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Abstract
& Key message We examine how the configurations in nearest neighbor imputation affect the performance of predicted
species-specific diameter distributions. The simultaneous nearest neighbor imputation for all tree species and separate
imputation by tree species are evaluated with total volume calibration as a prediction method for diameter distributions.
& Context This study considers the predictions of species-specific diameter distributions in Finnish boreal forests by means of
airborne laser scanning (ALS) data and aerial images.
& Aims The aim was to investigate different configurations in non-parametric nearest neighbor (NN) imputation and to determine
how changes in configurations affect prediction error rates for timber assortment volumes and the error indices of the diameter
distributions.
& Methods Non-parametric NN imputation was used as a modeling method and was applied in two different ways: (1) diameter
distributions were predicted at the same time for all tree species by simultaneous NN imputation, and (2) diameter distributions
were predicted for one tree species at a time by separate NN imputation. Calibration to a regression-based total volume prediction
was applied in both cases.
& Results The results indicated that significant changes in the volume prediction error rates for timber assortment and for error
indices can be achieved by the selection of responses, calibration to total volume, and separate NN imputation by tree species.
& Conclusion Overall, the selection of response variables in NN imputation and calibration to total volume improved the
predicted diameter distribution error rates. The most successful prediction performance of diameter distribution was achieved
by separate NN imputation by tree species.

Keywords NN imputation . Area-based approach . Airborne laser scanning . Diameter distribution

1 Introduction

1.1 Background

The application of airborne laser scanning (ALS) in forest
management has been widely investigated in recent decades.

As a result, ALS (in combination with other remote sensing
techniques) has been utilized in forest inventories in many
countries (see White et al. 2013; Maltamo and Packalen
2014; Næsset 2014). In Finland, species-specific stand attri-
butes have traditionally formed the basis of traditional forest
management and procurement planning. Therefore, stand-
level assessments of forest resources have been widely used
to measure forest attributes over the latter part of the twentieth
century (Koivuniemi and Korhonen 2006). The use of diam-
eter distributions to describe the size distribution of trees has
been an essential part of forest inventories in stand-level as-
sessments, as well as in ALS-based inventories. In modern
forestry practices, diameter distributions are used, for exam-
ple, to simulate the future development of forests, and hence
are necessary instruments in planning and scheduling forest
management decisions. Diameter distribution can also be used
to describe tree layers, which is useful for conservation
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purposes. Traditionally, diameter distributions in Finland have
been predicted separately in a species-specific manner be-
cause of species-specific timber procurements (e.g., Kangas
and Maltamo 2000).

1.2 Diameter distributions based on ALS

Currently, the area-based approach (ABA) is usually
employed with low-density ALS data, with the ALS-derived
statistics calculated at a plot or a grid level (Næsset 1997).
During the era of ALS, studies related to diameter distribu-
tions, especially where tree species are considered, are still
somewhat rare. Most global forest types are occupied by nu-
merous tree species, and in forest management, diameter dis-
tributions have been predicted at the total or genus level. In
Europe, ALS-based diameter distribution studies without tree
species separation have been published, for example, from
Norway (Gobakken and Næsset 2004), Sweden (Saad et al.
2015), Finland (Maltamo et al. 2006), and Germany
(Breidenbach et al. 2008). ALS data have also been used in
diameter distribution prediction in North America (Thomas et
al. 2008; Lamb et al. 2017; Shang et al. 2017). Studies have
shown that diameter distributions can be predicted for individ-
ual tree species by means of ALS and aerial images under
Finnish conditions (Packalén and Maltamo 2008;
Peuhkurinen et al. 2008), although, the error rates associated
with the prediction of minor tree species and timber assort-
ment volumes need to be improved if these variables are
deemed to be of interest.

In regard to area-based ALS studies, diameter distributions
have been predicted with both parametric and non-parametric
methods. Parametric methods are usually based on probability
distributions, such as the Weibull density function (Gobakken
and Næsset 2004). The use of probability distributions to de-
scribe diameter distributions can be seen as contradictory—
they are suitable for describing even-aged monocultures, al-
though multimodal distributions may not be described at a
satisfactory level (Maltamo et al. 2017). In addition, current
ALS-based forest inventories require field data in which the
diameter at breast height (DBH) has been measured for all
trees. Therefore, the utilization of data from trees measured
in the field, rather than the prediction of parameters based on
theoretical distributions, is justified. Moreover, the local vari-
ability of diameter distributions in the inventory area is taken
into account better compared to general parameter models.

The non-parametric nearest neighbor imputation (hereafter
NN imputation) produces diameter distributions as a
byproduct from the NN imputation of forest attributes. The
diameter distribution is constructed from trees that occur in
sample plots. NN imputation for species-specific predictions
has been used, for example, by Packalén and Maltamo (2008)
and Peuhkurinen et al. (2008). The results of the former study
indicated that NN imputation for the prediction of diameter

distributions under boreal forest conditions was superior to the
parametric method based on a Weibull distribution.
Bollandsås et al. (2013) also assessed the performance of
seemingly unrelated parametric regression and non-
parametric NN imputation for the prediction of total-level di-
ameter distributions and concluded that NN imputation per-
formed better than parametric approaches.

One of the most common approaches employed in NN
imputation has been the most similar neighbor (MSN) method
(Moeur and Stage 1995), which is usually applied for k neigh-
bors (k-MSN), with the k value commonly set to 5. (e.g.,
Packalén and Maltamo 2008; Maltamo et al. 2009). The po-
tential of MSN for diameter distribution modeling was ob-
served before the era of ALS (Maltamo et al. 2003). The
benefit of multivariate NN imputation is that a user can simul-
taneously predict all of the attributes of interest in a single
step. Packalén and Maltamo (2008) selected response vari-
ables for diameter distribution modeling that consisted of dif-
ferent species-specific sum and mean attributes in field plots.
For the prediction of sum and mean attributes, the selection of
the responses is a straightforward task as the attributes of
interest can be actual responses. However, for diameter
distributions, the attribute is not usually used as such,
although some indicators related to the shape and structure
of diameter distribution might be included as responses.
Related to this, Maltamo et al. (2009) studied response con-
figurations in the modeling of diameter distribution by k-MSN
at the total tree stock level, and their results suggested that the
selection of responses has an effect on the performance of
diameter distributions.

1.3 Goodness of diameter distribution

Performance assessments of diameter distributions have been
implemented by error indices (Gobakken and Næsset 2004;
Packalén and Maltamo 2008; Peuhkurinen et al. 2008), error
rates in predicted timber assortments (Packalén and Maltamo
2008; Peuhkurinen et al. 2008), and statistical tests (Strunk
et al. 2017; Gorgoso et al. 2007; Poudel and Cao 2013). The
root mean squared error (RMSE) and bias (BIAS) of timber
assortment and tree species volumes are easy to interpret, and
their use is justified by the fact that logwood volume is the
main forest attribute evaluated economically. The use of tim-
ber assortment as a validation criterion requires that tree
heights are predicted, and assortments are calculated using
taper curve models (e.g., Siipilehto 1999). However, assess-
ments related to the frequencies of diameter distribution are
reasonable because the shape of the diameter distribution
might not always be observed correctly from the RMSE
values of predicted timber assortment volumes. Some error
indices have been developed for diameter distributions; for
example, Reynolds et al. (1988) proposed an index that
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compares the frequencies between observed and predicted
distributions.

1.4 Study objectives

The primary aim of this study is to investigate species-specific
diameter distributions predicted by NN imputation using var-
ious response configurations. Low-density leaf-off ALS and
aerial image metrics are used as predictor variables. In remote
sensing applications, the species-specific diameter distribution
for the target observation has traditionally been fetched simul-
taneously for all tree species from the same k nearest neigh-
bors. In this study, a secondary objective is to examine wheth-
er the species-specific diameter distributions could be better
predicted when the attributes of pine, spruce, and deciduous
tree species were used independently as responses in separate
NN imputations. Moreover, a straightforward regression
model-based calibration to total volume is employed for

diameter distribution frequencies to ensure that NN-imputed
species-specific volumes sum up to the total volume
prediction.

2 Material and methods

2.1 Study area

The study site is located around the municipality of Liperi
(62°31’ N 29°23′ E) in the province of Eastern Finland (see
Fig. 1). The study area extends partly over the province of
Southern Savonia. The total area of the study site covers about
43,000 ha. The forest structure can be considered as a typical
Finnish managed forest in which coniferous species, such as
Scots pine (Pinus sylvestris [L.]) and Norway spruce (Picea
abies [L.] Karst.) are usually the dominant tree species. In the
field data, the main tree species is Norway spruce and

Fig. 1 The location of the inventory area and the field plots
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deciduous species (e.g., silver birch (Betula pendula Roth.),
downy birch (Betula pubescens Ehrh.), and aspen (Populus
tremula)) are in the minority. According to the field data, the
most common site fertility classes are grass-herb (19%;
Oxalis-type), moist (58%; Myrtillus-type), and dry sites
(19%; Vaccinium-type). The proportions of stand develop-
ment classes are 27, 52, and 21% for young, middle-aged,
and mature forests, respectively.

2.2 Field data

The fieldwork was carried out between June and September
2016. The majority of sample plots (73%) was distributed in
the study area using systematic cluster sampling. The clusters
include four plots, and the distance between the clusters is
1200 m. The remainder of the sample plots was distributed
and measured by the Finnish Forest Centre. The sample plot
network used in this study consists of 424 circular plots with

either a radius of 9 m (71%) or 12.62 m (29%) depending on
the stem number inside the plot. All the sample plots were
located entirely within the forest stand. Seedling or sapling
plots and dead trees were excluded from the data. The main
sample plot attributes are presented in Table 1.

Post-corrected global navigation satellite system (GNSS)
measurements were used to accurately locate the center of
each sample plot. For every plot, DBH, height, species, and
tree class of trees with DBH ≥ 5 cm were measured. Using
DBH and height measurements, the basal area and volume
were calculated for all trees and were subsequently aggregated
at the plot level by tree species and multiplied to the hectare
level together with the number of stems. Diameter and height
of the basal area median tree (DGM and HGM) were also
calculated. Using plot level DBH measurements, diameter
percentiles were calculated from 10 to 90% (D10, D20,…,
D90) by tree species. Tree level stem volumes were computed
using the species-specific models of Laasasenaho (1982) with
DBH and height as predictor variables. Tree species were
classified into three classes: pine, spruce, and deciduous trees.
Deciduous trees were aggregated together due to (a) the mi-
nority of deciduous species other than birches and (b) the
knowledge that deciduous species are practically impossible
to separate with the remote sensing systems currently utilized
under Finnish conditions. Species-specific timber assortment
volumes were calculated by means of taper curves
(Laasasenaho 1982), and the taper curve for birch was used
for all deciduous species. The bucking parameters related to
logwood and pulpwood calculations are presented in Table 2.

2.3 ALS data and aerial photographs

Leaf-off ALS was carried out between April 30, 2016, and
May 3, 2016, using a fixed-wing Piper PA-31-350 Chieftain
airplane with a Leica ALS60 laser scanning device. The data
were collected from an altitude of 2400 m above ground level
using a half-angle of 20°. The ALS data were collected mainly
for terrain modeling purposes by the National Land Survey of
Finland. As a result of the data acquisition setup, a nominal
sampling density of 0.88 measurements per square meter was
achieved. The side overlap between the flight lines was 20%.

The Leica ALS60 device can capture four echoes per emit-
ted pulse, and the echoes were classified into only,

Table 1 Means and standard deviations of plot attributes by tree species
at the plot level

Population Mean Sd

Volume (m3 ha−1) Scots pine 76.0 83.4

Norway spruce 87.7 109.1

Deciduous 22.8 36.1

Total 186.4 100.4

Basal area (m2 ha−1) Scots pine 8.8 9.1

Norway spruce 9.9 10.5

Deciduous 2.9 4.2

Total 21.6 8.2

Stem number (ha−1) Scots pine 371.0 458.5

Norway spruce 513.8 523.5

Deciduous 239.3 392.3

Total 1142.0 641.4

DGM (cm) Scots pine 21.0 6.5

Norway spruce 17.1 8.4

Deciduous 14.8 7.5

Total – –

HGM (m) Scots pine 17.6 4.8

Norway spruce 14.8 6.5

Deciduous 15.3 5.5

Total – –

Table 2 Bucking parameters used when computing pulpwood and logwood volumes

Logwood minimum
diameter (cm)

Pulpwood minimum
diameter (cm)

Logwood minimum
length (m)

Logwood maximum
length (m)

Scots pine 15.0 7.0 3.7 6.1

Norway spruce 16.0 7.0 3.7 6.1

Deciduous species 18.0 7.0 3.7 6.1
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intermediate, first-of-many, and last-of-many categories. Here,
we used three of the echo categories: first, last, and
intermediate. The only category was joined to the first-of-
many and the last-of-many categories to constitute the first
and last categories. The ALS points were classified into
ground hits and other hits following the method of Axelsson
(2000). The digital terrain model (DTM) was interpolated
with Delaunay triangulation by means of ground classified
ALS echoes. Height normalization of the echoes was imple-
mented by subtracting the DTM from the height values of the
ALS echoes. The intensity values of the ALS echoes were
calibrated for the range (Korpela et al. 2010).

Aerial photographs were captured at a flight altitude
of 4100 m above ground level on the 23–24
May 2016 by the National Land Survey of Finland.
The aerial photographs were taken with a Z/I
Imaging Intergraph (01-0128) camera with a focal
length of 30 mm. The camera has 3456 × 1920 pixels,
and the ground sampling distance (GSD) of the aerial
images was about 160 cm. The abovementioned pa-
rameters are for multispectral bands; we did not use
panchromatic band or pan-sharpening. This camera
model records four spectral bands (red, green, blue,
and near infrared).

2.4 Predictor variables

The ALS echo categories; first, last, and intermediate were
included in the analysis, and most predictors were calculated
separately for all categories. The height cutoff was set at 1.3 m
to separate ground hits from the vegetation metrics. Mean,
standard deviation, max, min, kurtosis, skewness, percentiles,
and fixed density metrics were computed at the plot level. The
canopy height percentiles (h) were computed for 5, 10, …,
95%. The density values (d) that describe the proportion of
echoes under the given height value were calculated for
heights of 0.5, 2, 5, 10, 15, and 20 m. In the case of density
metrics, a height cutoff threshold was not used and those met-
rics were always computed according to all echoes of used
echo categories. The proportions of echoes by echo categories
were also computed. Moreover, percentiles (i5, i10, i15,…,
i95) together with mean, standard deviation, max, min, kurto-
sis, and skewness were computed for the intensity values of
the ALS echoes.

Aerial image metrics were computed as explained in
Packalén et al. (2009). First ALS echoes belonging to the
first-of-many and only echo categories were projected to
unrectified aerial images using external and internal orienta-
tions. Every echo hits in multiple images because of the over-
lap in aerial imaging. Therefore, an average pixel value was
retrieved for every echo by bands. Finally, the mean, standard
deviation, minimum, and maximum by bands were computed
from retrieved pixel values by plots.

2.5 Workflow

The overall workflow applied in the study is illustrated in
Fig. 2, which sums up the stages from data elaboration to
performance assessments. The routines for NN imputation
and the selection of predictor variables were implemented
following the algorithms applied in Packalén et al. (2012).
The routines for construction and assessment of diameter dis-
tributions were carried out in R-environment (R Core Team
2017).

2.6 NN imputation

The NN imputation was used to search the similar neighbors
for target observations. The tree list (i.e., diameter distribu-
tion) can then be compiled from the tree-level data of the
nearest plots. The NN imputation was implemented by a k-
MSN. The MSN method applies canonical correlation analy-
sis to define the distance metrics. The distance metric deter-
mines which k reference observations (k nearest neighbors)
are most similar to the object of prediction. In this study, the k
value was fixed at 5 for all NN imputations. For simplicity, the
MSN distance metric was solved only once in every NN run
and the target observation was always excluded from the
group of k neighbors (TRAINCVapproach in Packalén et al.
2012).

The squared distance for nearest neighbors was calculated
as follows:

D2
uj ¼ X u−X j

� �
ΓΛ2Γ

0
X u−X j
� �0 ð1Þ

where D2
uj is the squared distance between target u and neigh-

bor j, Xu is a vector of predictor variables from the target plot,
Xj is a vector of predictor variables from the reference plot, Γ
is the matrix of canonical coefficients of the predictors, andΛ2

is the diagonal matrix of squared canonical correlations.
The nearest neighbors were weighted by taking an inverse

of the squared distance as follows:

Wuj ¼

1

D2
uj

∑k
1

1

D2
uj

ð2Þ

where Wuj is the weight value between the target plot u and

reference plot j, k is the number of nearest neighbors, and D2
uj

is the squared MSN distance.

2.7 The selection of response variables

The starting point in the comparison is the reference set of
responses (hereafter SET1) consisting of 15 responses:
species-specific volume (V), basal area (G), stem number
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(N), basal area median height (HGM), and diameter (DGM)
(as presented in Packalén and Maltamo 2008). Subsequently,
numerous response configurations were compiled. Due to the
high number of response configurations, the results of all con-
figurations cannot be presented in a succinct manner.
Consequently, five response configurations are presented here
and consisted of two response configurations for simultaneous
NN imputation and three response configurations for separate
NN imputation by tree species. The selection was based on the
RMSEs of the predicted timber assortment volumes, and the
error indices of diameter distributions. The selection of pre-
dictor variables was run individually for every configuration
of response variable. The presumption was that diameter dis-
tribution related responses (e.g., DGM, G, and N) are impor-
tant for the description of diameter distribution. Therefore,
those attributes were included in most of the configurations
of responses compared. In addition to sum and mean attri-
butes, other attributes, such as diameter percentiles (D10,
D20,.., D90), diameter distribution frequencies with a 2-cm
class width (F6, F8, …, F32), and Weibull-parameters (c =
shape, b = scale) were compared. All response configura-
tions taken into account are presented in Section 3.1
(see also Fig. 3).

2.8 The selection of predictor variables

When diameter distributions are predicted in a species-
specific manner by NN imputation, the crucial part is tree
species discrimination. Thus, careful selection of predictor
variables is critical. Since the selection of predictor variables
may be laborious owing to the large amount of predictor can-
didates, heuristic optimization methods have been proposed to
lighten the computational workload of the process (Tuominen
and Haapanen 2013; Packalén et al. 2012). For tree species
discrimination, aerial images (e.g., Packalén and Maltamo
2007) have often been used together with ALS data. To some
extent, leaf-off ALS data can also discriminate between conif-
erous and deciduous tree species in boreal conditions (Villikka
et al. 2012).

The variable selection for NN imputation was implemented
according to the algorithm proposed by Packalén et al. (2012).
The method is based on heuristic optimization by Simulated
Annealing (Kirkpatrick et al. 1983), which aims to minimize
the mean RMSE over all responses by solving the NN model
repeatedly until a solution is found. The minimization is based
on the cost function and the temperature parameter. The latter
has a key role in avoiding local optima by determining the

Fig. 2 The schematic illustration
of the workflow used in the study.
The dashed path demonstrates the
separate non-parametric nearest
neighbor (NN) imputation by tree
species and the dotted path refers
to simultaneous NN imputation
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probability of also accepting moves to poorer solutions.
Simulated annealing is a stochastic method, and therefore,
the optimization routine was iterated 1000 times with a ran-
domized initial solution for every variable selection case. The
initial temperature value was set to 1. The selected set of
predictor variables produced the smallest cost according to
the mean RMSE of predictions for all responses during the
iterative process. In this study, the procedure to select predic-
tor variables was carried out separately for every response
configuration. The number of predictor variables to be select-
ed was fixed at 11.

2.9 Constructing diameter distributions

As nearest neighbors were found by means of NN imputation,
the diameter distributions of neighbors can be used in the
construction of a tree list for a target. Since the DBH and the
height of all trees are measured; volumes (total, pulpwood,
and logwood) and basal area can be calculated. Ultimately,
every tree gets a weighting value that corresponds to the given
weight value in NN imputation for the plot in question (Eq. 2).
In reality, for each imputed tree, the weight describes the fre-
quency that the tree represents in the target plot. The construc-
tion of the tree list for the target plot u from the nearest neigh-
bors (k = 5) can be described as follows:

Fu ¼ Wu1Su1;Wu2Su2;…;Wu5Su5f g ð3Þ
where Fu is the tree list on a target plot u, Wuj is the plot level
weight as presented in Eq. 2, and Suj is a list of trees in the
neighbor plot j (here j refers to neighbor number 1, 2, 3, 4, or 5).

Finally, the trees in a tree list were scaled to the hectare
level by multiplying frequencies by a scaling factor that cor-
responds to the area of the reference plot. In cases where only
one tree species is seen as a response, the same principle can
be followed as presented in Eq. 3, although the procedure
must be applied separately for each tree species (Fig. 2).
Then the final, separately NN imputed by tree species, diam-
eter distribution for a target plot consists of trees of 15 nearest
neighbors.

2.10 Calibration to total volume

The NN imputation of several forest attributes at a time may
not optimally predict the total volume of a plot because the
response is different while solving the distance metric.
However, the total volume can be predicted with a lower
error rate individually, for example, by means of linear re-
gression analysis. Diameter distribution frequencies can be
fixed according to multiple predicted forest attributes by
calibration estimation (see Kangas and Maltamo 2000;
Maltamo et al. 2007). Here, the calibration to total volume
applies the same principle but only one attribute is used in
the calibration. After the calibration, the total volume of the
diameter distribution sums up to the regression-based pre-
diction of total volume. Simultaneously, the predicted
species-specific distributions might also correspond better
with the observed distributions.

These phenomena motivated us to fit a linear model of
three predictor variables for total volume. The predictor selec-
tion for the model was implemented by searching for the best
performing combination of three predictor variables with

Fig. 3 The results of the response
selection process. (1) In the
simultaneous non-parametric
nearest neighbor (NN)
imputation, all responses are
included for every tree species at a
time (e.g., V for pine, spruce, and
deciduous species). (2) In the
separate NN imputation by tree
species, the responses of only one
species are included as responses
at a time. For abbreviations used,
please refer to section 2.7
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respect to RMSE. A square root transformation for the re-
sponse variable was considered optimal to produce a constant
variance for residuals. The bias caused by the transformation
was corrected according to Lappi (1993).

The calibration factor calculated for a sample plot is pre-
sented in Eq. 4. The calibration factor was applied for a pre-
dicted diameter distribution by multiplying the tree frequen-
cies by the calibration factor.

CFactoru ¼
V̂ tot:regu

V̂pine:nnu þ V̂ spruce:nnu þ V̂decid:nnu

� � ð4Þ

where CFactoru is a calibration factor for a plot u, V̂ tot:reg

refers to the volume prediction by a regression model for plot

u, and V̂ species:nn in the denominator refers to the NN
imputation-based volume predictions for plot u.

2.11 Performance assessments

Root mean squared error (RMSE) and mean difference
(BIAS) figures were applied for the predictions of timber as-
sortments and for tree species volumes. The RMSEs and
BIASs were expressed in a relative way in which the absolute
value was divided by the mean value of the corresponding
observed attribute. The absolute RMSE and BIAS were cal-
culated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ŷi−yi
� �2

n

vuut
ð5Þ

BIAS ¼
∑n

i¼1 ŷi−yi
� �

n
ð6Þ

An error index (hereafter ErrorIndex) was employed as a
performance measure (Eq. 7). The same index was applied,
for example, in the study by Gobakken and Næsset (2004).
Originally, the ErrorIndex has been presented by Reynolds et
al. (1988). The ErrorIndex is presented as mean values of all
plot-level figures and is calculated for the total diameter dis-
tribution as well as for a logwood part. If the observed stem
number was zero, the plot was excluded from the ErrorIndex
calculations.

ErrorIndex ¼ ∑l
i¼1100

f i− f̂ i
N

�����

����� ð7Þ

where fi and f̂ i refer to the classes of diameter distribution, l is
the number of classes in the diameter distribution, and N rep-
resents the number of observations in the observed
distribution.

Data availability The ALS data can be downloaded from the
website of the National Land Survey of Finland. Other data
sources are not deposited in publicly available repositories.

3 Results

3.1 The selection of response configurations

For simultaneous NN imputation, a total of eight response
configurations were originally compared (see the leftmost
column in Fig. 3) and the results from two response con-
figurations are presented here; SET1 (as it is regarded as a
common practice) and SET2 as it performed most success-
fully. SET2, SET3, and SET4 were modified configurations
from SET1. A set of responses where species-specific log-
wood and the relationships between stem number and bas-
al area (SET8) were simultaneously predicted was also
tested and appeared to predict logwood volumes quite
well, although the remainder of the diameter distribution
was not predicted successfully. No significant benefit was
found when different species-specific diameter percentiles
(SET5) or Weibull parameters (SET6) were added to SET2.
The response set comprising volume attributes (SET7) was
not adequate for the modeling of diameter distributions in
simultaneous NN imputation. Therefore, the aforemen-
tioned response sets were rejected and their results are
not presented here. Diameter frequencies were also used
as response variables, although the use of distribution fre-
quencies as responses for simultaneous NN imputation of
species-specific diameter distributions posed problems
since the number of responses rose too high when a bin
width of 1 or 2 cm was used.

For the separate NN imputation by tree species, a total of
six response configurations were compared (see the rightmost
column in Fig. 3) and the results from three response config-
urations are presented here; SETsep1 and SETsep2 were selected
because of their correspondence with the simultaneous NN
imputation sets (SET1 and SET2), and in SETsep3, species-
specific stem number was added to the response set of
SETsep4. The inclusion of stem number improved most of
the prediction error rates for logwood and pulpwood volumes
compared to the response configuration that consisted solely
of percentiles. The separate NN imputations by tree species
where frequencies were a response set (i.e., SETsep6) did not
perform as well as the other response sets tested. In the sepa-
rate NN imputation, the set that consisted of volume attributes
(SETsep5) performed quite well, and the RMSEs for coniferous
logwood were at the same level as SET2. The response sets
SETsep1, SETsep2, and SETsep3 performed most successfully
and provided a valuable comparison with the simultaneous
NN imputation.
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3.2 The error rates of timber assortments

The relative RMSEs and BIASs are presented in Tables 3, 4,
and 5 for logwood, pulpwood, and tree species volumes, re-
spectively. When the tree species volumes and timber assort-
ment volumes were calculated from uncalibrated diameter
distributions, the results showed that the error rates predicted
by SET1 could be improved. For example, percentage im-
provements of 6.3, 10.5, and 15.8% for pine, spruce, and
deciduous, respectively, were achieved for logwood error rates
when the response variables of SET1 were replaced by those
of SET2. Moreover, the results indicated that separate NN
imputation by tree species performed better compared to si-
multaneous NN imputation. Since the lowest error rates were
mostly achieved by means of separate NN imputation by tree
species, the findings imply that separate NN imputation by
tree species might be a better alternative for the prediction of
diameter distribution.

The most challenging part of the prediction was for decid-
uous species, which are minor components in the study area,
and it was very difficult to find similar neighbors for a target
plot. In addition to high-error rates, the predictions for decid-
uous species were more biased than predictions for the other
species. The best performing configuration for deciduous vol-
ume, pulpwood, and logwood was acquired with separate NN
imputation by tree species rather than simultaneous NN
imputation.

3.3 Examination of ErrorIndex values

The ErrorIndex values computed with SET2 were slightly bet-
ter than those computed with SET1 (Fig. 4). In addition, the
ErrorIndex values indicated that SETsep3 may be a better al-
ternative than SET2 if the ErrorIndex values for deciduous
species were ignored. Overall, the results did not indicate a
strong superiority of any of the response sets tested.

The ErrorIndex values for the diameter distributions pre-
dicted for the logwood part of the distribution by the response
configurations of SET2 and SETsep1 are presented in Table 6.
The diameter threshold of 18 cm was used to reduce the di-
ameter distribution for the logwood part of the calculations.
The bin width was fixed to 2 cm. For the logwood part, the
majority of the ErrorIndex values supported the indication of
the better prediction performance by means of SETsep1 com-
pared to SET2 (Table 6).

3.4 Calibration to total volume

The regression model used for calibration to the total volume
had an RMSE of 17.2% (the model formula: sqrt(Vtot) =
sqrt(f_h60) + sqrt(f_d5) + inv(f_d15); for predictor abbrevia-
tions refer to section 2.4.). In general, calibration improved
the error rates for the predictions of timber assortments and
species-specific volumes (Tables 3, 4, and 5).

Table 3 The relative root mean squared error (RMSE) and bias (BIAS) (in parenthesis) of logwood volume predictions at the plot level. For SET
abbreviations, please refer to Fig. 3. For calibration see Eq. 4

Uncalibrated Calibrated

Vlogtotal Vlogpine Vlogspruce Vlogdecid Vlogtotal Vlogpine Vlogspruce Vlogdecid

SET1 36.4 (− 1.3) 67.1 (− 1.5) 69.7 (0.8) 211.0 (− 21.1) 28.8 (0.0) 61.6 (− 0.5) 64.3 (2.6) 204.1 (− 22.9)
SET2 35.0 (− 0.5) 62.9 (− 2.6) 62.4 (2.8) 177.6 (− 15.8) 29.1 (0.6) 56.3 (− 0.4) 59.3 (3.4) 171.6 (− 18.2)
SETsep1 35.5 (1.0) 66.8 (1.4) 57.2 (1.4) 155.9 (− 5.3) 26.2 (0.8) 55.9 (0.9) 52.8 (1.6) 155.8 (− 6.9)
SETsep2 40.4 (1.7) 79.6 (1.1) 67.0 (2.8) 159.1 (− 2.9) 27.6 (0.6) 65.5 (0.3) 58.9 (1.4) 160.9 (− 6.0)
SETsep3 40.7 (− 2.4) 73.2 (− 3.3) 68.9 (− 0.7) 221.7 (− 12.3) 27.0 (− 0.2) 61.4 (− 0.3) 58.6 (0.5) 208.7 (− 10.3)

Table 4 The relative root mean squared error (RMSE) and bias (BIAS) (in parenthesis) of pulpwood volume predictions at the plot level. For SET
abbreviations, please refer to Fig. 3. For calibration see Eq. 4

Uncalibrated Calibrated

Vpulptotal Vpulppine Vpulpspruce Vpulpdecid Vpulptotal Vpulppine Vpulpspruce Vpulpdecid

SET1 38.2 (2.2) 60.9 (2.1) 64.9 (4.2) 96.7 (− 1.2) 37.9 (0.5) 61.4 (1.2) 64.7 (4.2) 92.3 (− 8.2)
SET2 36.0 (1.3) 62.3 (0.5) 62.4 (3.1) 96.1 (− 0.6) 35.8 (− 0.3) 63.0 (0.4) 61.2 (2.2) 93.4 (− 6.3)
SETsep1 33.9 (− 0.2) 56.3 (− 1.0) 54.4 (− 0.2) 78.3 (1.1) 34.3 (− 1.2) 52.7 (− 2.6) 58.4 (1.6) 87.9 (− 3.3)
SETsep2 36.7 (− 0.8) 63.0 (− 0.8) 50.7 (− 0.7) 88.1 (− 1.1) 33.3 (− 0.9) 56.4 (− 0.8) 50.9 (0.7) 84.3 (− 4.1)
SETsep3 41.5 (− 0.3) 63.9 (2.0) 65.6 (− 1.4) 109.4 (− 2.5) 34.7 (0.1) 54.4 (0.5) 61.8 (0.8) 97.7 (− 1.9)
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The effect of calibration was not unambiguous, as the cal-
ibration did not always improve the predictions of diameter
distributions according to the performance assessments.
However, the degradations were always minor. For example,
uncalibrated diameter distributions imputed with the SETsep1
responses produced slightly better (maximum 2 units)
ErrorIndex values for total, spruce and deciduous species than
those for calibrated (Fig. 4). Instead, the calibration works
effectively for the logwood part with the response set of
SETsep1 (Table 6), and thus the inconsistency in the calibration
process in regard to the whole distribution may be affected by
changes in tree frequencies with small diameters. The effect
can be noticed, for example, in the diameter distribution
(Fig. 6) where small diameter classes are prone to higher

changes, since the distribution is positively skewed and high
frequencies usually occur in small diameter classes. In Fig. 6,
the calibration has worked somewhat effectively as the bar
graphs present the diameter distribution of dominant tree spe-
cies in conditions where the species-specific volumes are quite
easy to predict.

4 Discussion

The use of diameter distributions in Finnish forest manage-
ment systems is well established since most growth simulators
use tree-level data, and timber assortments are calculated
based on diameter distributions. In this study, we examined

Fig. 4 ErrorIndex values for total volume calibrated diameter distributions by tree species. Two centimeter diameter classes were used. For SET
abbreviations, please refer to Fig. 3

Table 5 The relative root mean squared error (RMSE) and bias (BIAS) (in parenthesis) of volume predictions for tree species at the plot level. For SET
abbreviations, please refer to Fig. 3. For calibration see Eq. 4

Uncalibrated Calibrated

Vtotal Vpine Vspruce Vdecid Vtotal Vpine Vspruce Vdecid

SET1 23.1 (0.1) 50.3 (0.0) 50.1 (1.8) 76.3 (− 5.9) 17.2 (0.0) 46.8 (0.2) 45.0 (2.9) 72.6 (− 11.6)
SET2 21.4 (0.0) 46.9 (− 4.7) 44.1 (2.7) 70.7 (− 5.0) 17.2 (0.0) 43.3 (− 0.2) 41.2 (2.7) 68.0 (− 9.8)
SETsep1 24.3 (0.5) 50.2 (0.5) 40.6 (0.9) 61.3 (− 0.7) 17.2 (0.0) 40.8 (− 0.5) 38.6 (1.6) 67.8 (− 4.3)
SETsep2 28.3 (0.7) 58.1 (0.4) 46.8 (1.4) 67.6 (− 1.1) 17.2 (0.0) 45.2 (− 0.1) 40.0 (1.1) 66.5 (− 4.1)
SETsep3 30.5 (− 1.5) 56.6 (− 1.3) 52.0 (− 0.9) 97.2 (− 4.4) 17.2 (0.0) 44.1 (0.2) 43.6 (0.8) 82.4 (− 3.6)

26 Page 10 of 16 Annals of Forest Science (2018) 75: 26



the response configurations in NN imputation, the application
of the NN imputation method for the prediction of species-
specific diameter distributions, and the application of straight-
forward calibration to predicted total volume for predicted
diameter distributions. The results highlighted the relationship
between the response configurations and the performance of
NN imputation. Our results showed that the prediction perfor-
mance of NN imputation can be improved by response selec-
tion and by total volume calibration. Moreover, separate NN
imputation by tree species produced the lowest error rates in
the prediction of species-specific timber assortment.

Comparing our findings to previous studies is not straightfor-
ward since the use of remote sensing has changed in the last
10 years. Although numerous ALS-related studies have been
published, diameter distributions as predicted by NN imputation
and studies that specifically consider species-specific distributions
are rare. The findings of this study are in line with the findings of
previous studies (see Packalén and Maltamo 2007; Packalén and
Maltamo 2008; Peuhkurinen et al. 2008). However, our results
are at the plot level, which has a considerable effect on error rates
when compared to stand level studies in general (e.g., Næsset
2004). The comparison of different response configurations for
the NN imputation has been studied previously without consider-
ing tree species. Maltamo et al. (2009) tested numerous response
configurations and found that distribution-related attributes (e.g.,
volume, basal area, stem number, diameter percentiles, and basal
area weighted mean diameter) were appropriate for the prediction
of diameter distribution. The results of our study confirm that the
same also holds true at the species-specific level.

Increasing the performance of the diameter distribution
predictions by modifying the initial response variable set of
15 species-specific attributes in NN imputation is to be expect-
ed. Although height variables tend to correlate well with ALS
predictors, the correlation between tree diameter and height
may not be as clear. Tree diameter is affected by soil fertility,
tree age, geographical location, silvicultural operations etc.,

and these variables pose a challenge for remote sensing-
based diameter distribution modeling. Taking this into ac-
count, the exclusion of the height-related responses can be
justified in diameter distribution modeling. We evaluated var-
ious response configurations although the configurations
comprising of sum and mean (G, DGM, N, etc.) attributes
were observed to be successful in general. The response sets
that included only volumes (species-specific attributes from
performance assessments: V, Vlog, and Vpulp) could be used
as responses only if those attributes are of interest. For diam-
eter distribution modeling purposes, we observed that the re-
sponse sets that comprised solely of volume attributes do not
describe diameter distributions as well as the other response
configurations studied. However, the use of diameter percen-
tiles as responses with stem number did work in separate NN
imputation by tree species with total volume calibration for
coniferous species. For NNmethods, the percentiles were first
presented as response variables in ground truth data analyses
by Malinen et al. (2001). Maltamo et al. (2009) included di-
ameter percentiles in response configurations in ALS-based
diameter distribution imputation but no significant benefit
was achieved. Although the responses of SETsep3 were not
particularly successful in this study, we nevertheless deemed
the observation interesting and valuable to report.

The application of the total volume calibration may not
guarantee improvements in error rates or in the ErrorIndex
values, as also reported by Maltamo et al. (2007). Overall,
the advantage of the calibration (according to the error rates
of predicted timber assortments) is evident from the point of
view of operational forest inventories. Since the calibration is
carried out by means of total volume, it may increase the error
rates of the other variables, i.e., it causes trade-offs among the
predicted variables. Our results showed that calibration usual-
ly negatively affects the bias values and the error rates of
predicted timber assortment volumes, especially for decidu-
ous species (Tables 3, 4, and 5). In contrast, the calibration
always positively affected the error rates of predicted conifer-
ous logwood volumes (Table 3), a significant variable when
the commercial value of a forest is evaluated.

The findings of this study suggest that it might be reason-
able to construct diameter distributions by separate NN impu-
tation by tree species. One disadvantage of predicting diame-
ter distributions by tree species is that selected neighbors may
include tree species that do not occur in the target plot or vice
versa. Principally, this will negatively affect the error rates of
the predictions for minor species. Although the prediction
error rates for deciduous species remain high, the error rates
shown in Tables 3 and 4 indicate that separate NN imputation
by tree species (SETsep1 and SETsep2) might be better for
species-specific prediction of diameter distributions compared
to simultaneous NN imputation. Nevertheless, the ErrorIndex
values for the deciduous species (Fig. 4 or Table 6) contradict
that conclusion and provide evidence that the RMSEs of

Table 6 ErrorIndex values for uncalibrated and calibrated diameter
distributions by tree species. 2 cm classes and diameter classes with
midpoints ≥ 18 cm were used. For SET abbreviations, please refer to
Fig. 3

Uncalibrated Calibrated
ErrorIndex ErrorIndex

SET2 Total 90.18 89.46

Pine 107.14 107.34

Spruce 114.19 114.62

Decid 131.59 129.21

SETsep1 Total 88.29 87.42

Pine 105.39 102.87

Spruce 113.06 111.61

Decid 138.26 137.85
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predicted timber assortments might not always describe the
shape of the diameter distribution as precisely as ErrorIndex.
Despite the improvements in error rates for predicted timber
assortments, the separation of minor species with current
methods and remote sensing devices seems to be extremely
difficult (e.g., Packalén et al. 2009; Packalén and Maltamo
2008). Tree species recognition has been extensively studied,
and high-density ALS data or multispectral ALS, for example,
have been suggested to aid in the separation of tree species
(e.g., Vauhkonen et al. 2009; Yu et al. 2017; Budei et al.
2017). High-density ALS enables the detection of individual
trees and applications that utilize individual tree approaches
with diameter distributions predicted by NN imputation have
been published (e.g., Hou et al. 2016).

The diameter distributions of coniferous species were gen-
erally predicted with better ErrorIndex values for separate NN
imputation by tree species, compared to simultaneous NN
imputation (Fig. 4 and Table 6). An examination of
ErrorIndex values at the plot level revealed that ErrorIndex
values degraded if the tree species in question was not a dom-
inant species (see Fig. 5). Interestingly, when only the domi-
nant species were considered, the ErrorIndex values were bet-
ter in denser and young forests (Fig. 5). Improved minor tree
species recognition is needed to curb the decreasing trend in
ErrorIndex values (Fig. 5) in terms of stem number. However,
it must be noted that some of the high-ErrorIndex values in
Fig. 5 may be a result of a small number of trees in a plot,
which usually means that the tree species in question has a

Fig. 5 The illustration of plot
level ErrorIndex values
(ErrorIndex ≤ 300) versus
logwood proportions (logwood
proportion > 0%) and stem
numbers when calibrated SETsep1
was applied. The colors and
shapes describe the dominant
species of the plot in question.
The dominant species is
determined according to the
volume proportions
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Fig. 6 An example of the total volume calibration for a young spruce-dominated plot. The topmost figure describes the diameter distribution for Norway
spruce when calibration is not applied. The lower figure shows the same case when calibration is applied. A bin width of 2 cm is used
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minor role from the point of view of forest management. The
pulpwood tail of the diameter distribution could be predicted
with better ErrorIndex values than logwood, if only the dom-
inant tree species are considered in the performance assess-
ments (Fig. 5).

We would like to point out that there are some aspects to
consider when extrapolating the results to other inventory
areas. Firstly, the low-density leaf-off ALS data utilized were
acquired at an optimal leaf-off period without snow. Previous
studies have suggested that leaf-off data might be convenient
for forestry purposes (Villikka et al. 2012). However, the ac-
quisition of such data may be extremely difficult under
Finnish conditions due to the narrow and unpredictable period
of suitable weather and the growing season conditions in the
spring (Villikka et al. 2012). Secondly, the NN imputations
and predictor selections were carried out for the sake of com-
putational efficiency, in a train mode in which the distance
metrics are solved only once. According to the study of
Packalén et al. (2012), the optimism due to the train mode of
NN imputation increases when the amount of predictor vari-
ables increases. However, the optimism is highest when only
one response is used. Here, we used 11 predictor variables in
all analyses with a varying number of responses, but always
with more than one, and, therefore, the optimism could be
anticipated as being only very minor. Thirdly, the use of a
heuristic optimization algorithm in the selection of predictor
variables may not produce the best set of variables although a
substantial number of iterations were used. For example, the
selection of predictor variables by minimization of mean
RMSEs of the 15 responses may result in slightly different
predictions of diameter distributions between several optimi-
zations processes. Fourthly, the number of sample plots must
be considered; the data set consisted of 424 plots and can be
regarded as comprehensive enough for species-specific forest
inventories implemented by means of NN imputation. In our
data set, only plots located completely within the borders of a
forest stand were included in the training data. The exclusion
of border plots might cause a simplifying effect on the training
data due to the increase in homogeneity of forest structures in
the plots. However, this exclusion is justified by the way the
data is used in forest inventories in Finland.

Unfortunately, the data acquisition was not carried out in
such a way that stand level calculations could be implement-
ed. In the study by Haara and Korhonen (2004), RMSEs of
traditional stand wise assessment were 52.0, 62.3, and 135.6%
for the logwood volume of pine, spruce, and deciduous trees,
respectively. In our study, the logwood volume prediction for
spruce and for pine (to a lesser extent) performed well, al-
though the RMSEs were calculated at the plot level.
However, it should be noted that the prediction of diameter
distributions by NN imputation requires DBH measurements
for all trees in the sample plots. In addition, NN imputations
are sensitive to the comprehensiveness of the data set, and all

of the various species compositions and tree dimensions
should be included in the training data.

5 Conclusions

We applied NN imputation to predict species-specific diame-
ter distribution by means of low-density leaf-off ALS data and
aerial images. The results indicated that the careful selection
of responses for NN imputation and the calibration of the
diameter distribution to the total volume estimate can improve
the error rates associated with volume predictions and the
ErrorIndex values of diameter distributions. The separate
NN imputation by tree species performed better, with lower
error rates, for the predictions of logwood, pulpwood, and tree
species volumes, compared to those predicted by the simulta-
neous NN imputation. At best, the error rate predictions for
logwood volumes for coniferous species are satisfactory, tak-
ing into account that the predictions were carried out at the
plot level. However, tree species recognition still poses a bot-
tleneck in the prediction of diameter distributions by tree spe-
cies with ALS and aerial images, and this can be seen in the
poor error rates associated within minor species predictions.
From the point of view of forest management and procure-
ment, the most important attributes are, however, related to the
dominant tree species.
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