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Abstract

« Key message We conducted spatiotemporal analyses of
urban vegetation structural attributes using multitemporal
Landsat TM data and field measurements. We showed that
multitemporal TM data has the potential of rapidly estimat-
ing urban vegetation structural attributes including LAZ,
CC, and BA at an urban landscape level.
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« Context Urban vegetation structural properties/attributes
are closely linked to their ecological functions and thus
directly affect urban ecosystem process such as energy,
water, and gas exchange. Understanding spatiotemporal
dynamics of urban vegetation structures is important for
sustaining urban ecosystem service and improving the ur-
ban environment.

« Aims The purposes of this study were to evaluate the poten-
tial of estimating urban vegetation structural attributes from
multitemporal Landsat TM imagery and to analyze spatiotem-
poral changes of the urban structural attributes.

« Methods We first collected three scenes of TM images ac-
quired in 1997, 2004, and 2010 and conducted a field survey
to collect urban vegetation structural data (including crown
closure (CC), tree height (H), leaf area index (LAI), basal area
(BA), stem density (SD), diameter at breast height (DBH),
etc.). We then calculated and normalized NDVI maps from
the multitemporal TM images. Finally, spatiotemporal urban
vegetation structural maps were created using NDVI-based
urban vegetation structure predictive models.

* Results The results show that NDVI can be used as a
predictor for some selected urban vegetation structural
attributes (i.e., CC, LAI, and BA), but not for the other
attributes (i.e., H, SD, and DBH) that are well predicted
by NDVI in natural vegetation. The results also indicate
that urban vegetation structural attributes (i.e., CC, LAI,
and BA) in the study area decreased sharply from 1997 to
2004 but increased slightly from 2004 to 2010. The CC,
LAI, and BA class distributions were all skewed toward
low values in 1997 and 2004. Moreover, LAI, CC, and
BA of urban vegetation all present a decreasing trend
from suburban areas to urban central areas.

« Conclusion The experimental results demonstrate that
Landsat TM imagery could provide a fast and cost-effective
method to obtain a spatiotemporal 30-m resolution urban veg-
etation structural dataset (including CC, LAI, and BA).
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1 Introduction

During the last three decades in China, many serious environ-
mental problems have arisen especially in urban areas, which
affect human health and sustainability of urban ecosystems
(Cao et al. 2009). Urban vegetation is considered as an impor-
tant component of urban ecosystems contributing a broad ar-
ray of ecological functions and plays an important role in
improving urban environments (McPherson et al. 2005;
Dwivedi et al. 2009; Young 2010). Urban vegetation can re-
duce urban air pollutant concentrations (McPherson and
Simpson 1998; Fowler et al. 2004; Nowak et al. 2006), se-
questrate atmospheric CO, (Nowak and Crane 2002; Myeong
et al. 2006; Hutyra et al. 2010), reduce storm water runoff
(Xiao et al. 2000; Armson et al. 2013; Kirnbauer et al.
2013), mitigate the urban heat island effect (Shashua-Bar
and Hoffman 2000; Bowler et al. 2010), and provide habitats
for a variety of organisms (Godefroid and Koedam 2003;
Cornelis and Hermy 2004).

Urban vegetation structure (characterized by tree size,
crown closure, height, LAI, species composition, etc.) can
be considered as a three-dimensional spatial arrangement of
vegetation in urban areas (Nowak et al. 1994; Mcpherson et al.
1997). Urban vegetation structural properties/attributes are
closely linked to their ecological functions and thus directly
affect urban ecosystem process such as energy, water, and gas
exchange (Clark et al. 2001; Frolking et al. 2009). Exchanges
of evapotranspiration, carbon, and energy that occur in most
important ecological processes between urban vegetation eco-
systems and the atmosphere strongly depend on urban vege-
tation structure. Therefore, understanding spatiotemporal dy-
namic processes of urban vegetation structural attributes is
crucial for monitoring, forecasting, and managing urban veg-
etation at landscape scale for urban planning to improve the
urban environment. In addition, accurate and timely estima-
tion of spatiotemporal urban vegetation structural attributes is
necessary and useful for urban managers to maximize urban
vegetation benefits (urban ecosystem service) and to protect
and manage urban environments. Due to rapid urbanization,
urban vegetation structure has changed greatly in China (Zhou
and Wang 2011), which consequently affects its ecological
functions. During the last two decades, there were many stud-
ies focusing on the spatiotemporal changes in urban vegeta-
tion (Seto et al. 2002; Kong and Nakagoshi 2006; Miller
2012). Most of these studies just focused on the change of
urban vegetation cover percentage, which demonstrated that
urban vegetation significantly decreased with the continuous
increase in urban population and the unprecedented growth of
cities. Based on our knowledge, the spatiotemporal dynamics
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of urban vegetation structure have rarely been studied and thus
are not yet fully understood.

As we know, conventional methods for obtaining spatio-
temporal information of urban vegetation structure through
plot-based sampling measurements are labor-intensive and
cost-expensive (Miller and Winer 1984; Lapaixa and
Freedman 2010; Trammell, 2011). In addition, these conven-
tional methods usually just provide the estimation of urban
vegetation at plot and/or stand levels and it cannot easily be
extended to a citywide scale. Consequently, the collection of
urban vegetation structural data is only available at very
coarse spatial resolution. Also, it is nearly impossible to obtain
spatial-temporal maps of urban vegetation structural attributes
with a high spatial resolution through the direct field survey
method. Lack of spatial-temporal mapping information of ur-
ban vegetation structural attributes could diminish our ability
to analyze ecological functions of urban vegetation at a land-
scape level. In order to overcome such limitations of these
conventional methods, remote sensing technology has proved
to be an important tool for estimating vegetation properties
and structure (Frolking et al. 2009) and is considered as a
feasible, faster, and repeatable alternative to estimate and
map spatially continuous urban vegetation structural attributes
over large areas. Given that remote sensing can potentially
provide high spatial and temporal resolution data, utilizing
remote sensing techniques to study urban vegetation spatio-
temporal dynamics can significantly save time and labor com-
pared with the field survey method.

With the increased availability of current and historical
remotely sensed data, the remote sensing-based spatiotempo-
ral analyses of vegetation structural attributes with sensitive
spectral indices have received increased attention in recent
decades because they offer a rapid and cost-effective way to
obtain vegetation structure data at a landscape level.
Numerous studies have investigated the possibility of using
spectral vegetation indices constructed from different remote
sensing data to estimate vegetation structure (e.g., Franklin
and Hiernaux 1991; Roy et al. 1991; Cohen et al. 1995;
Kayitakire et al. 2006). However, although the application of
high-resolution remote sensing sensors such as QuickBird and
IKONOS are receiving increasing attention, moderate-
resolution imagery such as Landsat TM sensor is still a pre-
ferred data source. Landsat TM (or ETM+ or OLI) imagery is
widely used and is easily accessed over all the world for
extracting and estimating vegetation structural attributes.
The most commonly used spectral indicator extracted from
TM or ETM+ or OLI imagery is the Normalized Difference
Vegetation Index (NDVI) based on the red band and near-
infrared band. Many researchers have demonstrated that the
NDVI is significantly correlated with ground measured vege-
tation structural attributes such as crown closure, stem density,
diameter at breast height, tree height, basal area, leaf area
index, biomass, etc. (Turner et al. 1999; Ingram et al. 2005;
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Freitas et al. 2005; Ji et al. 2012). Although previous studies
have achieved some degree of success in estimating vegeta-
tion structural attributes from Landsat sensors’ data in natural
vegetations worldwide, their conclusions in terms of relation-
ships between vegetation structural attributes and NDVI vary,
depending on the characteristics of the study areas (Lu et al.
2004). Urban vegetation is usually heterogeneous,
fragmented, and scattered and surrounded by many impervi-
ous surfaces and is very different from natural vegetations.
Therefore, the relationships found between NDVI and natural
vegetation structural attributes might be different from those
between NDVI and urban vegetation structural attributes.
Whether NDVI extracted from Landsat imagery can still be
used for estimating urban vegetation structural attributes re-
mains unknown. Based on our literature review, existing stud-
ies mostly focused on monitoring urban land cover change
including vegetation canopy cover change using Landsat data
(Rogan et al. 2003; Du et al. 2010; Schneider 2012), but there
are few studies on estimating urban vegetation structural attri-
butes with TM or ETM+ imagery. Therefore, further research
on the potential of using TM imagery for extracting and esti-
mating urban vegetation structural attributes is necessary.

Using field observations and Landsat TM images data ac-
quired in three different years (1997, 2004, and 2010) from the
city of Changchun, China, this study aims at developing a
faster and cost-effective method to obtain spatiotemporal ur-
ban vegetation structure information at 30-m resolution. The
substantive research objectives include (1) examining the use-
fulness of TM image data acquired at different times in esti-
mating spatiotemporal urban vegetation structural attributes,
(2) developing algorithms for estimating urban vegetation
structural attributes by coupling field measurements with the
TM data, (3) producing spatiotemporal maps of urban vege-
tation structural attributes at a 30-m resolution, and (4) explor-
ing the spatial patterns and analyzing dynamics of urban veg-
etation structural attributes over the study area in the city of
Changchun, China, from 1997 to 2010.

2 Methods
2.1 Study area

This study was conducted in the central city of Changchun
(125°09'-125°48'E, 43°46'-43°58'N) (Fig. 1), which is the
capital of Jilin province and an important social-economic
center of northeastern China. The city of Changchun is located
in the hinterland of the Northeast Plain with a total population
of 3.6 million by the end of 2010. The urban central area in
Changchun City covers approximately 284.7 km?. This region
is characterized by a continental climate of the North
Temperate Zone with the obvious variation of four seasons.
The average total yearly rainfall is 567 mm. The average

temperatures of cold winter and hot summer in the region
are —14 and 24 °C, respectively. Changchun is called a “forest
city” with a vegetation coverage of 45% and has a very abun-
dant vegetation resource with 43 families, 86 genus, and 211
species (Zhang et al. 2015). The four major species are Poplar
(Populus hopeiensis), Willow (Salix babylonica), Elm (Ulmus
pumila), and Chinese pine (Pinus thunbergii). In addition,
Changchun has experienced an accelerated process of urban-
ization since 1979. Increases in the urban population and ur-
ban built area have accelerated in recent decades (Huang et al.
2009), which may have resulted in changes of urban vegeta-
tion structure and species composition. Changchun is, thus, an
interesting area for exploring the potential of using
multitemporal TM data to analyze spatiotemporal dynamics
of urban vegetation structural attributes.

2.2 Image data and processing

The three scenes of TM images with a spatial resolution of
30 m were acquired on June 14, 1997, June 01, 2004, and
September 22, 2010 with a cloud cover less than 5%, in order
to calculate NDVI index maps. The atmospheric correction for
the TM images was first undertaken by using the dark-pixel
subtraction method (Franklin and Giles 1995). Then the TM
raw digital numbers (DN) were converted into surface radi-
ance values by using gain and offset coefficients following the
procedures provided by Chander and Markham (2003) prior
to the calculation of NDVI in ENVI 4.6 (ITT Visual
Information Solutions, Boulder, USA). Next, the TM images
were geo-referenced to UTM coordinate system with a root
mean square error (RMSE) of less than 0.5 pixel (15 m) by
using 33 ground control points taken from topographic maps.
The TM images were resampled into a pixel size of
30 m x 30 m by the cubic convolution method during the
image rectification. The NDVI index was then calculated from
the TM images in ENVI 4.6 through NDVI = (b4 — b3)/(b4 +
b3), where b3 and b4 are surface radiance values in TM bands
3 and 4, respectively. To conduct spatiotemporal dynamic
analyses of urban vegetation structural attributes with the
multitemporal TM images, it is necessary to normalize
NDVI maps calculated from the multitemporal TM images
(1997, 2004, and 2010) to eliminate changes of light condi-
tions caused radiometric variation of the three scenes of TM
images. In this study, a modified relative correction method,
which is the pseudo-invariant features (PIF) method (Schott
et al.1988) and improved by selecting PIFs manually for dif-
ferent imagery (Yang and Lo 2000), was adopted. This mod-
ified method improves statistical consistency by using the
same selected regions for all images. In our study, 45 spatial
evenly distributed regions of interest for invariant features
(including 15 from roads, 20 from roof tops, and 10 from
water bodies) located on the multitemporal images were man-
ually selected. The average NDVI in each interest region was
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Fig. 1 The study area located
within the fourth-loop road in the
city of Changchun, China
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then used to develop a linear normalization model between the
reference image (2010) and the subject (i.e., uncorrected) im-
ages (1997 and 2004). Normalized subject images (Fig. 2)
were produced using the following equation:

NDVlI,ot = aNDVI gy, + b

where NDVI¢ is the reference image (i.e., 2010 image), and
NDVlg, is the subject images (i.e., 1997 and 2004 images). The
scene normalization coefficients and image statistics of NDVI
before and after normalization are listed in Tables 1 and 2.

2.3 Sampling design and field measurements

In this study, 69 random plots (sampling plots) throughout the
study area were established for collecting field measurements
ofurban vegetation structural attributes. We set the 69 plots by
using the method used in the UFORE Model (Nowak et al.
2003) during July and August, 2011 and 2012 (Fig. 3). Urban
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vegetation in our plot survey area is mostly dominated by
mature trees, and thus, there was no significant change of
urban forest structural attributes during the 1- or 2-year differ-
ence (compared to the 2010 image). Therefore, the time dif-
ference between imaging time (2010) and field survey (2011)
can be ignored. The sampling plots were randomly deployed
by the method in the UFORE Model by the aid of the ArcGIS
tool (Environmental Systems Research Institute, Redlands,
USA) to ensure representative to the major landcover types
such as residential areas, road areas, park areas, and commer-
cial areas appearing in the city of Changchun. Moreover, a
sampling plot was required to be located in a relatively ho-
mogenous patch greater than 1600 m”. In this study, each of
the 69 sampling plots was defined as a 30 x 30 m” (0.09 ha) to
represent a TM pixel size. The coordinates of each sampling
plot were recorded by using a high-accuracy global position-
ing system (MG838GPS, UniStrong company, Beijing,
China) with an accuracy of better than 1 m, which were used
to extract NDVI values from multitemporal TM-derived
NDVI maps later on. A total of 2097 individual trees were
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Fig. 2 The NDVI images before
and after normalization
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measured from the 69 sampling plots. At each sampling plot,
all urban vegetation structural attributes including tree species,
vegetation types such as conifers and broad-leaves, stem den-
sity (SD), diameter at breast height (DBH), tree height (H),
leaf area index (LAI), crown closure (CC), and basal area
(BA) were measured and recorded.

The SD was defined as number of trees (N) per unit area
(n/ha) (Eq. 1). The DBH of each tree within a plot was measured
directly using an optical instrument (RD100, Laser Technology
Inc., Centennial, USA) and then an average of DBH value was
calculated by averaging all sampled trees in the plot (cm) (Eq. 2).
The H of each tree within a plot was also measured directly by an
optical instrument (RD1000, Laser Technology, Inc., Centennial,
USA), and then an average of H value was calculated by aver-
aging all sampled trees in the plot (cm) (Eq. 3). The BA index
was defined as a ratio of the total cross-sectional area of all trees
per unit area (m*/ha). It was calculated from the DBH value in a
plot using Eq. 4. The CC was measured with a fish-eye camera
(AF DX Fisheye, Nikon Corporation, Tokyo, Janpan) with a total
accuracy of +3%, which is defined as a ratio of the fractional arca
(projected vertically) of tree canopy in a sampling plot to the plot
area. The LAI was directly measured with a TRAC (Tracing
Radiation and Architecture of Canopies, 3rd Wave

Table 1 The image

normalization 1997 2004

coefficients and the

correction coefficients a 1.109 0.855

for each subject image b 0.015 —0.003
R? 0.904 0.853

2004
Before Normalization

Engineering, Nepean, Canada) with a total accuracy of +0.05,
which is defined as a ratio of all one-side leaf area in a sampling
plot to the plot area in this study.

SD(n/ha) = N/0.09 (1)
g DBH,
N
LH
H(m) = lN (3)

g 7(DBH; /2)2]

BA(m?/ha) = [i 509

(4)

Where N is the number of trees in a sampling plot for all
equations. After the field measurements were conducted,
NDVI values were extracted from the normalized NDVI im-
ages in ArcGIS 9.3 with the coordinates of each sampling plot
for later statistical analyses.

Table 2 NDVI statistics before and after normalization

Max Min Mean StD

1997 Before 0.54 -0.39 0.07 0.09
After 0.61 -0.42 0.09 0.11

2004 Before 0.72 -0.59 0.08 0.12
After 0.62 -0.49 0.07 0.11

2010 0.64 -0.43 0.09 0.13
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Fig. 3 Map of 69 sampling plots
in the city of Changchun
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2.4 Regression modeling analyses and mapping of urban
vegetation structural attributes with NDVI maps

In order to explore relationships between NDVI and urban veg-
etation structural attributes for estimating urban vegetation
structural attributes, correlation analyses between the measure-
ments of the set of urban vegetation structural attributes collect-
ed from the 69 plots and corresponding NDVI values extracted
from the 2010 NDVI map were first conducted. Then the cor-
responding regression models between NDVI and urban vege-
tation structural attributes were also established to uncover
quantitative relationships between them. In these analyses, the
NDVI was used as an independent variable while urban vege-
tation structural attributes were used as dependent variables. In
this study, coefficients of determination (R) for regression anal-
yses between NDVI and urban vegetation structural attributes
were calculated to assess the relationships. All statistical analy-
ses were carried out with the standard statistical software, SPSS
(Version 19.0) (IBM Corporation, New York, USA).

In this study, the 2010 urban vegetation structural attribute
maps were created by calculating pixel-based urban vegetation
structural attribute values using the regression models devel-
oped with NDVIs extracted from 2010 NDVI image at the 69
plots and 20122013 field survey data. We also created spatio-
temporal urban vegetation structural attribute maps from nor-
malized NDVI images calculated from 1997 and 2004 TM
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images using the regression models of urban vegetation struc-
tural attributes, developed with the 2010 NDVI image. Based
on these pixel-based multi-year maps of urban vegetation struc-
tural attributes, the number of pixels with vegetation cover
greater than 0% was also calculated for the three different years.

3 Results

3.1 Regression models for estimating urban vegetation
structural attributes

Table 3 lists descriptive statistics for NDVI and urban vegeta-
tion structural attributes. From the table, we can easily see that

Table 3  Descriptive statistics of urban vegetation structural attributes
and NDVI calculated with all sampling plots (n = 69)

Urban vegetation structure and NDVI  Max Min Mean StD
Stem density (SD, n/ha) 594 99 27712 974
Diameter (DBH, cm) 31.5 7.5 17.5 57
Height (H, m) 19.5 34 8.8 33
Leaf area index (LAI) 13.79 04 5.33 32
Crown closure (CC, %) 96.8 2.1 50.2 23.7
Basal area(BA, m*/ha) 303 03 9.l 54
NDVI (year 2010) 0.64 0.06 0.3 0.2
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the urban vegetation index, NDVI, had a relatively large range
with a mean value of 0.3 and a standard deviation of 0.2. It is
also clear in the table that all the urban vegetation structural
attributes (SD, DBH, H, LAIL, CC, and BA) also varied greatly
among the sampling plots in terms of their corresponding
mean values and corresponding standard deviations. Table 4
presents the Pearson’s correlation coefficients between NDVI
and urban vegetation structural attributes. In this table, the
correlation analysis results show that leaf area index (LAI),
crown closure (CC), and basal area (BA) were all significantly
related to NDVI, whereas stem density (SD), diameter at
breast height (DBH), and tree height (H) were not.
Compared to the correlation analysis results derived from nat-
ural vegetations (e.g., Ingram et al. 2005; Freitas et al. 2005; Ji
et al. 2012), this suggests that NDVI could be used as a good
predictor of some of urban vegetation structural attributes to
build urban vegetation structure prediction models.

In order to produce the spatiotemporal maps of urban veg-
etation structural attributes from historical TM imagery (thus
historical NDVI maps), it is necessary to develop the regres-
sion models between NDVI and urban vegetation structural
attributes. As a result in this study, the three regression models
have been established between NDVI and three urban vege-
tation structural attributes (i.e., LAIL, CC, and BA) (Fig. 4). In
Fig. 4, it is clear that the CC had a positive linear relationship
with NDVI. When NDVI increased 0.1, the CC increased
approximately 14%. The linear regression model derived from
the 69 plot data with NDVI as independent variables could
account for 84% of the total CC variance. However, Fig. 4
shows that the LAI and BA attributes had positive non-linear
relationships with NDVI. The non-linear models with NDVI
as independent variables could explain 58 and 63% of total
LAI and BA variance, respectively. Finally, the established
regression models were applied to produce maps of CC, BA,
and LAI from normalized historical NDVI images of 1997,
2004, and 2010, respectively.

3.2 Spatiotemporal analysis of urban vegetation structural
change

With the regression models from Fig. 4, the urban vegetation
structural attribute maps for years 1997, 2004, and 2010 were
created (Fig. 5). By analyzing these pixel-based multi-year
maps of urban vegetation structural attributes in a GIS format,
we found that urban vegetation structure was highly dynamic

between the years 1997, 2004, and 2010 (Fig. 5). The number
of pixels with vegetation decreased gradually from 1997,
2004, to 2010 (Table 5 and Fig. 5). Percentage cover of urban
vegetation canopy (i.e., CC%) was 20.52, 14.29, and 16.65%
of the entire study area in 1997, 2004, and 2010, respectively
(Table 5). Urban vegetation crown closure in this study area in
the city of Changchun significantly decreased by 6.23% from
1997 to 2004, but slightly increased by 3.36% from 2004 to
2010 (Table 4). The net change from 1997 to 2010 decreased
3.87% or 11.02 km?. Leaf area index (LAI) in the study area
(i.e., average LAI) was 0.76, 0.51, and 0.61 in the years 1997,
2004, and 2010, respectively (Table 5). Urban vegetation LAI
decreased by 0.25 from 1997 to 2004, but increased by 0.10
from 2004 to 2010 and the net change from 1997 to 2010 was
adecrease of 0.15. The average BA of urban vegetation in the
study area (i.e., total basal area (mz)/study area (ha)) was 2.28,
1.69, and 2.04 m>/ha in the years 1997, 2004, and 2010, re-
spectively (Table 5). Urban vegetation BA decreased by
25.88% from 1997 to 2004, but increased by 20.7% from
2004 to 2010. The net decrease for basal area from 1997 to
2010 was 10.53%.

Figure 5 shows that estimated values of urban vegetation
CC, BA, and LAI decreased from 1997 to 2004 and increased
sharply from 1997 to 2010 (Fig. 5) by making statistical anal-
ysis of pixel values with urban vegetation structural attributes
in the study area. Figure 6 demonstrates the frequency distri-
bution of CC, BA, and LAI for urban vegetation. The CC, BA,
and LAI class distributions were all skewed toward low
values. The results in Fig. 6 show that the CC with the highest
frequency was 20—40%. The frequency of CC from 0 to 40%
was 81, 87, and 68% in 1997, 2004, and 2010, respectively.
The frequency of lower CC (0—40%) increased from 1997 to
2004, but decreased from 2004 to 2010. The values in the LAI
map were clustered in the range from 0 to 1.5. The frequency
of lower LAI (0—1.5) increased from 82% in 1997 to 90% in
2004, but decreased from 90% in 2004 to 38% in 2010. About
6.85% of LAI values were above 6 in 2010, but there are very
few pixels with LA7> 6 in 1997 and 2010. The BA index with
the highest frequency was in the range 0-2.5 m*/ha. The fre-
quency of BA from 0 to 2.5 m*/ha was 38, 56, and 27% in
1997, 2004, and 2010, respectively. However, the frequency
ofhigher BA index (>2.5 m?/ha) decreased from 1997 to 2004,
but increased from 2004 to 2010.

In 1997, most of urban vegetation was distributed in sub-
urban areas (Fig. 5). With the urban expansion, an obvious

Table 4 Pearson’s correlation

coefficients between NDVI and Stem density (n/ha) DBH (cm) Height (m) Basal area  Leaf area index Crown
2
urban vegetation structural (m”/ha) closure (%)
attributes (n = 69)
NDVI  0.086 0.127 0.171%* 0.806* 0.711%* 0.914%

*Correlation is significant at o = 0.05 level (two-tailed);

**correlation is significant at v = 0.01 level (two-tailed)
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Fig. 4 Regression analyses of 120
NDVI with urban vegetation
structural attributes: CC, LAI, and
BA (n=69)
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urban vegetation loss first occurred in the urban fringe and
suburban area and the CC, BA, and LAI of the urban vegeta-
tion changed greatly. Figure 7 demonstrates spatiotemporal
changing patterns of mapped urban vegetation structural attri-
butes over the study area. The results in Fig. 7 show that the
greatest changes of CC, BA, and LAI occurred in the subur-
ban area. From 1997 to 2004, CC, BA, and LAI of urban
vegetation decreased a lot in suburban areas, but there was
still a slight increase of CC, BA, and LAI in urban central
areas. From 2004 to 2010, the CC, BA, and LAI values across
our study area generally increased, especially in suburban
areas. However, there was still overall a decrease of CC,
BA, and LAI in our study area from 1997 to 2010. In addition,
Fig. 5 illustrates that CC, BA, and LAI of urban vegetation
showed a trend of decreasing from suburban areas to central
business district (CBD) areas in the city of Changchun for the
years 1997, 2004, and 2010. Moreover, CC, BA, and LAI of
urban vegetation on road sides, industrial areas, and residen-
tial areas usually had relatively low values. In urban park
areas, their values were fairly high, especially in 2010.

4 Discussion
4.1 Theoretical implications

The spatiotemporal analysis of urban vegetation structural at-
tributes from the remotely sensed imagery is very important
for trying to understand the dynamics of urban vegetation
structural attributes and to provide information for planning
and management of urban vegetation to maximize its func-
tions. The results from this study show that not all the selected
urban vegetation structural attributes could be estimated by
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using NDVI extracted from multitemporal TM imagery. The
Landsat remote sensing technique did not work well for the
estimation of stem density (SD), mean DBH, and height (H) of
urban vegetation, although these three attributes can be well
estimated by NDVTI in natural vegetations (e.g., Lu et al. 2004;
Ingram et al. 2005; Freitas et al. 2005; Hall et al. 2006). One
possible reason might be that the environment of urban vege-
tation is very different from that of natural vegetations. Not
only does it contains vegetation but also other features such as
buildings, roads, and other impervious areas that can influence
pixel-based spectral response and create many mixed pixels.
Therefore, the mixed pixel issue might be the main reason for
confusion in estimating urban vegetation structural attributes.
In addition, the mixed pixel effect may behave differently for
different urban vegetation structural attributes. The SD, H,
and DBH for urban vegetation may be more influenced
by the mixed pixel effect in the city area than other urban
vegetation structural attributes. Moreover, it is believed
that SD, H, and DBH for both urban and natural vegeta-
tions are more difficult to measure by remote sensing than
other properties of vegetation characteristics (Freitas et al.
2005; Hall et al. 2006). However, some vegetation struc-
tural attributes, such as crown closure (CC), basal arca
(BA), and leaf area index (LAI) could be still predicted
by NDVI in this study. This might be because they were
more correlated to an “area” property of vegetation char-
acteristics, which is more easily sensed by a remote sens-
ing sensor than other properties of vegetation characteris-
tics (Pu and Gong 2004). In addition, due to there being
more mixed pixel along roads and other impervious areas
than in urban parks, it may be more difficult to estimate
urban vegetation structural attributes by remote sensing in
urban roads and impervious areas than in urban parks.
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Fig. 5 Spatiotemporal
distribution of mapped urban
vegetation structural attributes
across the study area in the city of
Changchun (CC: a, b, ¢; LAIL d,
e, f; BA: g h,i)
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The major limitation of using vegetation indices (VIs) to (BA) and leaf area index (LAI). Many studies (e.g., Baret
estimate vegetation structural attributes is that VIs frequently ~ and Guyot 1991; Gower et al. 1999; Gray and Song 2012)
lose sensitivity and saturate at moderately high basal area  have reported that models between VIs and LAI or BA are

Table 5 Summary of some urban

vegetation attributes within the Imaging year Vegetated pixel Canopy cover (%) Leaf area index Basal area index
study area in the city of percentage (%) (m”/ha)
Changchun, China

1997 60.57 20.52 0.76 228

2004 55.06 14.29 0.50 1.69

2010 47.65 16.65 0.61 2.04

Vegetated pixel (pixels with >0% vegetation cover) percentage (%) = pixels with vegetation cover/all pixels in
study area; canopy cover (%) = urban vegetation crown area/ study area; Leaf area index = one-side leaf area/
study area; Basal area index = total basal area/study area.
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Fig. 6 Histograms of the 60% 100%
frequency statistics for urban
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curvilinear, and there is a trend of saturation in the VIs. For
example, Franklin (1986) investigated the relationship be-
tween spectral VIs derived from satellite data and field mea-
sured BA data and found that as the BA increases, there is a
trend of saturation in a VI. The non-linear equations between
NDVI and either BA or LAI found in this study for estimating
the two urban vegetation structural attributes using TM data
showed this limitation. Our results show that the saturation
effect of the NDVI still exists in the urban environment sim-
ilarly to natural vegetation. However, such a limitation could
be mostly ignored since LAI and BA from most urban vege-
tated areas in this study were less than 6-7 and 25-30 m?/ha
(Fig. 4), respectively.

In addition, our experimental results for estimating ur-
ban forest structural attributes using TM images also imply
that the optical sensors such as Landsat TM can mainly
detect the upper crown surface of forests in two-dimensional
space and it remains a challenge for optical sensors to extract
vertical structural information for urban forests such as
tree height, which can influence the estimation of the
three-dimensional structures of urban forests. LIDAR im-
agery can provide accurate measurements of urban forest
structures in a vertical plane. It measures the vertical dis-
tance and provides tree height and canopy height infor-
mation, thus potentially enabling improved the accuracy
of estimating three-dimensional structures of urban forests
such as LAI (Lefsky et al. 1999; Weishampel et al. 2000;
Naesset and Okland 2002). Therefore, the multi-sensor
approaches that integrate optical remote sensing data with
LiDAR imagery data should be used to characterize urban
forest structures in future research (Figueiredo et al.
2016).
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4.2 Management implications

Using multitemporal satellite images potentially enables map-
ping of urban vegetation structure regionally and historically.
Our results suggest that some spatiotemporal urban vegetation
structural attributes (e.g., LAI, CC, and BA) could be estimat-
ed from multitemporal TM data. Our results also demonstrate
the potential of using the multitemporal TM imagery to map
past urban vegetation structural attributes.

The urban vegetation structural attribute maps produced
from TM images have important implications for urban
planners to maximize the ecological benefit of urban veg-
etation, particularly for cities where urban vegetation is
still being established. In this study, we found that urban
vegetation in the well-urbanized region of the city of
Changchun was very dynamic, and the number of vegetat-
ed pixels decreased gradually from 1997 to 2004 and from
2004 to 2010 (Table 5 and Fig. 5). The changes in urban
vegetation in the study area from 1997 to 2010 could be a
response to the urbanization and greening policies of the
city government (National Bureau of Statistics of China,
1985-2014). The decrease of urban vegetation might be
also because the city of Changchun has experienced rapid
urbanization since 2000. Changes in the number of vege-
tated pixels in the study area as well as urban vegetation
spatial patterns may have significant impacts on its func-
tion in urbanized areas. For example, the net decrease in
the number of vegetated pixels, mostly converted to imper-
vious surfaces, would significantly affect the formation of
urban heat islands in the city of Changchun. However, in
this study, we found that the urban vegetation structural
attributes (i.e., CC, LAI and BA) in the study areas lightly
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Fig. 7 Spatiotemporal changing
patterns of mapped urban
vegetation structural attributes
over the study area in the city of
Changchun (CC: a, b, ¢; LAIL d,
e, f; BA: g, h, i)
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increased from 2004 to 2010. This phenomenon may be
explained by the following two points: (1) It could be
caused by growth of the vegetation. Since 2005, the local
governments in Changchun have paid more attention to the
management of urban vegetation, which could enhance the
rapid growth of trees. (2) This might be also due to the
efforts to increase urban vegetation quality and quantity
and establishing more urban forest parks by the local gov-
ernments. With a rapid urbanization in Changchun since
1990, much urban vegetation has been destroyed and

become more scattered, which resulted in many serious
environmental problems affecting human health. Having
realized the important role of urban vegetation in urban
ecosystems, local governments in China have set out a
series of policies and invested a large amount of money
to introduce green elements into urban areas in order to
improve urban environment. Among them are establishing
more new urban forest parks and community gardens,
planting more trees along roads, and especially paying
more attention to management of existing urban vegetation
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in recent 10 years. From our results, we see that the various
greening policies introduced by the city government ap-
pear to have contributed to the increase of the average
urban vegetation structural attributes of CC, LAI, and BA
in the last decade. However, our results also show that
most areas in the study area are still covered by vegetation
with low CC, BA, and LAI values, which could limit their
ability to provide ecological benefits. Therefore, some mea-
sures still need to be taken further by urban managers to in-
crease CC, BA, and LAIL Some suggested measures might
include designing trees, shrubs, and grass in an optimal way
such as selecting the most appropriate tree species, and prun-
ing and shaping canopies. In practice, the multilayer forest
communities with high CC and LAI are obviously the most
effective in terms of the ecological effect (Ren et al. 2013). In
addition, our results from this study also show that urban
vegetation cover in suburban areas was higher than that in
CBD areas. It suggests that urban vegetation was unevenly
distributed within a city area, which could lead to the environ-
mental inequity (Landry and Chakraborty 2009; Tooke et al.
2010). Therefore, urban planners and policy makers should be
concerned with the distribution of urban vegetation and plant
more trees to distribute vegetation more evenly.

Our results suggest that the NDVI derived models could be
used to estimate some urban vegetation structural attributes
over the city areas from TM imagery. However, there are still
some drivers of uncertainty for urban vegetation structural
prediction models (Convertino et al. 2014). It should be noted
that the NDVI is easily affected by phenology and season
(Townshend and Justice 1986; Piao et al. 2003; Guo et al.
2007), which may result in change of relations between veg-
etation index and urban vegetation structures with the time of
year. In our study, TM images with a resolution of
30 m x 30 m and sampling plots with a size of 30 m x 30 m
were used to uncover the relationships between vegetation
index and urban vegetation structural attributes. However,
the relationships between them may change across different
scales (Li et al. 2013; Harold et al. 2014). More research is
needed on the effect of plot size and image resolution on the
relationship between urban forest structure and vegetation in-
dices. Some studies found that the vegetation indices such as
NDVI change across different climatic conditions and cities
(Marc et al. 2010; Martin et al. 2014). Therefore, such a
change of the vegetation indices derived from different geo-
graphical areas may result in different relationships between
the vegetation indices and urban forest structural attributes. In
addition, the different climatic conditions, specifically precip-
itation and temperature, as well as the individual characteris-
tics (e.g., city size, building density and height, dominant veg-
etation age, etc.) of a city may also significantly influence
relationships between NDVI and urban vegetation structural
attributes. Therefore, careful consideration of these issues
should be taken when applying the method developed in this
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study to other cities or at different seasons in addition to
recalibrating satellite images. More research on relationships
between vegetation indices and urban vegetation structural
attributes for different seasons and cities should be considered
in the future.

5 Conclusion

Based on multitemporal Landsat TM data (1997, 2004 and
2010) and urban vegetation field survey data, this study ex-
plored the potential of using TM imagery in estimating urban
vegetation structural attributes and analyzed spatiotemporal
dynamics of urban vegetation structural attributes in the city
of Changchun, China. The following conclusions could be
drawn:

1) NDVIis a good predictor of some urban vegetation struc-
tural attributes for building urban vegetation structural
estimation models to estimate and map urban vegetation
structural attributes.

2) Some urban vegetation structural attributes (e.g., crown
closure (CC), basal areca (BA), and leaf area index (LAI))
could be retrieved and estimated by NDVI index but some
could not (e.g., stem density, diameter at breast height,
and tree height). The result shows that urban vegetation
is structurally different from natural vegetation.

3) In the well-urbanized region of Changchun City, the ur-
ban vegetation structure was found to change significant-
ly from 1997 to 2004 and from 2004 to 2010. Urban
vegetation structural attributes: CC, LAIL, and BA in the
study area decreased sharply from 1997 to 2004 and
slightly increased from 2004 to 2010. The increase in
urban vegetation in Changchun from 2004 to 2010 may
be due to the improvement of urban vegetation quality
and quantity associated with growth of vegetation. The
CC, LAI and BA class distributions were all skewed
toward low values in 1997 and 2004, but they were
skewed toward relatively high values in 2010.

4) The experimental results demonstrate that Landsat TM
imagery could provide a fast and cost-effective method
to obtain a spatiotemporal 30-m resolution urban vegeta-
tion structural dataset (including CC, LAI, and BA).

This method developed in this study should be a useful
application of Landsat TM data in various urban vegetation
management practices, and the results created from this study
provide necessary baseline information in terms of relatively
high-resolution urban vegetation structural attribute maps.
Furthermore, the accurate information of urban vegetation
structural attributes may provide urban planners with more
accurate data and allow better planting designs for urban veg-
etation at a landscape level.
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