-
mass, respectively.

2 Methods

2.1 Study area

The present study was carried out at four sites along the coast-
line of Tanzania. The sites included Pangani (5° 38′ S, 38° 54′
E to 5° 40′ S, 38° 53′ E), Bagamoyo (6° 20′ S, 38° 50′ E to 6°
33′ S, 39° 06′ E), Rufiji (7° 38′ S, 39° 16′ E to 7° 55′ S, 39° 24′
E) and Lindi (10° 02′ S, 39° 39′ E)-Mtwara (10° 23′ S, 40° 23′
E). The climate in the study area is influenced by north-east
monsoon winds from October to March and south-east mon-
soon winds from April to October. Average annual rainfall
varies from 879 mm (Rufiji) to 1240 mm (Pangani) while
average annual temperatures range from 25.7 °C (Lindi) to
27.0 °C (Rufiji).

2.2 Plot sampling, measurements of standing trees
and tree selection

Generally, site conditions in mangrove forests vary across and
not along the sea or river shores. To cover as much variation as
possible, we established 37 transects running from the edge of
the sea or river across the entire expanse of the mangrove
vegetation. Within each transect, one to four circular plots
were established, the first plot being located close to the edge
of the sea/river (for details, see Njana et al. 2015). The remain-
ing plots were distributed along the transect lines with inter-
vals ranging from 150 to 250 m. A total of 120 plots were
established using a nested plot design.

Within each plot, one tree was selected for destructive sam-
pling, thus making up a total of 120 trees (40 for each of the
three species, A. marina, S. alba and R. mucronata). Among
the 120 trees (sampled for aboveground basic density, above-
ground biomass and aboveground merchantable fresh vol-
ume), roots of 30 trees (10 for each of the three species) were
excavated for determination of tree belowground basic density
and belowground biomass. Fifteen trees (5 for each species)
were sampled at each of the sites in Pangani and Lindi-
Mtwara, and 45 trees (15 for each species) were sampled at
each of the sites in Bagamoyo and Rufiji.

The sample trees were selected purposively to ensure ade-
quate representation of each of the three species across sites
and dbh ranges. In the selection of trees for root excavation
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(n = 30), the feasibility of belowground sampling was also
considered to make excavation less destructive. The sampling
procedures are detailed by Njana et al. (2015).

For all sample trees of A. marina and S. alba, we
measured dbh and ht. For R. mucronata, we measured
the same parameters, but ht was measured from the
highest stilt root to the highest living part of a tree.
Three R. mucronata sample trees were multi-stemmed.
For these trees, diameters of individual stems (dbhi)
were combined and a surrogate for dbh was determined

as dbh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ dbhið Þ2

q
(e.g. Zhou et al. 2007). Diameters

of trees harvested for aboveground biomass estimation
ranged from 1.1 to 70.5, 1.1 to 63.6 and 1.4 to 41.5 cm
for A. marina, S. alba and R. mucronata respectively.
Similarly, for excavated trees, diameter varied from 3.0
to 38.6 cm for A. marina, 6.5 to 33.8 cm for S. alba
and 1.4 to 32.6 cm for R. mucronata. Details are
provided by Njana et al. (2015) and Njana et al. (2016).

2.3 Destructive sampling

The sampling aimed at generating data for determination
of tree aboveground basic density, aboveground bio-
mass, aboveground fresh volume, belowground basic
density and belowground biomass. Basic density is de-
fined as oven-dry mass divided by fresh volume
expressed in tons per cubic metre, kilograms per cubic
metre or grams per cubic centimetre (Williamson and
Wiemann 2010; Wiemann and Williamson 2012).
Aboveground tree components included stem, branch
and twig and leaf, while belowground tree components
included root crown and root (see Njana et al. 2016).

Using a chainsaw, sample trees were cut 15 cm
above the soil surface (A. marina and S. alba) or im-
mediately above the highest stilt root (R. mucronata).
After felling a tree, the aboveground part was divided
into three components, (i) stems, (ii) branches (≥5 cm
diameter) and (iii) twigs (<5 cm diameter), and leaves
for trees with dbh ≥15 cm. Stems and branches were
cross-cut into billets. Fresh weights of large billets (di-
ameter ≥5 cm) were determined using a spring balance
(to the nearest 0.1 kg).

Furthermore, for each sample tree with dbh ≥15 cm, the
cross-cut stem and branch billets (diameter ≥5 cm) were re-
corded for mid-diameter (cm) and length (m) in order to de-
termine merchantable volume. By merchantable volume, we
mean the volume of the tree including stem and branches to a
fixed top diameter of 5 cm. The number of trees with dbh
≥15 cm were 22 (A. marina), 12 (S. alba) and 21
(R. mucronata).

From each sample tree, we extracted three sub-samples
from stems, two from branches and two from twigs for

determination of aboveground basic density and dry to fresh
weight ratio. All sub-samples included bark (Fearnside 1997;
Somogyi et al. 2007). Sub-samples from all aboveground tree
components except for stems were extracted at random. For
stems, sub-samples were extracted at 0, 40 and 70 % of total
tree height (e.g. Githiomi and Kariuki 2010).

To determine belowground basic density and belowground
biomass, root crown and roots were excavated. For A. marina
and S. alba, the belowground part consisted of root crown and
roots (see Fig. 1); for R. mucronata, it consisted of root crown,
aboveground stilt roots and belowground stilt roots (see
Fig. 2). For A. marina and S. alba, belowground biomass
was quantified using a root sampling approach (not all roots
were excavated). Root crown and selected roots were fully
excavated and their dry weights recorded. Basal diameter for
both excavated and unexcavated roots were recorded. For
R. mucronata, roots were excavated entirely and root crown
and all aboveground stilt roots were harvested. All below-
ground stilt roots were also fully excavated (see Njana et al.
2015). For all the three species, sub-samples from the root
crown were collected by slicing the root crown from the top
and downwards so as to secure an appropriate vertical repre-
sentation. In addition, sub-samples were extracted from ran-
domly selected locations along the length of main and side
cable roots (A. marina and S. alba). For R. mucronata, in
addition to sub-samples from the root crown, sub-samples
were also collected from randomly selected locations on
aboveground and belowground stilt roots.

After extraction of sub-samples, their fresh weight was
immediately determined using a digital balance (to the nearest
0.01 g). This was followed by labelling and packing for fur-
ther measurements in the laboratory.

2.4 Laboratory procedures

In the laboratory, sub-samples were soaked in distilled water
and fresh volume determined by water displacement (Brown
1997). Subsequently, sub-samples were oven-dried to con-
stant weight at 105 °C and their dry weight determined using
a digital balance (Picard et al. 2012).

2.5 Determination of basic density, dry to fresh weight
ratio, tree biomass and volume

For each tree component sub-sample, basic density was deter-
mined as oven-dry weight (g) per fresh volume (cm3). Dry to
fresh weight ratio was determined as the ratio of sub-sample
dry to fresh weight. Exploratory analysis of covariance
(ANCOVA) for dry to fresh weight ratios, where dbh served
as a covariate, revealed that they varied significantly between
aboveground tree components and with tree size (p < 0.05).

Total observed fresh weight of each aboveground compo-
nent was obtained by summation. Total observed tree
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aboveground biomass was calculated as the sum of the prod-
ucts of tree- and component-specific fresh weights and dry to
fresh weight ratios (Eq. 1).

AGBiobs ¼
X
js¼1

ns

FWi js

� �
*DFi js

 !
þ

X
jb¼1

nb

FWi jb

� �
*DFi jb

 !

þ
X
jt¼1

nt

FWi jt

� �
*DFi jt

 !
þ

X
jl¼1

nl

FWi jl

� �
*DFi jl

 !

ð1Þ
where n = total number of billets/twig bundles/leaf weights for
a given aboveground tree component, s = stem, b = branch,
t = twig, l = leaf, i = ith tree, j = jth sub-section/bundle of twigs

or leaves, AGBiobs = observed total tree aboveground dry
weight (kg), FWi js ; FWi jb ; FWi jl and FWi jl are stem, branch,
twig and leaf fresh weights (kg) respectively and DFi js , DFi jb ,
DFi jt and DFi jl are stem, branch, twig and leaf dry to fresh
weight ratios, respectively.

The volume of individual billets was computed using
Huber’s formula (e.g. West 2009). Merchantable volume
was calculated as the sum of the volumes of all billets for each
tree component (stem, branches). We applied tree- and
component-specific aboveground basic density values to con-
vert merchantable volume to biomass. Tree-specific and
species-specific mean aboveground basic density values from
this study were also tested. In addition, we applied species-

Cable root length
Root crown 

Side cable root 

Main cable root 

PneumatophoresFeeder root

Anchor root

Stem

Cable root basal diameter

15 cm

Fig. 1 A. marina and S. alba tree
root system (modified from
Purnobasuki 2013); the dashed
lines indicate cut-off points
between root crown and main
cable roots and between main
cable roots and side cable roots

Ground level 

Root crown 

Stem 

Stilt root

Above ground 

Below ground 

Fig. 2 R. mucronata tree root
system; the dashed lines indicate
cut-off points between root crown
and stilt roots

Tree basic density and biomass estimation 1077



specific aboveground basic density values from the Global
Wood Density (GWD) database (Chave et al. 2009; Zanne
et al. 2009). The estimated tree aboveground biomass was
calculated using Eq. 2.

AGBiest ¼
X
js¼1

ns

FVi js

� �
*BDi js

 !
þ

X
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 !

ð2Þ
where n = total number of billets/twig bundles/leaf weights for
a given aboveground tree component, s = stem, b = branch,
t = twig, l = leaf, i = ith tree, j = jth sub-section/bundle of twigs
or leaves, AGBhest = estimated total tree aboveground dry
weight (kg), FVi js and FVi jb are stem and branch fresh volume
(m3), respectively and BDi js and BDi jb are stem and branch
basic density values, respectively. Other abbreviations are as
defined previously.

Using excavated cable root data (A. marina and S. alba),
regression models were developed with root dry weight as a
response variable and basal root diameter as a predictor variable
(see Njana et al. 2015). The dry weight models were then applied
to predict dry weights of unexcavated roots. Total belowground
biomass was derived as the sum of the dry weights of root crown
and roots (excavated and unexcavated). For R. mucronata, be-
lowground biomass included root crown and aboveground and
belowground stilt roots as defined by Komiyama et al. (2005),
Ong et al. (2004) and Comley and McGuinness (2005).

2.6 Statistical data analysis

Data was analysed using R software (R Core Team 2013). We
initially analysed variation of aboveground and belowground
basic density between species followed by determination of
inter- and intra-tree basic density variation. To prepare a basis
for analysing inter-tree basic density variation, mean above-
ground and belowground basic densities were calculated for
each tree. The potential determinants of inter-tree basic densi-
ty variation were selected based on previous studies (e.g.
Zhang et al. 2012b; Auty et al. 2014) which included number
of trees per hectare (N) (no. of trees ha−1), basal area per
hectare (G) (m2 ha−1), dbh class (10 cm classes) and study site.

Variation of aboveground and belowground basic density
between tree species was determined using linear mixed-
effects model (LMM) procedures (Gałecki and Burzykowski
2013), where species served as a fixed-effects variable. The
use of LMMwasmotivated by the hierarchical structure of the
data used in this study since tree basic density observations
were nested within site; site was considered as a random-
effects variable. Model fitting was done using the lme function

in the nlme package. The significance of species differences in
explaining the variation of basic density was determined by F
tests. Post hoc tests were carried out using the glht function in
multcomp package (Bretz et al. 2011).

Preliminary analysis indicated thatN,G and dbh class were
either uncorrelated or approximately linearly related with tree
basic density. Therefore, for each of the three species, the
influence of these variables on aboveground and belowground
basic density, together with study site, was determined using
LMM. In this case N, G, dbh class and site served as fixed-
effects variables. Models were fitted as described earlier.

We also determined variation in aboveground and below-
ground basic density between tree components (intra-tree
variation) using LMMs. In this case, tree component was
treated as a fixed-effects variable. Subsequently, variation of
aboveground and belowground basic density within tree com-
ponent was examined. For stems, the analysis considered var-
iation along stem (i.e. intra-tree variation) using data from the
three different sampling heights, i.e. 0, 40, and 70 % of total
tree height. Since basic density data were nested, they were
analysed using LMM where stem absolute sampling height
was treated as a fixed-effects variable (stem) and site and tree
as random-effects variables (all components). Model fitting
and post hoc tests followed procedures described previously.

Ninety-five percent confidence intervals for both observed
tree aboveground biomass (i.e. obtained using the direct meth-
od involving actual weighing and derived using Eq. 1) and
estimated tree aboveground biomass (i.e. obtained indirectly
using products of volume and aboveground basic density and
derived using Eq. 2) were determined. Subsequently, accuracy
of the indirect method of aboveground biomass determination
was assessed using percentage mean prediction error (MPE
(%)) calculated as average of estimated aboveground biomass
minus observed aboveground biomass relative to observed
aboveground biomass. Positive MPE (%) values and signifi-
cantly different from zero signified over-estimation of tree
aboveground biomass (i.e. positive bias). Similarly, negative
MPE (%) values and significantly different from zero signified
under-estimation of tree aboveground biomass (i.e. negative
bias). Conversely, tree aboveground biomass estimates with
non-significant MPE (%) values were considered unbiased
(Walther and Moore 2005; IPCC 2003).

Explorative analysis revealed that the relationships be-
tween aboveground and belowground biomass and dbh were
non-linear (Njana et al. 2016). We therefore initially tested
several options to describe the non-linear relationships (e.g.
second-order polynomial function, exponential function)
where the power function was the best. The power function
has also been widely used to describe similar relationships
(e.g. Komiyama et al. 2008). Therefore, using Eqs. 3 and 4,
aboveground biomass and belowground biomass models were
developed using the non-linear mixed-effects modelling
(NLME) approach (Pinheiro and Bates 2000):
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Bikm ¼ β0*dbhikm
β1þαkmð Þ*BDikm

β2 þ εikm ð3Þ
Bikm ¼ β0*dbhikm

β1þαkmð Þ*htikmβ2*BDikm
β3 þ εikm ð4Þ

where Bikm is either aboveground biomass or belowground
biomass (kg tree−1) of tree i for species k in site m; BDikm is
either aboveground or belowground basic density of tree i for
species k in site m; β0, β1 and β2 are fixed-effects parameters;
αkm is a random-effects parameter for species k in site m (as-
sociated with β1); dbhikm and htikm are the dbh and ht of tree i,
respectively, and ɛikm is the error term for tree i, species k at
sitem,which is assumed to be normally distributed with mean
0 and variance σ2. Model fitting was done using the nlme
function in the nlme package.

To assess the importance of basic density in modelling tree
aboveground and belowground biomass, models based on
Eqs. 3 and 4 above were compared with common models
(CMs)/fixed-effects (FE) models (FE1, FE2 and FE3) and
their corresponding species-specific models/random-effects
(RE) models (RE1, RE2, RE3, RE4, RE5, RE6, RE7, RE8
and RE9) reported recently by Njana et al. (2016) (see
Table A1; Online Appendix).

Models based on Eq. 3 were compared with models FE1
and FE3, while models based on Eq. 4 were compared with
model FE2. Common models including basic density were
also compared with species-specific models developed previ-
ously without basic density (Njana et al. 2016). Model com-
parison for the purpose of determining the importance of
aboveground and belowground basic density inmodelling tree
biomass was possible because Eq. 3 is a reduced version of
Eq. 4 and because the models are based on the same data and
modelling approach. If inclusion of aboveground or below-
ground basic density in a model resulted in lower percentage
MPE (%) and Akaike information criteria (AIC), the models
were considered as improved, thus implying that aboveground
and belowground basic density was useful in modelling tree
aboveground and belowground biomass, respectively.

3 Results

3.1 Basic density values and variations

Basic density values for aboveground and belowground
tree components as well as whole trees (overall) are
summarised in Table 1. Results based on LMM revealed
a significant variation of tree aboveground basic density
(F (2, 112) = 195.41, p < 0.001) and belowground basic
density (F (2, 23) = 29.34, p < 0.001) between species. Post
hoc tests for multiple comparisons indicated that all
pairwise comparisons were significant at the 0.1 % level,
except for the belowground basic densities of A. marina

and R. mucronata, which were not significantly different
(p > 0.05).

Mixed results were observed for factors considered as de-
terminants for variation in basic density (Table 2). In most
cases, the relationships based on Spearman correlation were
weak and statistically insignificant (p ≥ 0.05), especially for
belowground basic density for all the three species. Strong
relationships were observed between aboveground basic den-
sity and N (A. marina), aboveground basic density and G
(S. alba) and aboveground basic density and dbh (S. alba
and R. mucronata). Similarly, site was a significant source of
variation for aboveground basic density (S. alba and
R. mucronata). The relationship between aboveground basic
density and dbh was generally positive and non-linear while
the relationship between belowground basic density and dbh
was positive and linear for all the three species (Table 2).

For aboveground basic density, the intra-tree variation was
significant for R. mucronata and S. alba while for below-
ground basic density, it was significant for A. marina and
R. mucronata (Table 3). The results also showed that within
the stem component, basic density varied with sampling
height. The variation was significant for S. alba (F(1,

114) = 7.80, p < 0.001) but not for the other two species. For
other tree components, basic density varied significantly
among twigs (p < 0.05) and branches (p < 0.01) for
A. marina, among roots (p < 0.01) for S. alba and among
belowground stilt roots (p < 0.01) for R. mucronata. In all
other cases, the variations within tree components were statis-
tically insignificant (p ≥ 0.05).

3.2 Accuracy and precision of tree aboveground biomass
estimation using aboveground basic density
as a conversion factor

The use of tree- and component-specific basic density in esti-
mation of tree aboveground biomass (using Eq. 2) resulted in
unbiased tree aboveground biomass estimates (p > 0.05) for
all three species (Table 4). On the other hand, the use of
species-specific mean (overall) from this study (Table 4) or
from the GWD database resulted in biased tree aboveground
biomass estimates (p < 0.05) for S. alba and R. mucronata.

3.3 Importance of basic density in modelling tree
aboveground and belowground basic density

The importance of using aboveground and belowground basic
density in modelling tree aboveground and belowground bio-
mass, respectively was examined through development of
aboveground or belowground biomass models including
aboveground and belowground basic density as a predictor
variable and comparing these models with models including
dbh only and dbh and ht reported previously by Njana et al.
(2016) (Table 5). The use of site and species as random-effects
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variables seemingly improved the goodness of fit, but the
parameter estimates were not significant and the models were
therefore not reported.

Inclusion of tree-specific mean aboveground basic density
and species-specific mean aboveground basic density in the
tree aboveground biomass models resulted in a decline of AIC
when our common models (CM1, CM2, CM3 and CM4,
Table 5) were compared with those reported by Njana et al.
(2016) (FE1 and FE2, Table A1, Online Appendix). Among
the tree aboveground biomass models developed in this study,
the common models based on species-specific mean

aboveground basic density (CM2, CM4) gave the best result
as indicated by the lowest AIC. Notwithstanding the fact that
the significance of the parameters used in these models is very
different from the calculations of tree aboveground biomass
(Table 4), it is interesting that the use of species-specific mean
aboveground basic density in modelling tree aboveground
biomass resulted in lower AIC (Table 5).

With reference to the model reported by Njana et al. (2016)
for tree belowground biomass (FE3), neither tree-specific nor
species-specific mean aboveground basic density was useful in
modelling tree belowground biomass since their inclusion in the

Table 1 Descriptive statistics on distribution of tree aboveground and belowground basic density (g cm−3) for the three mangrove species

Basic density/
component

A. marina S. alba R. mucronata

n Mean ± SE STD Min. Max. n Mean ± SE STD Min. Max. n Mean ± SE STD Min. Max.

Aboveground basic
density
Twig 38 (72) 0.59 ± 0.01 0.05 0.43 0.69 35 (68) 0.51 ± 0.01 0.06 0.35 0.73 37 (72) 0.61 ± 0.01 0.04 0.53 0.70
Branch 27 (50) 0.59 ± 0.01 0.03 0.48 0.67 20 (39) 0.52 ± 0.01 0.03 0.45 0.59 24 (46) 0.70 ± 0.01 0.06 0.44 0.83
Stem 40 (119) 0.60 ± 0.00 0.05 0.50 0.74 40 (118) 0.56 ± 0.01 0.09 0.32 0.65 39 (117) 0.71 ± 0.01 0.07 0.56 0.84

Overall (species-
specific mean)

40 (241) 0.60 ± 0.00 0.03 0.54 0.67 40 (225) 0.54 ± 0.01 0.04 0.43 0.59 40 (235) 0.69 ± 0.01 0.04 0.58 0.73

Belowground basic
density
Root crown 10 (10) 0.61 ± 0.02 0.07 0.46 0.72 10 (10) 0.34 ± 0.02 0.09 0.24 0.53 7 (7) 0.73 ± 0.02 0.05 0.66 0.84
Root 10 (19) 0.45 ± 0.02 0.08 0.32 0.53 10 (19) 0.29 ± 0.02 0.05 0.23 0.42 – –
Aboveground
stilt root

– – – – – – – – – – 9 (17) 0.59 ± 0.01 0.04 0.49 0.65

Belowground
stilt root

– – – – – – – – – – 10 (19) 0.27 ± 0.05 0.16 0.12 0.63

Overall (species-
specific mean)

30 (29) 0.57 ± 0.02 0.07 0.39 0.61 10 (29) 0.32 ± 0.01 0.04 0.24 0.38 10 (43) 0.53 ± 0.02 0.05 0.56 0.61

Note: Since basic density varies between trees, the basic density average values represent weighted mean using tree aboveground biomass for above-
ground basic density and tree belowground biomass for belowground basic density as weights.

SE standard error of a mean, n number outside brackets represents of sample trees while those in brackets represent sub-samples extracted from sample
trees

Table 2 Inter-tree aboveground and belowground basic density variation for three mangrove species

Sources of variation Category A. marina S. alba R. mucronata

df F r df F r df F r

N (ha−1) AGBD 1, 33 6.85*** −0.40** 1, 33 0.79 NS 0.10 NS 1, 33 1.91 NS −0.15 NS
BGBD 1, 3 1.50 NS 0.32 NS 1, 3 12.41 NS −0.32 NS 1, 3 2.11 NS 0.53 NS

G (m2 ha−1) AGBD 1, 33 0.25 NS −0.10 NS 1, 33 19.66*** 0.44** 1, 33 6.04* 0.22 NS

BGBD 1, 3 0.21 NS 0.43 NS 1, 3 1.40 NS −0.37 NS 1, 3 0.32 NS 0.27 NS

dbh (cm) AGBD 1, 33 0.61 NS 0.27 NS 1, 33 13.69*** 0.69*** 1, 33 7.51*** 0.62***

BGBD 1, 3 2.81 NS 0.62 NS 3, 3 4.12 NS 0.10 NS 3, 3 0.30 NS 0.21 NS

Site AGBD 3, 33 0.47 NS – 3, 33 2.96* – 3, 33 8.46*** –

BGBD 3, 3 1.26 NS – 3, 3 8.07 NS – 3, 3 0.38 NS –

N number of trees per hectare,G basal area per hectare, AGBD aboveground basic density,BGBD belowground basic density, r Spearman correlation,NS
not significant at the 5 % level

*Significant at the 5 % level; **significant at the 1 % level; ***significant at the 0.1 % level
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models resulted in a higher AIC. On the other hand, inclusion of
species and tree-specific mean belowground basic density result-
ed in lowerAIC. In this regard, themodelwith tree-specificmean
belowground basic density (CM7) exhibited the best results.

Figure 3 summarises 95 % confidence intervals of ob-
served and predicted tree aboveground and belowground
biomass. Predicted values are based on both common
and species-specific models. Generally, the results
showed that the species-specific models based on dbh
only (RE1, RE2, RE3, RE7, RE8 and RE9) and on both
dbh and ht (RE4, RE5 and RE6) reported by Njana et al.
(2016) were more accurate than the common models de-
veloped in this study (CM1, CM2, CM3, CM4, CM5,
CM6, CM7 and CM8) and those reported by Njana
et al. (2016) (FE1, FE2 and FE3).

For aboveground biomass, however, the differences in
predictive power between the models were minimal
(Fig. 3). For belowground biomass, the species-specific
models reported by Njana et al. (2016) performed gener-
ally well. However, the performance of the common be-
lowground biomass model (FE3) reported by Njana et al.
(2016) varied with species and gave larger uncertainties
than the common models developed in this study (CM5,
CM6, CM7 and CM8).

4 Discussion

This study reports tree aboveground and belowground basic
density values for three mangrove species in Tanzania. To our

Table 4 Accuracy and precision of tree aboveground biomass estimation using aboveground basic density as a conversion factor

Species Basic density applieda nb 95 % confidence intervals (kg) MPE
(%)

Observed aboveground
biomass

Estimated aboveground
biomass

A. marina Tree- and component-specific mean from this
study

22 761.5 ± 259.5 763.2 ± 273.2 +0.2 NS

Tree-specific mean from this study 22 761.5 ± 259.5 759.5 ± 272.9 −0.3 NS

Species-specific mean from this study (overall) 22 761.5 ± 259.5 756.9 ± 278.5 −0.6 NS

GWD database species-specific mean 22 761.5 ± 259.5 806.0 ± 298.8 +5.8 NS

S. alba Tree- and component-specific mean from this
study

12 536.3 ± 181.6 537.0 ± 192.9 +0.1 NS

Tree-specific mean from this study 12 536.3 ± 181.6 526.3 ± 185.3 −1.9 NS

Species-specific mean from this study (overall) 12 536.3 ± 181.6 491.6 ± 158.8 −8.3*
GWD database species-specific mean 12 536.3 ± 181.6 498.4 ± 161.5 −7.1*

R. mucronata Tree- and component-specific mean from this
study

21 611.4 ± 167.7 600.7 ± 166.4 −1.7 NS

Tree-specific mean from this study 21 611.4 ± 167.7 577.4 ± 157.7 −5.6***
Species-specific mean from this study (overall) 21 611.4 ± 167.7 561.9 ± 150.0 −8.1***
GWD database species-specific mean 21 611.4 ± 167.7 649.2 ± 174.3 +6.2***

NS not significant at the 5 % level
a Basic densities from the Global Wood Density (GWD) database were 648 kg m−3 (A. marina), 509 kg m−3 (S. alba) and 814 kg m−3 (R. mucronata)

n Number of sample trees b Includes only trees with dbh ≥15 cm

*Significant at the 5 % level; **significant at the 1 % level; ***significant at the 0.1 % level

Table 3 Intra-tree aboveground
and belowground basic density
variation for three mangrove
species

Source of variation Category A. marina S. alba R. mucronata

df F df F df F

Tree component AGBD 2, 65 0.94 NS 2, 58 6.83*** 2, 62 27.51***

BGBD 1, 9 99.65*** 1, 9 2.38 NS 1, 9 74.25***

Note: For aboveground basic density, the tree components include stem, branch and twig; for belowground basic
density, they include root crown and root

AGBD aboveground basic density, BGBD belowground basic density, NS not significant at the 5 % level

*Significant at the 5 % level; **significant at the 1 % level; ***significant at the 0.1 % level
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knowledge, this is the first study to report belowground basic
density for the three mangrove species. For a given species, it
may be expected that different studies would yield similar
values of tree basic density. Komiyama et al. (2005) reported
a tree aboveground basic density value similar to our study for

R. mucronata. However, Komiyama et al. (2005) reported
aboveground basic density values of 0.48 ± 0.05 g cm−3

(STD) (S. alba) while Jachowski et al. (2013) reported above-
ground basic density of 0.41 ± 0.04 g cm−3 (STD) for S. alba.
The aboveground basic density values reported in these

(
−

(
−
)

)

(a)

(b)

Fig. 3 Comparison of predictive
accuracy of aboveground biomass
(AGB) (a) and belowground
biomass (BGB) (b) models (cf. list
of models from Njana et al.
(2016) and Table 5 and Table A1
in Online Appendix). The bars
represent mean values with their
corresponding lower and upper
95 % confidence limits. The grey
dotted lines indicate 95 %
confidence limits for observed
tree biomass values (Obs)
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studies are thus different from each other and very different
from the aboveground basic density value of 0.54 ± 0.04 g cm−3

(STD) estimated for S. alba in our study (Table 1).
The tree aboveground basic density values reported in our

study also deviate from those reported in the GWD database
(Chave et al. 2009; Zanne et al. 2009), where the values vary
considerably. For example, tree aboveground basic density
values for A. marina vary from 0.52 to 0.73 g cm−3 while
for S. alba they vary from 0.39 to 0.63 g cm−3 (Chave et al.
2009; Zanne et al. 2009). The variation of these values ex-
ceeds the ranges (minimum–maximum) of the tree above-
ground basic density values observed in our study for the same
species. The variations of aboveground basic density noted
between different studies may be due to, for example, differ-
ences in site conditions, basic density determination methods,
sampling design and sample size. For instance, many above-
ground basic density values reported in the GWD database
were prepared to describe wood mechanical properties and
may therefore be based on small samples from very few sites,
thus reducing the generality of such basic density estimates.
Generally, the variation in basic density between studies limits
the reliability of results generated using aboveground basic
density values as conversion factors for estimation of tree
aboveground biomass.

We also found variation in basic density at species level,
between trees (inter-tree) and within trees between tree
components (intra-tree), and in some cases the variation
was significant (Tables 2 and 3). Factors responsible for
the between-tree variation included variation in N, G, tree
size (dbh) and site. All these factors were tested (Table 2),
but their effects on basic density were mostly weak, par-
t icularly on belowground basic densi ty. Genetic
differences may also explain variation in aboveground
and belowground basic density between trees. Within
trees, for example, basic density variation along stem
may be due to variation in the proportion of wood versus
bark, heartwood versus sapwood, proportion of juvenile
wood and growth ra t e . In our s tudy, however,
aboveground and belowground basic density values did
not vary significantly between sites for A. marina.
Contrary to our findings, Saintini et al. (2012) found dif-
ferent aboveground basic density values at different sites
for A. marina. Saintini et al. (2012) reported that the
growth rate of A. marina was positively correlated with
xylem vessel size and aboveground basic density and con-
cluded that high wood density was associated with large
xylem vessels and thick fibre walls. Similarly, in our study
we found that aboveground basic density values were sig-
nificantly correlated with dbh (S. alba and R. mucronata,
Table 3) implying that aboveground basic density increases
with tree size up to a particular threshold.

The variation of aboveground and belowground basic den-
sity between and within tree components observed in our

study generally showed the importance of implementing an
appropriate sampling strategy for determination of basic den-
sity values for biomass estimation and related applications.
The nature of variation in basic density with stem sampling
height for example suggests that sampling for aboveground
basic density should ensure that basic density variation along
the stem is sufficiently accounted for. Sampling of basic den-
sity at a fixed tree height by e.g. coring or disc extraction at
1.3 m (Williamson and Wiemann 2010) for trees of different
sizes is likely to provide a good description of aboveground
and belowground basic density variation with dbh but ignores
basic density variation between and within tree components.

We also tested the accuracy of indirect method for estima-
tion of tree aboveground biomass where volume is first deter-
mined and then converted from volume to dry weight using
aboveground basic density as conversion factor (Table 4).
Both the direct and indirect method may be employed when
sampling and measuring trees to generate data for the purpose
of modelling (Brown 1997; Picard et al. 2012). The use of
indirect method is particularly recommended for large trees
as a means of reducing costs (Brown 1997). The results from
our study showed that direct and indirect methods for estima-
tion of tree aboveground biomass gave consistent and unbi-
ased estimates of tree aboveground biomass when applying
tree- and component-specific aboveground basic density
values (Table 4).

The relatively large and significant MPE values that
were found when applying species-specific aboveground
basic density from the GWD database (S. alba and
R. mucronata, Table 4) indicate that basic density sourced
from the GWD database may lead to biased local biomass
estimates. This calls for inclusion of all sources of varia-
tion in determination of aboveground basic density as a
volume to dry weight conversion factor and shows that
basic density values from the GWD database need to be
used with caution. Uncertainty due to the use of basic
density as a conversion factor may be propagated into
subsequent stages of biomass estimation, for example
when tree aboveground biomass estimates are used in
mode l d eve l opmen t ( e . g . Hen ry e t a l . 2010 ;
Mwakalukwa et al. 2014). Both uncertainty due to above-
ground basic density and the model itself affect estimates
at the tree, stand and landscape levels. This is also the
case when landscape tree volume estimates are converted
into tree aboveground biomass using aboveground basic
density (IPCC 2006; Somogyi et al. 2007).

Based on the conservative principle that the risk of over-
and under-estimation should be minimised (Grassi et al.
2008), during destructive sampling for estimation of tree
aboveground biomass, we recommend the direct method
(weighing) for estimation of tree aboveground biomass. The
indirect method should only be applied when it is not practi-
cally feasible to use the direct method (e.g. very large trees).
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The following considerations are also essential in order to
minimise uncertainties; when using the indirect method,
tree- and component-specific aboveground basic density
values should be applied. Moreover, when using the indirect
method, we recommend working with a large number of ob-
servations (sample size ≥30) which helps ensuring normally
distributed residuals and unbiased estimates.

This study also examined the importance of using above-
ground and belowground basic density in modelling above-
ground and belowground biomass, respectively. Generally,
species-specific mean aboveground and belowground basic
densities were significant in explaining variations of tree
aboveground and belowground biomass, respectively
(Table 5). This points to the importance of applying above-
ground basic density as a predictor variable for aboveground
biomass and belowground basic density as a predictor variable
for tree belowground biomass, contrary to the existing prac-
tice of applying aboveground basic density in modelling tree
belowground biomass (e.g. Komiyama et al. 2005).

The results obtained in this study demonstrated that even
with the use of mixed-effects modelling approach, inclusion
of aboveground and belowground basic density as predictor
variables for tree aboveground and belowground biomass re-
spectively further improved goodness of fit of fixed-effects
models (Table 5). This result is contrary to what was sug-
gested by Njana et al. (2016) where the authors argued that
it was not necessary to include aboveground and/
belowground basic density in order to improve the predictive
accuracy of the models since the non-linear mixed-effects
modelling approach is robust in distinguishing species using
species as a random-effects variable.

The fact that basic density values in our data varied signif-
icantly between species and that the predictive accuracy of the
common models including species-specific mean above-
ground basic density were better than the common models
based on dbh only, or dbh and ht (Table 5) demonstrates the
importance of including basic density when modelling tree
biomass for multiple species data. Similarly, previous studies
have successfully developed common biomass models for
mixed species mangrove forests by incorporating above-
ground basic density (e.g. Komiyama et al. 2005; Chave
et al. 2005). Whether these studies developed their common
aboveground biomass models using tree-specific above-
ground basic density or species-specific mean aboveground
basic density or both is not clear. If both tree-specific and
species-specific mean basic density values are mixed up in
modelling tree biomass, they are likely to lead to confounding
effects (i.e. model quality will be affected by a mix of both
tree-specific and species-specific mean basic density varia-
tions).Mixing up tree-specific and species-specific mean basic
density values should therefore be avoided. Instead, for cases
where basic density varies between species and with tree size,
and where tree basic density data or basic density models are

available, tree biomass may be modelled using tree-specific
basic density. Otherwise, in the absence of tree-specific basic
density, tree biomass may be modelled using species-specific
mean basic density. The use of tree-specific basic density im-
plies that basic density accounts for both species and tree dbh
variations, while the use of species-specific mean basic densi-
ty accounts for variation between species only.

The common aboveground and belowground biomass
models including basic density performed better than the com-
monmodels based on dbh and ht reported byNjana et al. (2016).
However, the species-specific models based on dbh and ht
(Njana et al. 2016) turned out to be superior to the common
models including basic density developed in the present study.
Moreover, given the fact that aboveground basic density values
from the GWD database were observed to be inaccurate and that
aboveground and belowground basic density generally varies
between species (Table 1) and sites (Table 2), application of
common models including such predictor variables would re-
quire determination of site-specific basic density so as to ensure
that such models perform as observed in this study. Using com-
mon models including basic density is therefore inefficient, both
economically and statistically, and we therefore recommend
using the species-specific models reported by Njana et al.
(2016) for estimation of tree aboveground and belowground bio-
mass for relevant mangrove species in Tanzania.

5 Conclusions

Basic density is important for various applications including
conversion of tree volume to biomass (conversion factor) and
prediction of tree biomass. The study found that tree above-
ground and belowground basic density varied between species
and within species. Accordingly, sampling for estimation of
basic density should take into account all sources of variation.
Accurate estimation of tree biomass is essential for REDD+ and
808 forest management in general. The use of tree- and
component-specific basic density values as a volume-biomass
conversion factor resulted in relatively accurate tree above-
ground estimates. However, the use of species-specific mean
and basic density values sourced from the GWD database may
lead to biased tree aboveground biomass estimates; therefore,
such undertakings should be done cautiously. On the other
hand, common aboveground and belowground biomassmodels
including basic density performed better than the common
models developed without aboveground/belowground basic
density previously. This demonstrates the importance of above-
ground and belowground basic density inmodelling tree above-
ground and belowground biomass, respectively. However, the
species-specific models developed without basic density were
better than the common models including basic density.
Therefore, we recommend the use of species-specific biomass
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models developed without basic density rather than common
models including density.
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