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Abstract

- Key message Spatial analysis could improve the accuracy of genetic analyses, as well as increasing the accuracy of predicting
breeding values and genetic gain for Norway spruce trials.

« Context Spatial analysis has been increasingly used in genetic evaluation of field trials in tree species. However, the efficiency
of spatial analysis relative to the analysis using the conventional experimental designs or pre- and post-blocking method in
Swedish genetic trials has not been systematically evaluated.

+ Aims This study aims to examine the effectiveness of spatial analysis in improving the accuracy of predicting breeding values
and genetic gain.

« Methods Spatial analysis, using separable first-order autoregressive processes of residuals in rows and columns, was used in
nine types of trait classes from 145 field trials of Norway spruce (Picea abies (L.) Karst.) in Sweden.

+ Results Ninety-six percent of variables (traits) were converged for the spatial model. Large trials with a large block
variance tend to have a larger improvement from the model of experimental design to spatial model in accuracy. Growth
and Pilodyn measurement traits showed greater improvements in log likelihood, accuracy, and genetic gain. Block
variance was reduced by more than 80% for trait height and diameter using spatial analysis, indicating that it is more
effective using both pre-blocking and post-blocking analyses in Swedish Norway spruce trials. The prediction accuracy
for diameter and height for progeny breeding values showed an increase of 3.6 and 3.4%, respectively. The improvement
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of efficiency for growth traits is also related to the geographical location of test sites, tree age, number of survival trees,

and the spacing of the trial.

« Conclusion The spatial analysis approach is more efficient in Swedish Norway spruce trials than the conventional methods

using models based on the experimental design.

Keywords Spatial analysis - Norway spruce - Autocorrelation - Genetic gain

1 Introduction

It is well known that progeny trials in forest tree breeding
programs usually cover large areas due to the large field
space needed for individual trees and the large size of the
testing population (several dozens to a few hundred fami-
lies with multiple individuals from each family). The large
physical area needed for a progeny trial usually exhibits
considerable variation in environmental conditions (Bian
et al. 2017; Dutkowski et al. 2006; Chen et al. 2017). To
reduce such environmental heterogeneity, an experimental
design subdividing the trial into blocks is usually used
(Williams et al. 2002). Randomized complete block
(RCB) is by far the most common experimental design,
where a site is divided into several blocks (replications)
to separate environmental (block) variation from genetic
variation (White et al. 2007). To make the comparison of
genetic entries more precise and increase the accuracy of
estimated genetic parameters and predicted breeding
values, RCB is further advanced into a new set of design
called balanced incomplete block (BIB) which includes
randomized incomplete block (RIB). This achieves a re-
duction in the overall residual error by further removal of
environmental error associated with row and/or column
directions and among smaller incomplete blocks. Row/
column design and other Latinized square (LS) designs
are among those commonly used BIB design in forest ge-
netic trials (Williams et al. 2002). While various blocking
methods used for forest genetic trials may be effective in
reducing global (trend) variation, spatial analysis was in-
troduced, initially for crops and recently for trees, to ac-
count for both global and local microsite variations and
therefore further improve the accuracy of breeding value
prediction (Cullis et al. 1998; Ye and Jayawickrama 2008).
Even with traditional RCB design, implementation of spa-
tial analysis could still improve the model by detecting
microsite variations within or between block variations,
covering the type of changes in soil depth and nutrition
that exist in most trials (Dutkowski et al. 2006; Ye and
Jayawickrama 2008).

Spatial analysis can capture both local gradient variations
within blocks (patches) and a global gradient trend along the
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row and column of the trial, so it is becoming a popular meth-
od to use for both agricultural and forestry field trials
(Anekonda and Libby 1996; Brownie and Gumpertz 1997,
Cullis et al. 1998; Cullis and Gleeson 1989; Cullis and
Gleeson 1991; Fox et al. 2007a, b; Gilmour et al. 1997;
Qiao et al. 2000; Yang et al. 2004; Ye and Jayawickrama
2008; Chen et al. 2017). In forestry, there are several spatial
analysis methods used, such as post-blocking (Dutkowski
et al. 2002; Ericsson 1997), nearest-neighbor adjustment
(Anekonda and Libby 1996; Joyce et al. 2002; Wright
1978), and kriging (Hamann et al. 2002; Zas 2006).
However, the most common method used in crop and forestry
trials seems to be a combination of experimental design with a
spatial component, in the form of separable first-order two-
dimensional autoregressive residual variation as recommend-
ed by Gilmour et al. (1997).

In the Swedish Norway spruce (Picea abies (L.) Karst.)
breeding programs, some progeny trials are very large with
more than 1000 families tested, including provenance (stand)
and family structures (Chen et al. 2014). Also, many of these
trials have used completely randomized design (CRD) with-
out designed pre-block in northern Sweden. Such a design
was traditionally analyzed using post-blocking adjustment
(PBA) with varying effectiveness (Dutkowski et al. 2002;
Ericsson 1997). Spatial analysis may improve breeding value
prediction considerably by reducing environmental variation
in the CRD field trials.

Recently, the competition effect between neighboring trees
has been described in several papers (Cappa and Cantet 2008;
Cappa et al. 2015, 2016; Costa e Silva and Kerr 2013; Costa e
Silva et al. 2013; Dutkowski et al. 2002; Dutkowski et al.
2006; Ye and Jayawickrama 2008). Dutkowski et al. (2006)
reported that 10% of diameter variables showed competition
effects, represented by negative first-order autocorrelation co-
efficients in both column and row directions at a residual level.
Ye and Jayawickrama (2008) reported that eight negative au-
tocorrelations from a total of 1135 variables were observed,
either in one direction or in both directions of row and column.
Stringer and Cullis (2002) found that inter-plot competition
was substantial in many field trials measuring sugar cane
yield. In Sweden, most field trials were located north of 56
latitude in the northern hemisphere and trees were usually
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measured before the age of 20. Competition might appear in
some trials. Therefore, examination of whether competition
has played a role at this age using a spatial model with first-
order autocorrelation coefficients in row and column direc-
tions is meaningful.

The objectives of this study were to (1) examine the degree
and severity of spatial variation in genetic field trials of
Norway spruce in Sweden; (2) estimate the average changes
for several variance components, and the accuracy of parental
and offspring breeding value predictions, from the base design
to the spatial model; (3) investigate the influence of different
spacing, age, and geographical factors on the estimates of
variance components; and (4) examine whether competition
effect is existing in growth traits based on the first-order
autoregressive coefficients in the row and column directions.

2 Materials and methods
2.1 Test materials

The data from a total of 145 field trials of Norway spruce
distributed across Sweden were analyzed (Fig. 1). Most of
these trials were located in southern Sweden, with only 16
and 11 trials from central and northern Sweden, respectively.
Eighty-six trials were family-based seedlings (including full-
sib, half-sib, and mixed) while 59 trials were clonal-based
experiments.

Four base designs (CRD, RCB, RIB, and LS) were used
in these field trials. Most of the family-based trials used
single-tree plots, predominantly in a randomized incom-
plete block design (see supplementary Table S1). Most of
the clonal trials used a Latin square design with a pre-
blocking structure. Post-blocks are usually added when
using a CRD design, which means that blocks are added
in response to environmental differences observed in the
field for the trials with an initial CRD design. There were
11 types of spacing, but in most of the trials, spacings were
1.4 mx1.4 m (88 trials), 1.8 mx 1.8 m (8 trials), and
2 mx2 m (28 trials). A total of 454 unique variables
representing nine trait classes were measured and analyzed
(Table 1). The nine trait classes were as follows: branch—
representing seven branch characteristics from number of
branches and branch diameter, to number of spike knots;
diameter—stem diameter at breast height (1.3 m above
ground); form—stem straightness; frost—frost damage; in-
sect—insect damage; height—tree height; stems—number
of multiple stems; bud burst—bud burst stage (Krutzsch
1975); and wood density—Pilodyn penetration. The num-
ber of variables and measurement ages varied among these
trait classes in the 145 trials (Table 1). The details of each

field trial including field design, family, and clone number
are shown in the supplementary Table S1.

2.2 Statistical analysis
Two models were used to fit each of 454 variables:

(1) A base model that only included a random block effect
(pre-block or post-block), a random genetic effect, and
an independent error as

y=Xb+Zu+e (1)

where y is a vector of measured data, b is a vector of fixed
effects of the grand mean with its design matrix X, u is a
vector of random effects with block and genetics (additive or
genotype effect) corresponding design matrix Z, and e is a
vector of residuals. Fixed and random effect solutions are
obtained by solving the linear mixed model equations:

XR'X XR'z b] _[XRy 2)
ZR'X ZR'Z+G']||a ZRy
where R is the variance-covariance matrix of the residuals and
G is the direct sum of the variance-covariance matrices of each

of the random effects. Residuals are assumed to be indepen-
dent and R is denoted as 021 in the base model.

(2) A spatial model using an autoregressive spatial compo-
nent and an independent error instead of just an indepen-
dent error in base model (Costa e Silva et al. 2001;
Dutkowski et al. 2002) as

y=Xb+Zu+ £+ (3)

where spatially dependent (£) residual and independent (7))
residual (nugget effect) are a decomposition of e in base mod-
el. Other parts are all the same as the base model.

The spatially dependent (§) residuals are modeled using a
covariance structure that assumes a separable first-order
autoregressive process in rows and columns, for which the R
matrix is

R = O%[ARl@co])@ARl (prow)} + 07271 (4)

where ag is the spatially dependent residual variance, Jf/ is the
independent residual variance, I is an identity matrix, ® is a
direct product (the Kronecker product) for two matrices, and
AR1(pcor) and AR1(p,ow) represent a first-order
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Fig. 1 Locations of the 145
Norway spruce (Picea abies L.
Karst) trials in Sweden analyzed
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autoregressive correlation matrix in column and row direc-
tions, respectively.

For field trials of open-pollinated and control-pollinated
families, and for clonal trials using family structure, only the
additive variance component was calculated in the model. For
clonal trials without parental pedigree, genotypic values were
predicted. The missing values were fitted as fixed effects in
the spatial model.

To carry out the log likelihood ratio test (LRT) in ASReml
3.0, all the traits were analyzed using untransformed data. For
categorical variables, the previous comparison between un-
transformed and transformed data indicated that the ranking
did not normally change significantly (Rosvall et al. 2011), so
other transformations were not tried for those variables.

@ Springer
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Vilnius

Variables recorded as counts were not transformed as it was
observed that transformation using the square root for counts
did not further normalize the distribution (Dutkowski et al.
2006).

During the model fitting process, we found that some var-
iables had a non-significant nugget effect in the spatial model,
which is similar to some experiments on agricultural crops.
With this type of variables, Gilmour et al. (1997) recommend-
ed that extraneous effects should be fitted as

y=Xb+Zu+¢ (5)

where b is a vector of fixed effects with the grand mean, linear
row, linear column, and edge effect corresponding design ma-
trix X and u is a vector of random effects with block, spline
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Table 1 Number of trials and
ages measured for nine trait types
of Norway spruce that were
analyzed

No. Trait type Variable Number of Age (year)
variables
1 Branch Count of branches 6 6,8, 11
Branch diameter (mm) 5 6,8, 1
Overall branch quality (classes) 28 7, 11-13, 15, 17
Whole tree quality (classes) 16 6, 8-10, 15
Branch length (measure or classes) 4 8
Branch angle (degree or classes) 25 6,8, 11-13
No. of spike knots 15 6-8, 11,14, 15
2 Diameter Tree diameter measured at 1.3 m (mm) 92 10-17, 20, 28, 29
3 Form Stem straightness (classes) 19 6,7,10,11, 12
4 Frost Damage by frost (classes) 24 6-9, 11,13, 15
5 Insect Insect damage (Sacciphantes abietis) (classes) 12 6,8,11, 14,15
6 Height Tree height (cm or dm) 178 3-16
7 Stems No. of stems at 1.3 m 12 6,11,13
8 Bud burst Bud flushing (Krutzsch 1975) (classes) 14 5-9
9 Density® Pilodyn penetration (mm) 4 9,11

The details of each trial are shown in Supplementary Table 1

#Wood density

row, spline column, row, column, and genetics (additive or
genotype effect) corresponding design matrix Z. & is the spa-
tially dependent residuals. If spline across rows and columns
did not fit the model, polynomial function across rows and
columns was employed to account for the global trend. The
variogram and map of residuals for spatial model were used to
indicate such trends.

2.3 Variance parameters and model comparison

The variance parameters were estimated using restricted (or
reduced or residual) maximum likelihood (REML) in
ASReml 3.0 (Gilmour et al. 2009). Standard errors were esti-
mated by using the Taylor series expansion method. To study
the effectiveness of using a spatial model relative to model
without spatial effect, only block and additive effects, regard-
less of their significance, were always included in the final
model and in the extended model, all other non-significant
variance parameters (such as random column and row effects)
were removed from the fitted models, except the block and
additive effects. The significance of a given parameter was
judged using a one-tailed LRT for those where zero was a
boundary value; otherwise, a two-tailed test was used. When
spatial component was used in R, in some cases, it did not
converge readily. Then a few of strategies were tried to
achieve convergence: (1) Update function was used to update
several times in ASReml-R, (2) lower starting autocorrelations
were tried, and (3) spatial component was incorporated into a
random effect.

The accuracy of the predicted breeding values (correlation
between the true and predicted genetic values) was calculated
for each parent and offspring or genotypic effects of clones as

_PEV
%

r=,/1

where PEV is the prediction error variance and 42 is the esti-

mated additive genetic variance. If it was a clonal trial, (ﬁ was
the estimated genotypic variance.

The relative genetic gain was estimated as 100 * (Gg—
Gg)/Gg, where Gs and Gy are the expected genetic response
from selecting a proportion of individuals using the spatial and
base models, respectively (Costa e Silva et al. 2001). The
selection proportion was set at the top 20% for parents and
top 5% for offspring or genotypic values, based on estimated
breeding values or clonal genotypic values. G and Ggwere
calculated as an average of breeding or clonal genotypic
values. Spearman correlation was calculated to compare the
breeding values between the base and spatial models.

3 Results

The spatial models converged for 434 variables from a total of
454 variables examined in the 145 trials. The remaining non-
converged 20 variables were excluded from the following
analysis.
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Table 2 Number and percentage (parenthesis) of variables that changed log likelihood significantly from base to spatial model by trait type
Trait type n* P° value

>0.05 <0.05° <107 <107 <107 <107 <107 <107’
Branch 92 28 (30.4) 8(8.7) 14 (15.2) 8 (8.7) 8 (8.7) 5(5.4) 6 (6.5) 15 (16.3)
Diameter 86 2(2.3) 2(2.3) 3(3.5) 4 4.7) 3 (3.5 2(2.3) 12 (14.0) 58 (67.4)
Form 19 4(21.1) 2(10.5) 0 1(5.3) 2 (10.5) 2 (10.5) 3(15.8) 5(26.3)
Frost 23 2@8.7) 1(4.3) 3(13.0) 0 2(8.7) 0 521.7) 10(43.5)
Insect 10 4 (40.0) 1(10.0) 1(10.0) 2 (20.0) 0 0 0 2 (20.0)
Height 178 1 (0.6) 1 (0.6) 0 2 (1.1) 1 (0.6) 1 (0.6) 13(7.3) 159 (89.3)
Stems 11 9 (81.8) 0 1(9.1) 0 0 0 0 1(9.1)
Bud burst 11 3(27.3) 0 0 19.1) 0 0 19.1) 6 (54.5)
Density 4 0 0 0 0 0 0 0 4 (100)
Total 434 53(12.2) 15 (3.5) 22 (5.1) 18 (4.1) 16 3.7) 10 (2.3) 40(9.2) 260 (59.9)

1 is total number of variables

® Probabilities (p values) are calculated based on 3 degrees of freedom in a likelihood ratio test of the difference between the base and spatial models

° Variables in the category with 102 < p <0.05

A total of 381 variables (88%) were observed to have a
significant improvement of log likelihood between the base
and spatial models (Table 2). Growth and wood density
(Pilodyn penetration) traits had the greatest improvement with
97.7% of trait diameter, 99.4% of trait height, and 100% of
trait wood. Multiple stems, insect damage, and branch had the
least improvement using spatial models. Bud burst, stem
straightness, and frost resistance showed moderate improve-
ment using spatial models.

In large trials (n>2500 trees), there were more variables
with a higher ratio of block to error variance (Table 3). For
example, the ratios of block to error variances of 0-10, 10-20,
20-30, 3040, 40-50, and 50-100% accounted for 50.0, 25.8,
9.2, 8.3, 3.3, and 3.3% of variables, respectively. For small

Table 3
according to p values

trials (n <2500 trees), the ratios of block to error variances of
0-10, 10-20, 20-30, 3040, 40-50, and 50-100% accounted
for 68.2, 14.0, 8.3, 3.2, 2.5, and 3.8% of variables, respective-
ly. Large trials where block variance explained much of the
variation tended to show a greater improvement in log likeli-
hood (Table 3). For example, for ratio of block to error vari-
ances of 10-20%, all sites with n>2500 trees had a log like-
lihood improvement at p < 10~7, while only 68% sites in sites
with n <2500 trees had a log likelihood improvement at
p< 1077, with the other 32% of sites having a log likelihood
improvement distributed from p>0.5 to p <10°°.

Average changes of estimated variance components when
switching from the base to the spatial model are shown in
Table 4, excluding variables with no significant improvement

Variable distribution according to trial size (<2500 or >2500), ratio of block to error variance, and percentage changes (%) of log likelihood

p value®  The number of trees less than 2500 in each of 314 variables The number of trees more than 2500 in each of 120 variables
Ratio of block to error variance in base model Ratio of block to error variance in base model
<10% 10-20% 20-30% 30-40% 40-50% >50% <10% 10-20% 20-30% 30-40% 40-50% >50%
>0.05 14.3 0.3 5.8
<0.05 38 0.3 1.7
<1072 54 1.0 1.7
<107 4.1 1.0 0.8 0.8
<107 32 0.3 33
<107 16 0.3 03 2.5
<10°° 8.3 1.3 1.6 1.0 0.6 0.3 1.7
<107’ 274 9.6 6.7 1.9 1.9 35 32.5 25.8 8.3 8.3 3.3 33
Total 68.2 14.0 8.3 32 2.5 3.8 50.0 25.8 9.2 8.3 3.3 3.3

“Probabilities (p value) based on a 3 degrees of freedom likelihood ratio test of the difference between the base and spatial models
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Table4  Average percentage and percentage changes in estimated variance components of block (0% ), additive (03 ), independent (O'f] ), and dependent

(cr% ) residuals from base models to spatial models for nine trait types

Trait n* 0% (%) a5 (%) 02,, (%) 025 (%)
type
Base Spatial Ao Ps  Base Spatial Aci P Base Spatial Aof7 P,, Base Spatial Ao% P
Branch 64 48 1.7 -63.7 3.1 323 324 1.0 594 100 877 —-123 0.0 0.0 16.5 Inf® 100
Diameter 84 134 22 —-86.1 24 1208 118.6 52 690 100 742 —-258 0.0 0.0 77.7 Inf. 100
Form 15 37 21 -563 00 326 337 29 80.0 100 889 -11.1 0.0 0.0 12.6 Inf. 100
Frost 21 167 48 —-629 48 282 281 —-35 476 100 773 —-227 0.0 0.0 30.2 Inf. 100
Insect 6 27 13 -573 00 21.0 201 88 66.7 100 929 -7.1 0.0 0.0 8.5 Inf. 100
Height 177 205 3.9 -796 0.6 1083 994 1.3 514 100 66.7 -333 0.0 0.0 504 Inf. 100
Stems 2 80 00 -874 0.0 6.1 60 —7.7 500 100 852 —-148 0.0 0.0 273 Inf. 100
Bud 8 77 54 —-450 0.0 4285 4288 —-0.1 625 100 847 -153 0.0 0.0 18.1 Inf. 100
burst
Density 4 188 8.1 -57.0 0.0 541 543 03 250 100 815 -185 0.0 0.0 29.3 Inf. 100

i is the number of variables in which spatial models are significantly improved from the base models

®Inf. is infinite; Ao%;, Aaf‘, Ao%,, and Aaé are the average percentage changes from base to spatial model; and Pg, P, Py, and P¢ are percentages of the

number of variables increased from base to spatial models for variance components of block, additive, independent, and dependent residuals,

respectively

using the spatial model. Here, we only describe overall results
for the variables showing significant improvement.

Generally, spatial analysis reduced all average block vari-
ances (Aa% ) for all nine types of trait classes, but the reduction
varied substantially from 45.0% for trait bud burst to 86.1%
for trait diameter with an average reduction of 66.2%. Spatial
analysis reduced the block variance more than 79.0% for di-
ameter, height, and multiple stems traits. For example, the
block variance (cf% ) of trait diameter decreased from 13.4 to
2.2%. For branch, diameter, frost, and height traits, however,
block variances increased slightly in a few cases. For example,
3.1% of branch variables and 4.8% of frost variables had an
increase in block variances (Table 4).

Average changes in the estimated additive genetic variance
(Aoﬁ ) also varied for the nine types of trait classes. The Aaf‘
increased slightly for branch, diameter, form, height, and wood
density, but decreased for frost damage, multiple stems, and
bud burst. With the exception of wood density and frost dam-
age traits, all other traits had more than 50% of variables that
increased o7 from the base model to the spatial model.

Spatial analysis reduced the independence variance (afl ) for
all variables of nine types of traits. The average reduction of
Aaf7 was 17.9% and this varied from an average reduction of
7.1% for bud burst to 33.3% for insect damage. Dependence
variances (aé ) for nine types of trait classes varied from an
average of 8.5% for insect to 77.7% for diameter.

Spatial correlations were high for most variables examined
(Table 5). The average autocorrelation coefficient for column
(P.) and row (P,;) was 0.76 and 0.79, respectively.
Autocorrelation coefficients for trait diameter, height, and
wood density were higher with the values above 0.80 for

row and column. Only three variables had autocorrelation
coefficients of less than 0.5 (—0.16, 0.19, and 0.31) in one
direction for diameter at age 13, 16, and 20 years, respectively.
And three variables had autocorrelation of less than 0.5 (—
0.04, 0.43, and 0.45) in one direct for height at age 7, 3, and
8, respectively. There was no variable with negative value for
wood density.

The average accuracy of breeding value predictions (AA)
for parents increased for six types of trait classes (branch,
diameter, form, insect, height, and wood density) but de-
creased for frost damage, multiple stems, and bud burst
(Table 5). However, these changes were small with the largest
increases being for insect damage, diameter, and height (5.0,
1.8, and 1.7%, respectively). The accuracy of breeding value
predictions for diameter, height, and wood density was in-
creased in 86.9, 74.0, and 75.0% of cases, respectively, from
the base to spatial models. Similarly, the accuracy of breeding
value predictions for offspring was also increased most for
diameter (95.2% with an average 3.6%) and height (81.9%
with an average 3.4%) from the base of the spatial models.

In Table 5, the Spearman correlation coefficients of parents
(PC) and offspring (OC) between the predicted breeding values
for the base model and spatial model were all higher (>0.93,
except for a correlation coefficient of 0.89 for wood density).

The average increase of the estimated genetic gain for par-
ents (P_GG) varied from 0 to 6.2% for different trait classes
(Table 5) while the average changes of the estimated genetic
gain for offspring (O_GG) varied from 0.4 to 4.2%. Diameter,
height, and wood density showed the highest gain increases
from the base to spatial model (1.9, 4.3, and 6.2% for parents,
respectively, and 3.6, 4.2, and 3.7% for offspring,
respectively).
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Table 5

Average first-order correlations in row (P,) and column (P,), average accuracies and changes of accuracy in estimating parental and offspring

breeding values (BV), average BV Spearman correlations between base and spatial models for parent (PC) and offspring (OC), and average genetic gains
based on selection of parents (P_GG) and progeny (O_GG) for nine trait types

Trait type n P, P, Accuracy of parent BV Accuracy of offspring BV PC OC P GG(%) O GG (%)
Base Spatial AA(%) PN (%) Base Spatial AA(%) PN (%)
Branch 64 078 0.74 070 0.71 0.3 54.7 0.54 0.54 0.5 64.1 0.99 098 0.6 1.2
Diameter 84 0.88 090 0.78 0.80 1.8 86.9 0.63  0.65 3.6 95.2 095 095 19 3.6
Form 15 075 080 080 0.80 0.4 60.0 0.62 0.62 1.0 733 0.99 098 0.7 1.5
Frost 21 073 0.69 0.61 061 -25 61.9 047 047 -24 61.9 095 094 26 34
Insect 6 080 0.75 0.51 0.52 5.0 66.7 0.51 052 3.0 66.7 093 095 13 0.8
Height 177 0.83 0.80 0.76 0.77 1.7 74.0 0.64 0.66 34 81.9 096 0.94 43 42
Stems 2 0.67 052 056 0.54 -44 50.0 034 032 -4.7 50.0 099 098 0.5 0.7
Bud burst 8 082 0.75 0.82 0.82 -0.1 12.5 0.86 0.86 0.2 87.5 1.00 099 0.0 0.4
Density 4 0.87 093 0.80 0.81 0.3 75.0 0.70 0.71 1.2 100.0 096 0.89 6.2 3.7

n represents the number of variables in which spatial models are significantly improved from the base models; AA(%) is percentage changes of accuracy;
PN is the percentage number of variables where the accuracy values in the spatial model are larger than that in the base model

We used Pearson correlation analysis to examine the effect of
tree age, site location, number of survival trees, and spacing on
the improvement using the spatial model (Table 6). For diameter,
we found that the effectiveness of spatial analyses increased with
increased site elevation, latitude, longitude, number of survival
trees, and spacing, particularly for latitude. This meant that the

accuracy of offspring diameter breeding value predictions in-
creased more using spatial analyses for more northerly sites
(higher latitude) with a greater reduction in independent residual
variance. For height, there seems to be little relationship between
accuracy and geographical parameters and other parameters, ex-
cept for tree age, in that accuracy increased significantly with

Table 6 Pearson correlations between measurement age of traits, geographical location of trial, the number of survival trees (n), trial spacing, log
likelihood change (ALL), percentage changes in additive (Ao'i), and residual variances (Ao%), accuracy of offspring (AAO), and first-order

autocorrelation of row (P,) and column (P.)

Diameter (81 sites)

ALL A3 (%)
(5.2-865.1) (—17.4-55.3)
Age (10-29) -0.20 -0.02
Elevation (15.0-315.0 m) 0.12 0.18
Latitude (55.6-60.3" N) 0.40° 0.10
Longitude (12.7-18.6" S) 0.35° 0.03
n (446-5468) 0.74° -0.01
Spacing® (0.49-4.00 m?) 0.29* —-0.06
Height (137 sites)
ALL AGA (%)
(4.3-936.8) (—42.9-54.2)
Age 3-16) 0.10 0.19%
Elevation (10-525 m) 0.07 -0.16*
Latitude (55.6-67.2° N) 0.26° -0.05
Longitude (12.5-23.6" S) 0.26° 0.08
n (674-6936) 0.63° -0.10
Spacing® (0.49-4.2 m?) 0.06 -0.10

A% (%) AAO (%) P, P,
(—100.0-2.1) (—2.7-34.7) (—0.16-0.99) (0.37-0.99)
0.25° -0.07 0.02 0.19
-0.35° 0.20 -0.19 -0.18
-0.28° 027° 0.03 -0.13
-0.30° 0.08 -0.06 -0.05
-0.16 0.10 0.18 -0.03
0.02 0.08 0.02 -0.18

Ac% (%) AAO (%) P, P,
(—100—3.7) (—18.7-49.1) (—0.04-0.98) (0.40-0.98)
-0.01 0.19* 0.20* 0.19*
-0.05 -0.14 -0.26° -0.35°
0.01 -0.03 -0.10 —0.34°
0.01 0.04 0.01 -0.16
0.03 -0.05 0.06 -0.21°
0.18° -0.13 -0.20° -0.21°

aand b in the table indicate significant Pearson correlations under confidence level at 95 and 99%, respectively, and ¢ represents that spacing area (row x

column) as spacing was used in here
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Fig. 2 Variogram of branch in which the nugget effect is non-significant
and spatial residual approach randomness

age. Autocorrelation coefficients in row and column directions
also increased, following the increase of tree age from 3 to
16 years.

Nine variables showed non-significant nugget effects in this
study. Five of them were height variables, two were branching
variables, and there was one each for diameter and frost damage.
For the two branch angle variables, the pattern of the spatial
residuals approached randomness (Fig. 2). No extraneous effects
were found in these two variables. For the other seven variables,
extended models were fitted and were significant. Correlation
coefficients of breeding values between the spatial and extended
models were all higher than 0.98 for the seven variables. No
substantial genetic gain was observed from the spatial model
to the extended spatial model for the seven variables (Table 7).
Therefore, adding the significant extraneous effects using the
extended model did not produce an improvement for the genetic
gain: the largest parental gain was 0.07 for the height and the
largest offspring gain was still only 0.21 for height (Table 7).
One example of effectiveness using the extended spatial model
is illustrated in Fig. 3. The variogram for diameter showed a
raised edge in the last row and some variation in column direc-
tion, indicating trees in the last row in the row direction, may
grow abnormally (faster than other neighboring trees) and there
may be a slight global trend in column direction. When an edge
effect in the last row and a spline in the column direction were
fitted, a more stationary variogram was produced.

4 Discussion

Spatial analysis using first-order autocorrelation has been used
as a common method to analyze forest genetic trials (Costa e
Silva et al. 2001; Costa e Silva and Kerr 2013; Dutkowski et al.

2006, 2002; Ye and Jayawickrama 2008). In Norway spruce,
we have used spatial analyses as a first-stage analyses for indi-
vidual sites, and adjusted data have been used for genotype-by-
site (GXE) interaction study to dissect the patterns and causes of
significant GXE (Chen et al. 2017). Here, we summarized ge-
netic parameters, autocorrelation coefficients, accuracy of
breeding value predictions for parental and offspring, and ge-
netic gain for nine types of trait classes from base and spatial
models in this study of Norway spruce in Sweden.

Spatial analyses of Norway spruce showed that 88% of
variables (from a total of 434) could be significantly improved
for model fitting using a spatial model based on LRT. Growth
and wood density (Pilodyn penetration) traits were observed
to have a greater probability of improvement than other traits.
This may indirectly indicate that spatial analyses could greatly
improve genetic analyses of wood density measured using the
Pilodyn method (Chen et al. 2015). Spatial autocorrelation
coefficients for the growth traits and wood density were higher
than those for other traits. This could be explained by the high
sensitivity of growth and wood density to site variation includ-
ing microsite soil depth, nutrition, slope, and water availabil-
ity. This indicates spatial analysis is more desirable for ana-
lyzing growth and Pilodyn penetration traits.

Our results also indicate that spatial analysis could have a
greater impact on large trials with highly global heterogeneous
(higher ratio of block to residual variances) environmental
variation, confirming previous reports in a few published pa-
pers (Dutkowski et al. 2006; Fu et al. 1999; Ye and
Jayawickrama 2008).

Experimental design factors that were found significant are
usually recommended to be retained in the spatial model
(Dutkowski et al. 2002, 2006; Federer 1998; Qiao et al. 2000;
Ye and Jayawickrama 2008). In most of the northern Swedish
Norway spruce trials, a simple experimental CRD was usually
used in the field experiments, and all trees were usually ran-
domized in the field trials. In those trials, post-blocking was
used to reduce environmental variation in the analyses. In two
published papers (Dutkowski et al. 2002; Ericsson 1997), the
post-blocks had equal size, but in Swedish trials, those post-
blocks within a trial could be of different sizes (e.g., one block
may include four sub-blocks and another block may include six
sub-blocks, depending on the environmental similarity). This
post-blocking strategy might confound block and genetic ef-
fects. A simulation may be needed to resolve this issue. In this
study, we found spatial analysis was more efficient in field
trials. Thus, post-blocking and pre-blocking may not need for
the future analyses of field data.

Spatial analysis showed an inconsistent effect on the additive
genetic variance (o—i ). Several studies with only one trial or a
few variables and simulations have shown that a consistent in-
crease of o is possible with spatial analyses (Anekonda and
Libby 1996; Ball et al. 1993; Hamann et al. 2002; Kusnandar
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Table 7  Correlation of breeding values and gains in selection between models without nugget effects
Trait (age) Trial no. Model 1 Model 2 Breeding value correlation % gain increase from models 1 to 2
Parents Trees Parents 20% Trees 5%
Diameter (13) F1036 Base Spatial 0.99 0.94 1.28 7.54
Spatial Extended 0.9996 0.9965 0.05 0.28
Height (8) F1028 Base Spatial 091 0.86 0.29 1.67
Spatial Extended 0.9995 0.9983 0 0.04
Height (7) F1062 Base Spatial 0.99 0.94 0.65 8.39
Spatial Extended 0.9998 0.9998 0 0.02
Height (7) F1063 Base Spatial 0.99 0.89 0 4.16
Spatial Extended 0.9997 0.9994 0 0.02
Height (8) F1067 Base Spatial 0.99 0.96 0.04 4.39
Spatial Extended 0.9993 0.9991 0.07 0.24
Height (7) F1090 Base Spatial 1.00 0.98 0.13 2.71
Spatial Extended 0.9994 0.9984 0 0.08
Branch (8)* F1022 Base Spatial 0.99 0.99 2.36 1.04
Branch (8)* F1066 Base Spatial 1.00 0.99 0.00 0.48
Frost (8) Fo87 Base Spatial 0.99 0.97 0.16 0.03
Spatial Extended 0.9987 0.9783 0 0.08

#No significant extraneous effect was found for branch angle at both sites

and Galwey 2000; Magnussen 1993, 1994). However, experi-
mental studies with large number of trials and variables have
shown that either an increase or decrease is possible for o using
spatial analyses. Our observations of increased additive variance
in most cases and decreased variance in some cases are in line
with those reports with many trials and variables (Costa e Silva
et al. 2001; Dutkowski et al. 2002, 2006; Ye and Jayawickrama
2008). There may several possibilities with decreased genetic
variance in spatial model. One possibility is confounding of
incomplete block effect with genetic effect in the designed

Spatial model
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experiment which had augmented the genetic variance. Other
possibility includes ill-fitting of model or confounding of genetic
effect with spatial variation. Simulation is needed to verify these
hypotheses. Dutkowski et al. (2002) considered that a consistent
increase of additive variances in the simulation study may be due
to there being no independent error term in the model.
Generally, competition is indicated with a negative auto-
correlation coefficient at a residual level and/or a negative
genetic correlation between a tree and its neighbors at a ge-
netic level (Costa e Silva and Kerr 2013; Magnussen 1989;
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Fig. 3 Variograms of diameter (age 13 years) from spatial model to extended spatial model using extraneous effects when the nugget effect was non-
significant. The extraneous effects included edge effect and spline cross column
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Reed and Burkhart 1985). Fox et al. (2001) summarized many
published forestry-based competition-related papers
(Anckonda and Libby 1996; Kuuluvainen et al. 1996;
Magnussen 1994; Magnussen and Yeatman 1987) and con-
firmed the hypothesis reported by Reed and Burkhart (1985)
that pre-canopy closure stands usually exhibit positive spatial
dependence. Post-canopy closure sometimes shows a negative
spatial dependence which can be caused by the onset of com-
petition. Older, senescent stands tend to show a positive spa-
tial dependence. In this study, only two growth variables
showed a small negative autocorrelation coefficient in one
direction, which again indicates that the competition effect
may not be evident before or during the field assessment pe-
riod for genetic parameter estimates and selection for the
Swedish Norway spruce breeding program (most trials youn-
ger than 17 years in this study). Ye and Jayawickrama (2008)
considered that it was likely that relatively small but still pos-
itive autocorrelations would be observed when strong spatial
association and competition co-exist. In this study, we found
that six variables had autocorrelation coefficients of less than
0.5 in one direction for diameter and height. It may be worth
analyzing the indirect genetic effect using the extended com-
petition model recommended by Costa e Silva et al. (2013).

As most of the southern Swedish Norway spruce trials
were used in this study, it made sense to explore the patterns
of geography, age, number of survival trees, and spacing on
genetic parameters. No strong geographical pattern for genetic
parameters was found in our study, as in the report by Ye and
Jayawickrama (2008). However, it was found that ALL had
significantly high correlations with the number of survival
trees, latitude, and longitude for diameter and height, indicat-
ing that the number of survival trees is an important determi-
nant for spatial modeling besides geographical location.
Spacing had a greater influence on ALL for diameter, but not
for height, indicating that the spatial model is more useful for
the diameter trait in the large spaced trial.

In variety trials of agricultural crops where the experimen-
tal unit is the plot, an independent error is assumed to repre-
sent measurement error. Such error variance is often signifi-
cant but usually small, so the independent error is removed
from the model (Cullis et al. 1998; Gilmour et al. 1997). In
most forestry trials, it is considered that both an independent
and an autoregressive error are necessary (Costa e Silva et al.
2001; Dutkowski et al. 2002; Kusnandar and Galwey 2000). If
the model is fitted without the independent error, the additive
genetic variance could be substantially inflated and the actual
patterns of spatial variation could be obscured when real in-
dependent errors are ignored. We found that the independent
error was considerable in most of the variables analyzed in
individual-tree models. If only additive variance is included in
the spatial model, the large independent error could be a mix-
ture of the non-additive variance, measurement error, and
microsite error. In the clonal trials, the independent errors

may only reflect the measurement error and microsite varia-
tion. In our study, all variables in clonal trials showed signif-
icant and substantial independent errors. If we considered the
measurement error is under control, then, this reflects a large
microsite variation.

We did, however, find that nine variables including the
height, diameters, branch angle, and frost had non-
significant independent residual errors in the field trials. This
is similar to observation of Dutkowski et al. (2006) that, in
some instances, there were no independent residual variances
in forestry trials. When there is significant independent error,
Costa e Silva et al. (2001) and Dutkowski et al. (2002) indi-
cated that separation of global and local trends was unneces-
sary. In agricultural trials, however, an extended model with-
out a non-significant independent error term is recommended
by Gilmour et al. (1997) and others (Cullis and Gleeson 1989;
Qiao et al. 2000). Therefore, in this study, the extended model
was used to detect the improvement for parental and offspring
ranking correlations and selection gain in these nine variables.
The results showed that the extended model had very little
impact on genetic parameters and genetic gain estimates.
Therefore, there might be limited use of the extended spatial
model if there is no significant independent error, unless a
clear global trend or an extraneous effect is detected.

5 Conclusion
The results from this study indicate that

1. The spatial analysis improved the model fitting, accuracy
of breeding valve prediction, and genetic gain in Swedish
Norway spruce trials than the conventional methods using
models based on the experimental design.

2. Large trials with a large block variance tend to have a
larger improvement of accuracy from the spatial model
in accuracy.

3. Growth and Pilodyn measurement traits showed greater
improvements in accuracy and genetic gain.

Acknowledgements We greatly appreciate the work carried out by all the
people who measured and imported all the data into DATAPLAN.

Funding This study is partly financed by the Swedish Foundation for
Strategic Research (RBP 14-0040) and Formas (230-2014-427).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

INRA 2 springer

"~ SCIENCE & IMPACT




2 Page 12 of 13

Annals of Forest Science (2018) 75: 2

References

Anekonda TS, Libby WJ (1996) Effectiveness of nearest-neighbor data
adjustment in a clonal test of redwood. Silvae Genet 45:46-51

Ball ST, Mulla DJ, Konzak CF (1993) Spatial heterogeneity affects vari-
ety trial interpretation. Crop Sci 33:931-935. https://doi.org/10.
2135/cropscil993.0011183X003300050011x

Bian L, Zheng R, Su S, Lin H, Xiao H, Wu HX, Shi J (2017) Spatial
analysis increases efficiency of progeny testing of Chinese fir. J For
Res 28:445-452. https://doi.org/10.1007/s11676-016-0341-z

Brownie C, Gumpertz ML (1997) Validity of spatial analyses for large
field trials. J Agr Biol Envir St 2:1-23. https://doi.org/10.2307/
1400638

Cappa EP, Cantet RJ (2008) Direct and competition additive effects in
tree breeding: Bayesian estimation from an individual tree mixed
model. Silvae Genet 57:45-55

Cappa EP, Muioz F, Sanchez L, Cantet RIC (2015) A novel individual-
tree mixed model to account for competition and environmental
heterogeneity: a Bayesian approach. Tree Genet Genomes 11:120.
https://doi.org/10.1007/s11295-015-0917-3

Cappa EP, Stoehr MU, Xie C-Y, Yanchuk AD (2016) Identification and
joint modeling of competition effects and environmental heteroge-
neity in three Douglas-fir (Pseudotsuga menziesii var. menziesii)
trials. Tree Genet Genomes 12:102. https://doi.org/10.1007/
s11295-016-1061-4

Chen Z-Q, Garcia Gil MR, Karlsson B, Lundqvist S-O, Olsson L, Wu HX
(2014) Inheritance of growth and solid wood quality traits in a large
Norway spruce population tested at two locations in southern
Sweden. Tree Genet Genomes 10:1291-1303. https://doi.org/10.
1007/s11295-014-0761-x

Chen Z-Q, Karlsson B, Lundqvist S-O, Garcia Gil MR, Olsson L, Wu HX
(2015) Estimating solid wood properties using Pilodyn and acoustic
velocity on standing trees of Norway spruce. Ann For Sci 72:499—
508. https://doi.org/10.1007/s13595-015-0458-9

Chen Z-Q, Karlsson B, Wu HX (2017) Patterns of additive genotype-by-
environment interaction in tree height of Norway spruce in southern
and central Sweden. Tree Genet Genomes 13:25. https://doi.org/10.
1007/s11295-017-1103-6

Costa e Silva J, Dutkowski GW, Gilmour AR (2001) Analysis of early
tree height in forest genetic trials is enhanced by including a spatially
correlated residual. Can J For Res 31:1887-1893. https://doi.org/10.
1139/x01-123

Costa e Silva J, Kerr RJ (2013) Accounting for competition in genetic
analysis, with particular emphasis on forest genetic trials. Tree Genet
Genomes 9:1-17. https://doi.org/10.1007/s11295-012-0521-8

Costa e Silva J, Potts BM, Bijma P, Kerr RJ, Pilbeam DJ (2013) Genetic
control of interactions among individuals: contrasting outcomes of
indirect genetic effects arising from neighbour disease infection and
competition in a forest tree. New Phytol 197:631-641. https:/doi.
org/10.1111/nph.12035

Cullis B, Gogel B, Verbyla A, Thompson R (1998) Spatial analysis of
multi-environment early generation variety trials. Biometrics 54:1—
18. https://doi.org/10.2307/2533991

Cullis BR, Gleeson AC (1989) Efficiency of neighbour analysis for rep-
licated variety trials in Australia. J Agric Sci 113:233-239. https://
doi.org/10.1017/S0021859600086810

Cullis BR, Gleeson AC (1991) Spatial analysis of field experiments-an
extension to two dimensions. Biometrics 47:1449—1460. https:/doi.
org/10.2307/2532398

Dutkowski GW, Costa e Silva J, Gilmour AR, Lopez GA (2002) Spatial
analysis methods for forest genetic trials. Can J For Res 32:2201—
2214. https://doi.org/10.1139/x02-111

INRA

SCIENCE & IMPACT

@ Springer

Dutkowski GW, Costa e Silva J, Gilmour AR, Wellendorf H, Aguiar A
(2006) Spatial analysis enhances modelling of a wide variety of
traits in forest genetic trials. Can J For Res 36:1851-1870. https://
doi.org/10.1139/x06-059

Ericsson T (1997) Enhanced heritabilities and best linear unbiased pre-
dictors through appropriate blocking of progeny trials. Can J For
Res 27:2097-2101. https://doi.org/10.1139/x97-153

Federer WT (1998) Recovery ofinterblock, intergradient, and intervariety
information in incomplete block and lattice rectangle designed ex-
periments. Biometrics 54:471-481. https://doi.org/10.2307/
3109756

Fox JC, Ades PK, Bi H (2001) Stochastic structure and individual-tree
growth models. Forest Ecol Manag 154:261-276. https://doi.org/10.
1016/S0378-1127(00)00632-0

Fox JC, Bi H, Ades PK (2007a) Spatial dependence and individual-tree
growth models: 1. Characterising spatial dependence. Forest Ecol
Manag 245:10-19. https://doi.org/10.1016/j.foreco.2007.04.025

Fox JC, Bi H, Ades PK (2007b) Spatial dependence and individual-tree
growth models: II. Modelling spatial dependence. Forest Ecol
Manag 245:20-30. https://doi.org/10.1016/j.foreco.2007.01.085

Fu Y-B, Yanchuk AD, Namkoong G (1999) Spatial patterns of tree height
variations in a series of Douglas-fir progeny trials: implications for
genetic testing. Can J For Res 29:714-723. https://doi.org/10.1139/
x99-046

Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and
extraneous variation in the analysis of field experiments. J Agr Biol
Envir St 2:269-293. https://doi.org/10.2307/1400446

Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user
guide release 3.0. VSN International Ltd, Hemel Hempstead

Hamann A, Namkoong G, Koshy MP (2002) Improving precision of
breeding values by removing spatially autocorrelated variation in
forestry field experiments. Silvae Genet 51:210-215

Joyce D, Ford R, Fu YB (2002) Spatial patterns of tree height variations
in a black spruce farm-field progeny test and neighbors-adjusted
estimations of genetic parameters. Silvae Genet 51:13—18

Krutzsch P (1975) Die Pflanzschulenergebnisse eines inventierenden
Fichtenherkunftsversuches, Department of Forest Genetics. Royal
College of Forestry, Stockholm

Kusnandar D, Galwey N (2000) A proposed method for estimation of
genetic parameters on forest trees without raising progeny: critical
evaluation and refinement. Silvae Genet 49:15-20

Kuuluvainen T, Penttinen A, Leinonen K, Nygren M (1996) Statistical
opportunities for comparing stand structural heterogeneity in man-
aged and primeval forests: an example from boreal spruce forest in
southern Finland. Silva Fennica 30:315-328

Magnussen S (1989) Effects and adjustments of competition bias in prog-
eny trials with single-tree plots. For Sci 35:532-547

Magnussen S (1993) Bias in genetic variance estimates due to spatial
autocorrelation. Theor Appl Genet 86:349-355. https://doi.org/10.
1007/6100222101

Magnussen S (1994) A method to adjust simultaneously for spatial
microsite and competition effects. Can J For Res 24(5):985-995.
https://doi.org/10.1139/x94-129

Magnussen S, Yeatman CW (1987) Adjusting for inter-row competition
in a jack pine provenance trial. Silvae Genet 36:206-214

Qiao CG, Basford KE, DeLacy IH, Cooper M (2000) Evaluation of
experimental designs and spatial analyses in wheat breeding trials.
Theor Appl Genet 100:9-16. https://doi.org/10.1007/
s001220050002

Reed DD, Burkhart HE (1985) Spatial autocorrelation of individual tree
characteristics in loblolly pine stands. For Sci 31:575-587


https://doi.org/10.2135/cropsci1993.0011183X003300050011x
https://doi.org/10.2135/cropsci1993.0011183X003300050011x
https://doi.org/10.1007/s11676-016-0341-z
https://doi.org/10.2307/1400638
https://doi.org/10.2307/1400638
https://doi.org/10.1007/s11295-015-0917-3
https://doi.org/10.1007/s11295-016-1061-4
https://doi.org/10.1007/s11295-016-1061-4
https://doi.org/10.1007/s11295-014-0761-x
https://doi.org/10.1007/s11295-014-0761-x
https://doi.org/10.1007/s13595-015-0458-9
https://doi.org/10.1007/s11295-017-1103-6
https://doi.org/10.1007/s11295-017-1103-6
https://doi.org/10.1139/x01-123
https://doi.org/10.1139/x01-123
https://doi.org/10.1007/s11295-012-0521-8
https://doi.org/10.1111/nph.12035
https://doi.org/10.1111/nph.12035
https://doi.org/10.2307/2533991
https://doi.org/10.1017/S0021859600086810
https://doi.org/10.1017/S0021859600086810
https://doi.org/10.2307/2532398
https://doi.org/10.2307/2532398
https://doi.org/10.1139/x02-111
https://doi.org/10.1139/x06-059
https://doi.org/10.1139/x06-059
https://doi.org/10.1139/x97-153
https://doi.org/10.2307/3109756
https://doi.org/10.2307/3109756
https://doi.org/10.1016/S0378-1127(00)00632-0
https://doi.org/10.1016/S0378-1127(00)00632-0
https://doi.org/10.1016/j.foreco.2007.04.025
https://doi.org/10.1016/j.foreco.2007.01.085
https://doi.org/10.1139/x99-046
https://doi.org/10.1139/x99-046
https://doi.org/10.2307/1400446
https://doi.org/10.1007/bf00222101
https://doi.org/10.1007/bf00222101
https://doi.org/10.1139/x94-129
https://doi.org/10.1007/s001220050002
https://doi.org/10.1007/s001220050002

Annals of Forest Science (2018) 75: 2

Page 130f 13 2

Rosvall O, Stahl P, Almqvist C, Anderson B, Berlin M, Ericsson T,
Eriksson M, Gregorsson B, Hajek J, Hallander J (2011) Review of
the Swedish tree breeding programme. Skogforsk, Uppsala, Sweden

Stringer JK, Cullis BR (2002) Application of spatial analysis techniques
to adjust for fertility trends and identify interplot competition in early
stage sugarcane selection trials. Aust J Agric Res 53:911-918.
https://doi.org/10.1071/AR01151

White TL, Adams WT, Neale DB (2007) Forest genetics. CABI,
Wallingford. https://doi.org/10.1079/9781845932855.0000

Williams ER, Matheson AC, Harwood CE (2002) Experimental design
and analysis for tree improvement. CSIRO publishing, Canberra,
Australia

Wright JW (1978) An analysis method to improve statistical efficiency of
a randomized complete block design. Silvae Genet 27:12—14

Yang R-C, Ye TZ, Blade SF, Bandara M (2004) Efficiency of spatial
analyses of field pea variety trials. Crop Sci 44:49-55. https:/doi.
org/10.2135/cropsci2004.4900

Ye TZ, Jayawickrama KJS (2008) Efficiency of using spatial analysis in
first-generation coastal Douglas-fir progeny tests in the US Pacific
Northwest. Tree Genet Genomes 4:677-692. https://doi.org/10.
1007/s11295-008-0142-4

Zas R (2006) Iterative kriging for removing spatial autocorrelation in
analysis of forest genetic trials. Tree Genet Genomes 2:177-185.
https://doi.org/10.1007/s11295-006-0042-4

INRA 2 springer

SCIENCE & IMPACT



https://doi.org/10.1071/AR01151
https://doi.org/10.1079/9781845932855.0000
https://doi.org/10.2135/cropsci2004.4900
https://doi.org/10.2135/cropsci2004.4900
https://doi.org/10.1007/s11295-008-0142-4
https://doi.org/10.1007/s11295-008-0142-4
https://doi.org/10.1007/s11295-006-0042-4

	Efficiency of using spatial analysis for Norway spruce progeny tests in Sweden
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Test materials
	Statistical analysis
	Variance parameters and model comparison

	Results
	Discussion
	Conclusion
	References


