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Abstract
& Key message Compared to the traditional approach, applying micrometric image analysis to fine root samples of Fagus
sylvaticawith subsequent data treatment through principal component and cluster analysis yielded specific diameter sizes
for fine root sub-classes having better resolution of the corresponding branching orders, and amore coherent relationship
with the values of annual production and turnover rate.
& Context Fine root traits are poorly understood, impeding an accurate representation of terrestrial biogeochemical models.
Traditionally used, arbitrary diameter thresholds lead to a misestimation of fine root traits such as branching order, environmental
relationship, annual production, and turnover rate.
& Aims Here, we present, as modification of the traditional method, an integrated approach to segregate, at high-resolution, fine
root populations of Fagus sylvatica into new diameter sub-classes that better correspond with the traits mentioned above.
&Methods Samples, collected with a sequential soil coringmethod, were subjected to a micrometric image analysis, and resultant
data were treated with principal component and cluster analysis.
&Results Results showed that fine roots were distributed into diameter-size sub-classes (0–0.3mm, 0.3–1mm, and 1–2mm) different
from those determined by traditional methods (0–0.5 mm, 0.5–1 mm, and 1–2 mm). New sub-classes provided a better resolution of
the corresponding branching-orders, and the values of annual production and turnover rate were more coherent with diameter class
and soil depth. Moreover, new sub-classes provided a more precise match with soil temperature than traditional methods.
& Conclusion Our method may help to unveil fine root dynamics and development, reduce data analysis time, and make the
diameter-based classification more precise and trustworthy even in the case of non-intact samples.

Keywords Branching order . Fine root production . Fine root turnover rate . Soil temperature . Root diameter . PCA

1 Introduction

Fine roots are commonly defined as a single pool of ephem-
eral roots having a diameter below 2 mm (Cannon 1949;
Böhm 1979; Zobel and Waisel 2010; Rewald et al. 2014;
McCormack et al. 2015; Laliberté 2017). Although fine roots
represent a small part of the total tree root biomass, they sig-
nificantly influence the biogeochemical processes in terrestrial
ecosystems, particularly playing an important role in soil car-
bon cycling rates (Nadelhoffer and Raich 1992; Hendrick and
Pregitzer 1993; Jackson et al. 1997; Röderstein et al. 2005).
Indeed, fine roots rarely represent more than 5% of total tree
biomass, but their annual production amounts to 33–67% of
the total annual net primary production in most ecosystems
(Joslin and Henderson 1982; McClaugherty et al. 1982;
Jackson et al. 1997; Matamala et al. 2003; McCormack et al.
2015). Moreover, fine roots are the most sensitive and dynam-
ic component within the overall root system. They respond
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rapidly to variations in the rooting environment (Hendrick and
Pregitzer 1992; Barlow 2010; Montagnoli et al. 2012a, b,
2014) and are a good indicator of forest adaptation to climate
change (Eissenstat et al. 2000, 2013; Brunner et al. 2015;
Montagnoli et al. 2016). In addition, fine roots are essential
for high rates of seedling survival and robust growth after
planting (Montagnoli et al. 2018).

In an effort to improve the understanding of fine root
development and dynamics, many authors have classified
fine roots by sub-classes rather than the 2-mm macro-cat-
egory customarily used. Root orders along the branching
hierarchy of roots < 2 mm in diameter encompass a diver-
sity of forms and functions (Long et al. 2013; Iversen et al.
2017). In various studies with different species, fine root
traits such as respiration (Di Iorio et al. 2015), production,
lifespan, and decomposition rate (Gill and Jackson 2000;
Guo et al. 2008, McCormack et al. 2012; Sun et al. 2013;
Van Do et al. 2016), carbon, starch, and nitrogen concen-
tration (Terzaghi et al. 2013, 2016), and relationship with
soil temperature and water content (Montagnoli et al.
2012a, 2014) vary seasonally. Moreover, this seasonal fine
root growth is of different magnitude and type (i.e., longi-
tudinal and radial) depending on the diameter class con-
sidered. Yet, in turn, seasonal changes in water availability
(Amendola et al. 2017) and nutrient concentration (Zobel
et al. 2007) change the mean diameter size of the fine root
population. These studies support the assertion of
Pregitzer (2002) that the traditional view of treating all
fine roots of trees as a homogeneous population is deeply
flawed. The portion of the fine root pool on which mea-
surements are made ranges from individual root tips to
small root branches to all roots below a fixed diameter
threshold (Comas et al. 2002; Pregitzer et al. 2002; Guo
et al. 2008; Holdaway et al. 2011). Furthermore, branching
order and root diameter are important components of root-
system architecture. However, the relationship between the
branching order and the root diameter remains uncertain,
with contradictory results even within the same plant spe-
cies (Wu et al. 2016). Thus, determining to what extent
these differences are due to plant species diversity or en-
vironmental influence is difficult to discern (Wu et al.
2016). Hence, the variable manner in which fine roots
are classified and the rigid frame composed by diameter
thresholds in which roots are traditionally segregated may
lead to a misestimation of fine root dynamics and devel-
opment. The lack of a suitable method to avoid this mis-
estimation has hindered a more accurate modelling of root
development as well as of root processes in terrestrial bio-
sphere (Jackson et al. 2000; McCormack et al. 2015;
Smithwick et al. 2014; Warren et al. 2015; Wu et al. 2016).

The shortcomings of the current diameter-based approach
are widely recognized. Within the root science community is
an increasing desire to develop, and widely adopt, an

approach able to provide precise measurements regardless of
biological variability. Several investigators have examined
alternatives; for example, Rewald et al. (2014) demonstrated
that the use of an extended root ordering (i.e., order and color)
might explain the variance of respiration twice as well as root
diameter or root-order classes alone. In a recent review,
McCormack et al. (2015) aimed to redefine fine root classifi-
cation based on order and function; indeed, recent work has
found that root orders can be grouped into modules with sim-
ilar function (Xia et al. 2010). In a desert system, assessing life
span and structure of ephemeral root modules of different
functional groups can simplify modelling fine root traits (Liu
et al. 2016).

However, methodologies able to classify roots while in-
cluding their high intrinsic variability are time-consuming
and/or not operationally feasible (McCormack et al. 2015).
In this study, we first hypothesized that developing a new
methodology, including a high-resolution image analysis and
a robust statistical methods, would segregate the fine root
population into new diameter sub-classes different from the
classical ones. Second, we hypothesized that the new classifi-
cation would better correspond to the actual diameter distri-
bution and thus should provide a better fit with fine root traits.
To test our hypotheses, we first subjected fine root samples to
a high-definition image analysis. Resulting morphological da-
ta were then subject to principal component analysis (PCA)
and cluster analysis (CA) to segregate new diameter sub-clas-
ses. Finally, fine root topology, annual production, and turn-
over rate, as well as relationship with soil depth and tempera-
ture were measured using traditional diameter sub-classes and
our new method. For the topological analysis, grouping of
diameter sub-classes within branching order was used as
criteria to asses which segregation method provided a better
fit. In the case of fine root traits and environmental relation-
ship, significance of the regression analysis was tested.

2 Materials and methods

2.1 Site descriptions and characteristics

We selected three differently managed beech (Fagus sylvatica
L.) forest stands. The first stand was a 40-year-old coppice.
Thinning treatments were applied to the second stand in 1994
and the third stand in 2004 to convert them from coppice to
high forest. These stands were located in the Telo stream wa-
tershed in the Lombardy Alps (Intelvi Valley, northwestern
Italy, 45 °59′ 36″ N, 9° 07′ 40″ E), approximately 1160 to
1200 m above sea level between Lakes Como and Lugano.
This area is characterized by a sub-continental climate, with a
mean annual precipitation of 1600mmmainly concentrated in
two main periods (April–May and October–November), and a
mean annual temperature of 10–11 °C. More detailed
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information about the characteristics of these stands was pro-
vided in Montagnoli et al. (2012b).

2.2 Fine root sampling and digitalization

Fine roots (diameter < 2 mm) were collected by the soil core
sampling method (Vogt and Persson 1991) during two grow-
ing seasons. From April to October 2007, a number of three
30-cm-deep cores (8 cm diameter) were sampled about every
40 days on 7 sampling dates in three stands (63 total) using a
manual auger (Eijkelkamp Agrisearch Equipment: Plant Root
Sampling model P1.30). Afterward, from May 2008 to
October 2008 and in April 2009, a number of eight 30-cm-
deep cores (4 cm diameter) were collected about every 30 days
on eight sampling dates in three stands (192 total) using a
motor-driven portable core sampler. These latter 30-cm cores
were divided into three 10-cm samples by depth for a total of
576 fine root samples (Montagnoli et al. 2012b). The three soil
cores per each stand in the case of 2007, and the two soil cores
per plot in the case of 2008–2009, were considered as repli-
cates, pooled, and treated as one. The samples were cleaned
from soil residues by soaking in water prior to the root extrac-
tion procedure using a sieve with a 300-μm mesh. We exam-
ined roots at the stereomicroscope (Nikon SMZ 800) and only
beech fine roots were considered for analysis. Living
(biomass) and dead roots (necromass) were distinguished un-
der the stereomicroscope by inspecting color, texture, and
shape (Vogt and Persson1991). All root samples were scanned
at the resolution of 400 dpi with a calibrated flatbed scanner
coupled to a lighting system for image acquisition (Epson
Expression 10,000 XL). Images were analyzed by WinRhizo
Pro V. 2007d (Regent Instruments Inc. Quebec) in order to
separate with higher accuracy fine (d < 2 mm) and coarse
(d > 2 mm) roots. The morphological analysis was carried
for the fine root fraction only, while coarse roots were not
considered for this study.

2.3 Soil temperature

Measurements of soil temperature (ST; °C) were taken by
Checktemp 1 thermometer with an NTC thermistor sensor
(Hanna Instruments; ± 0.3 °C). For each stand, soil tempera-
ture was measured at each sampling date and proximal to the
sampling point, at three soil depths (5, 15, and 25 cm).

2.4 A new method for image processing and data
analysis

To test our hypotheses, we employed a new, integrated, three-
step method to process a posteriori fine root images obtained
through a sequential soil core technique. The first step was a
micrometric image analysis of fine root samples obtained
from one or more growing seasons. The second step was data

arrangement and processing. The final step was data model-
ling through principal component analysis (PCA) and cluster
analysis (CA) to define species-specific diameter class
thresholds.

2.5 Micrometric image analysis

To identify the smallest root diameter, an image of fine root
samples was processed by WinRhizo (Pro V. 2007d soft-
ware, Regent Instruments Inc., Quebec, Canada). Then, for
the micrometric image analysis (μIA), we used a threshold
diameter approximately 25% that of the smallest root di-
ameter observed. For our samples, we selected a 50-μm-
diameter unit because our smallest observed root diameter
was 0.19 mm. In the WinRhizo analysis, missing values of
some diameter classes occur when the pixel size is greater
than that of the selected diameter threshold. Therefore, to
avoid mismeasurements and obtain a pixel size smaller
than the selected 50-μm-diameter unit, fine root images were
resized to higher resolution (from 400 dpi to 800 dpi) and
pixel size reduced from 63.50 μm to 31.75 μm. This resulted
in a continuous diameter size distribution of the fine root sam-
ples (i.e., no dimensional gaps). After the WinRhizo analysis
was performed, each fine root segment (Fig. 1a), naturally
characterized by differences in thickening along the root axis,
was divided by the progressive increase of micrometer-
diameter unit each highlighted by different colors (Fig. 1b).
Moreover, we associated quantitative information of root
length with each diameter unit (Fig. 1c).

2.6 Data arrangement and processing

Fine root length data were arranged in tabular form with
samples (objects) in rows and variables in columns for
calculation (Fig. 2a). Because samples were collected in
replicates as previously described, an average for each
sample (for each root diameter) was calculated. We consid-
ered 50-μm fine root diameter intervals as variables. We
quantified the abundance of fine roots as the total fine root
length measured for each diameter interval. The fine root
length for each diameter interval was expressed as a per-
centage of the total fine root length found for each average
sample (Fig. 2b). Data (average and percentage transfor-
mation) were then arranged into two tables. The first data
matrix contained 30-cm-deep samples collected in 2007
from the three forest stands, which yielded a table having
dimensions of 21 samples × 39 variables. The second data
matrix contained samples collected in 2008 from the three
forest stands at three different soil depths, which showed
dimensions of 63 samples × 39 variables. Then, in order to
compare results obtained from different sampling year, soil
depth, and forest stands, autoscaling was performed ac-
cording to the sampling sites. In particular, autoscaling is
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a column transformation that provides all variables the
same opportunity to influence the estimation of PCA com-
ponents as described in Eq. (1):

xautoscaleij ¼ xoriginalij −x j
S j

ð1Þ

where xoriginalij is the original measurement, x j is the average

of the column for each forest stand, and S j is the standard
deviation of the column for each forest stand (Fig. 2c).
Finally, PCA and CA were employed.

2.7 Data modelling: PCA and CA

PCA, a bilinear model that extracts information from multi-
variate data transforming the original variables into new

Fig. 1 Scanned image of Fagus sylvatica fine root segments, obtained by
sequential coring technique (a). The scanned image analyzed by
WinRhizo software with progressive increments of 50-μm-diameter
units highlighted by different colors (b). Color histogram representing
the data of fine root length (mm) for each 50-μm-diameter unit (c)
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variables called principal components (PCs), could be de-
fined as a qualitative data visualization method. PCs are a
linear combination of the original variables and carry inde-
pendent information as they are orthogonal. To each com-
ponent, a value of explained variance is associated. These
values are complementary and in decreasing order where
the first component has the higher value and the last com-
ponent accounts for model noise. PCA calculation returns
matrices of scores (object coordinates in the space de-
scribed by the PCs) and loadings (directions of the original
variables with respect to the PCs expressed as the cosine of
the angles), which are represented in bi-dimensional graphs
called score plots and loading plots. In the score plot, sam-
ples are depicted, and thus, groups, tendencies, and outliers
can be visualized. The loading plot shows correlations be-
tween variables. In this study, we employed a PCA strategy
both as an exploratory analysis and as a data reduction
method. Score and loading plots were created and
interpreted and loading plots were used as input for the
CA calculation (Fig. 2d).

CA is defined as an unsupervised classification method-
ology. It allows finding groups between objects on the
basis of their similarities with respect to specified charac-
teristics. In order to confirm the presence of groups among
the 50-μm diameter units obtained from PCA, loading
values of the PCs yielding a higher significance were used
as the algorithm input for the calculation. Thus, a new data
matrix was arranged with 50-μm-diameter unit intervals as
samples and loadings extracted from PCA as variables. We
then used the method of Ward (1963), an agglomerative
hierarchical clustering algorithm that uses an analysis of
variance approach to evaluate the distances between clus-
ters to calculate the distance between samples. Ward’s
method attempts to minimize the sum of squares of any
two clusters that could be formed at each step of the anal-
ysis. A dendrogram based on the distance between samples
was generated (Fig. 2d).

2.8 Fine root traits according to sub-classes

Fine root length and volume of two different diameter clas-
sifications, classical diameter sub-classes (0–0.5, 0.5–1.0,
1.0–2.0 mm; hereafter simply “classical sub-class”) and

newly defined sub-classes (hereafter simply “new sub-
class”) according to the new method described above, were
calculated by summing values of the 50-μm diameter units
falling within each diameter sub-class (Fig. 2e). Fine root
traits such as length (mm) and biomass (g) were calculated
according to the new sub-classes (Fig. 2f). Fine root bio-
mass values for the whole 0–2.0 mm diameter interval
were considered as the actual dry weight. To calculate bio-
mass values for each diameter sub-class, fine root volume
(cm3) was multiplied by different root density according to
diameter classes considered. In particular, for the thinner
fine root class (0–0.5 and 0–0.3 mm), root density was
0.35 g cm−3 calculated as the mean value of the range
(0.25–0.45 g cm−3) published by Beyer et al. (2013). The
root density for the intermediate and the thicker fine root
classes (0.5–1 mm and 0.3–1 mm; 1–2 mm) corresponded
respectively to the lowest and the mean values of the range
(0.49–0.78 g cm−3) published by Hertel et al. (2013).
Specific root length (SRL; m g−1) was calculated as the
length-to-mass ratio (L/M) of a root fragment (Ostonen et
al. 2007). At this point, in order to test if the new sub-
classes would better fit with root topology in comparison
with the classical ones, classical and new sub-classes were
applied to a scanned image of a 2-year-old beech seedling
root system. Moreover, different fine root sub-classes were
mathematically related to soil temperature to see the rela-
tionship with an environmental factor. Finally, convention-
al variables such as annual production and turnover rate
were aligned with the classical and new root classifica-
tions. In particular, fine root production was estimated
using the minimum–maximum method procedure. This
method calculates, and sums in case of multimodal season-
al pattern, only significant differences between seasonal
minimum and maximum fine root dry mass (live mass plus
necromass) (Edwards and Harris 1977; McClaugherty et
al. 1982; Hertel and Leuschner 2002; Montagnoli et al.
2014). Moreover, fine root turnover rates (year−1) of live
root biomass were calculated as annual root production
(g m−2 year−1) divided by mean standing biomass (g m−2)
(Gill and Jackson 2000; Godbold et al. 2003; Montagnoli
et al. 2014).

2.9 Statistical analysis

PCA and CA were performed using the software The
Unscrambler X (version 10.4.1—CAMO). We assessed the
effect of air temperature on fine root biomass using a linear
regression function with SPSS 17.0 (SPSS Inc., Chicago IL,
USA).

Data availability The datasets analyzed during the current
study are available in the FRED (fine root ecology database)
repository (https://roots.ornl.gov/).

�Fig. 2 Theoretical framework of the model. Fine root length data were
arranged in tabular form with samples (objects) in rows and variables in
columns (a). Fine root length for each diameter interval was expressed as
a percentage of the total fine root length found for each average sample
(b). Autoscaling was performed according to the different sites (c). PCA
employment resulted in graphed score and loading plots used as input for
the CA calculation with the generation of a dendrogram (d). New
diameter sub-classes are obtained by summing values of the diameter
units falling within each diameter sub-class (e). Fine root length and
mass may be calculated according to the new sub-classes (f)
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3 Results

3.1 New fine root sub-classes defined by PCA and CA

The first two principal components (PC1 and PC2) accounting
for 62% of the data variance (PC1 49%, PC2 13%) were
assumed as the most principal components being related to
the sought information and therefore considered for data in-
terpretation. The sum of all remaining (13) PCs accounted for
the 38% of the data variance. These remaining PCs were not
considered for the data interpretation because they did not
correspond to the data structure and, thus, did not include
further relevant information to the data analysis.

The first PCA model was built on the raw data (data not
autoscaled according to the sampling site). The score plot
obtained by the first two PCs showed an influence of external
factors such as sampling year (2007, 2008; Fig. 3a), soil depth
(cm; 0–10, 10–20, 20–30, 0–30; Fig. 3b), and forest stand
characteristics (CpS, CvS 04, CvS 94; Fig. 3c). After
autoscaling transformation, the score plot depicted according
to the external factors (Fig. 3d–f) showed that samples lie

homogeneously around the model center, highlighting that,
at this level of analysis, the PCs’ construction is no longer
affected by these factors. The loading values for each PC
(Fig. 4a, b) showed a distribution of micrometer-diameter
units into groups. The first PC (Fig. 4a) segregated the finest
root diameters, which showed positive values on this axis,
from the larger ones that lie in the negative part of the axis.
The second PC (Fig. 4b) showed a further segregation within
the larger root diameters. The segregation of fine root diameter
sub-classes emerged qualitatively from the loading plot.When
CA calculation was applied, the emergence of three main
clusters defined the corresponding new sub-classes: 0–0.3,
0.3–1.0, and 1.0–2.0 mm (Fig. 4c).

3.2 Fine root branching order

Figure 5a shows a portion of an intact, 2-year-old beech seed-
ling root system characterized by five topological orders (ac-
cording to the centripetal-segmented ordering system, by
Berntson 1997 and references therein). When the classical
(Fig. 5b) and the new (Fig. 5c) sub-class classifications were

Fig. 3 Score values before (a–c) and after (d–f) autoscaling
transformation representing fine root length obtained by PC1 and PC2
and depicted according to a, d sampling year (2007, 2008), b, e soil depth

(0–10, 10–20, 20–30, 0–30 cm), and c, f forest stand (40-year-old
coppice–CpS; Conversion to high forest 2004–CvS 04; Conversion to
high forest 1994–CvS 94)
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applied to scanned images of the fine root system, differences
in diameter sub-class were observed for each root order. In
particular, in the case of classical classification, third- and
fourth-order roots repeatedly occurred within the 0–0.5 and
0.5–1.0 mm sub-classes, respectively (Fig. 5b). In contrast,
using the new classification approach, first- and second-
order roots were 0–0.3 mm, third- and fourth-order roots were
0.3–1.0 mm, and fifth-order roots were 1.0–2 mm (Fig. 5c).

3.3 Fine root relationship with soil temperature

Correlation between mean live fine root length of each sub-
class and soil temperature showed a significant relationship (p
< 0.05) only for the smallest sub-class for both the classical
(0–0.5 mm) and new (0–0.3 mm) classifications (Table 1). For
the upper soil layers (0–10), relationship significance was
stronger for the new sub-classes (p = 0.021) than with the

Fig. 4 The loading values for PC-1 (a) and PC-2 (b) showing a distribution of micrometer-diameter units into groups. Dendrogram showing the
clustering of the new sub-classes: 0–0.3, 0.3–1.0, and 1.0–2.0 mm (c)
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classical (p = 0.035). Moreover, in the case of the deepest soil
layers (10–20 and 20–30 cm), the relationship was significant
only in the case of the new sub-class (Table 1).

3.4 Fine root traits

Mean live fine root biomass, length, and annual produc-
tion for all the soil depths investigated showed that the 0–
0.3 mm new sub-class had values nearly two- to threefold

lower than values measured for the corresponding 0–
0.5 mm classical sub-class (Table 2). In contrast, when
considering the second sub-class (new, 0.3–1.0 mm; clas-
sical, 0.5–1.0 mm), values were higher for the new sub-
class (Table 2). Values of SRL measured at all three soil
depths for both new sub-classes (0–0.3 mm and 0.3–
1.0 mm) were twofold higher than values measured for
the corresponding classical sub-classes (0–0.5 mm and
0.5–1) (Table 2). Because the third sub-class was the same

Fig. 5 Scanned image of a
portion of an intact, 2-year-old
beech seedling root system
characterized by five topological
orders numbered according to the
centripetal-segmented ordering
system (a). Classical (b) and new
(c) diameter-size sub-class
classifications were applied to the
scanned images of the fine root
system. Different colors indicate
different diameter sub-class
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regardless of classification method, no differences were
detected for any fine root trait considered. In the case of
fine root turnover, both smallest sub-classes (0–0.3; 0–
0.5 mm) showed the highest turnover rate in comparison
with the larger sub-classes. In general, for the first two
sub-classes, fine root turnover was higher for the new
sub-classes than the classical. For all soil depths investi-
gated and when new sub-classes were considered, values
showed an inverse relationship with fine root diameter. In
contrast, fine root turnover for classical sub-classes did
not follow a regular pattern with fine root diameter.

4 Discussion

Although fine root (diameter < 2 mm) dynamics has a central
role in the global carbon budget (Norby and Jackson, 2000;
Hendricks et al. 2006; Brunner et al. 2013; Laliberté 2017),
fine root traits such as mass, length, lifespan, and annual pro-
duction, as well as the relationship with environmental drivers
are poorly known compared to aboveground compartments
(Brunner et al. 2013; Lehtonen et al. 2015). In addition, root
system architecture as the result of developmental process is
scarcely understood because key traits such as branching/root

Table 1 Comparison of
regression line coefficients of the
relationship between fine root
length and soil temperatures
according to different diameter
sub-classes (classical and new).
Data refer to three soil depths
between April and November
2008

Soil depth (cm) Classical sub-class

(mm)

R2 P New sub-class

(mm)

R2 P

0–10 0.0–0.5 .230 .035 0.0–0.3 .260 .021

0.5–1.0 .030 .826 0.3–1.0 .520 .331

1.0–2.0 .030 .489 1.0–2.0 .030 .489

10–20 0.0–0.5 .120 .329 0.0–0.3 .250 .020

0.5–1.0 .120 .329 0.3–1.0 .130 .114

1.0–2.0 .005 .348 1.0–2.0 .005 .348

20–30 0.0–0.5 .150 .080 0.0–0.3 .220 .031

0.5–1.0 .190 .145 0.3–1.0 .012 .314

1.0–2.0 .110 .345 1.0–2.0 .110 .345

Italicized values highlight significant correlations (P < 0.05)

Table 2 Mean live fine root biomass (FRB), mean live fine root length (FRL), annual fine root production (FRP), fine root turnover rate (FRT), and
specific root length (SRL) calculated for classical and new sub-classes at different soil depth (0–10, 10–20, and 20–30 cm)

Sub-class 0–1.0 mm Sub-class 1.0–2.0 mm 0–2.0 mm

Soil depth (cm) Classical segregation method New segregation method Common to classical and new
segregation methods

Total

0–0.5 0.5–1.0 0–0.3 0.3–1.0

0–10 FRB (g m−2) 16.2 ± 1.3 30.0 ± 2.8 5.8 ± 0.5 52.3 ± 2.2 55.3 ± 4.5 98.5 ± 5.3

FRL (m m−2) 856 ± 82 170 ± 11 590 ± 63 437 ± 32 65 ± 6 1092 ± 58

FRP (g m−2) 14.8 14.7 6.7 30.6 27.9 84.0

FRT (year−1) 0.91 0.49 1.16 0.59 0.50 0.67

SRL (m g−1) 53.0 ± 1.0 5.0 ± 0.1 101.2 ± 1.0 8.8 ± 0.1 1.10 ± 0.02 13.7 ± 0.6

10–20 FRB (g m−2) 6.1 ± 0.5 13.6 ± 1.3 2.1 ± 0.3 22.5 ± 2.4 28.8 ± 3.2 39.7 ± 2.7

FRL (m m−2) 317 ± 29 77 ± 8 213 ± 21 181 ± 17 33 ± 5 427 ± 25

FRP (g m−2) 7.9 11.7 2.8 22.3 27.7 60.8

FRT (year−1) 1.31 0.86 1.32 0.99 0.96 0.87

SRL (m g−1) 52.6 ± 1.0 5.2 ± 0.1 101.8 ± 1.1 9.0 ± 0.2 1.11 ± 0.03 15.5 ± 0.9

20–30 FRB (g m−2) 5.2 ± 0.5 9.0 ± 1.0 2.0 ± 0.3 16.0 ± 2.0 16.7 ± 2.4 26.5 ± 2.3

FRL (m m−2) 283 ± 29 49 ± 6 201 ± 21 131 ± 15 18 ± 3 350 ± 25

FRP (g m−2) 5.6 9.3 2.6 15.8 12.4 31.1

FRT (year−1) 1.07 1.03 1.33 0.99 0.74 0.76

SRL (g m−1) 58.6 ± 1.6 5.6 ± 0.1 105.5 ± 1.3 10.1 ± 0.3 1.18 ± 0.03 21.0 ± 1.1

FRB and FRL values are the mean of 96 samples ± SE
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diameter remain uncertain (Wu et al. 2016). Therefore, defin-
ing fine roots with arbitrary diameter thresholds has not helped
clarify fine root dynamics and development (Iversen 2014;
McCormack et al. 2015) because the fine root pool has to be
approached as a heterogeneous group (McCormack et al.
2015; Iversen et al. 2017). Moreover, although not considered
in the present analysis, the assumption of a constant diameter
along the root axes may lead to a significant misestimation of
root traits (Rose 2017). The lack of a powerful method for a
precise identification of order- and diameter-based thresholds
of these different pools is a central, vexing problem; resolution
of these uncertainties would significantly aid the identification
of fine root form, and its impact on dynamics and develop-
ment (McClaugherty et al. 1982; Montagnoli et al. 2014; Wu
et al. 2016).

Here, we presented an integrated modification of the tradi-
tional method for the species-specific, high-resolution identi-
fication of fine root sub-classes. When the high-resolution
method was applied, we found that the fine root population
of beech segregates differently, for two out of three diameter
sub-classes, from those obtained by the classical
method―this supports our first hypothesis. Furthermore, our
model showed that fine root length was influenced by external
factors such as sampling season, soil depth, and stand charac-
teristics as demonstrated in previous works (Montagnoli et al.
2012; 2014). However, after data transformation, the model
was able to show the inherent dimensional information inde-
pendently from the external factors. This finding, deriving
from our data treatment, concurs with the conceptual model
proposed by Pierret et al. (2016) where root growth has a
genetically pre-set developmental scheme, which is then mod-
ulated from local biophysical conditions. In addition, Kong et
al. (2014) found that, different from root architecture,
diameter-related root traits were highly conserved phylogenet-
ically. This was also supported recently by Liese et al. (2017)
who found a significant phylogenetic signal for root diameter
trait as results of the analysis of 14 traits of 13 temperate tree
species of Central Europe. Therefore, many species have the
capacity to substantially alter architectural traits, senior to root
topology and distribution (Lynch 1995; Iversen et al. 2014;
Kong et al. 2014; Liese et al. 2017), as these largely change
with the availability of soil resources (Weemstra et al. 2016).
Morphological traits of fine roots may also respond to soil
resource availability with thicker fine roots (i.e., radial
growth) that live longer and conserve valuable resources
(Weemstra et al. 2016), or increasing length values of very
fine roots (i.e., longitudinal growth and/or production of new
thinner fine roots) in relation to water shortage and high tem-
perature (Montagnoli et al. 2012a, 2014). This may imply the
variation in the branching pattern (Liese et al. 2017) and the
root tip density (Iversen et al. 2014), as well as root distribu-
tion (Lynch 1995). Not less important, other factors such as
ectomycorrhizal community structure and soil characteristics

(i.e., organic matter, nitrogen content, bulk density), although
not considered in this work, have a strong direct influence on
fine root branching order and morphology (Ostonen et al.
2009; Freschet et al. 2017; Razaq et al. 2017).

In our model, the changing of thresholds that character-
ize the first two sub-classes resulted in a better fit with all
measured fine root traits, supporting our second hypothe-
sis. This is reasonable because the thicker part (i.e., 0.3–
0.5 mm) of the fine root belonging to the first classical sub-
class (0–0.5 mm) was included in the second new sub-class
(0.3–1.0 mm). The topological analysis revealed, when
new sub-classes generated by our method were applied, a
more precise grouping in branching order with the smallest
diameter sub-classes (0–0.3 and 0.3–1.0 mm) in compari-
son to the classical method. Although to be defined as site-
specific, this result concurs with what was experimentally
found by Beyer et al. (2013), where roots of beech saplings
of the first- and second-order occurred with diameters less
than 0.3 mm. In addition, the mean value of SRL found in
Beyer et al. (2013) for the first- and second-root order is
quite consistent with our SRL values when the smaller new
diameter sub-class was considered (0–0.3 mm). As already
mentioned above, this improved resolution of relationship
between branching order and fine root diameter afforded
by our model can help improve understanding of fine root
development and architecture (Wu et al. 2016). Moreover,
the development of more automated image-based proce-
dures provides the advantage of reducing the time-
consuming nature of data collection. Indeed, although ap-
plied to samples of Fagus sylvatica only, our integrated
method showed that such measurements could be easily
applied to each experimental species, for a large number
of non-intact samples (i.e., soil core technique).

When fine root biomass, length, and productivity were
analyzed in relation to sub-classes, we found lower values
in the first-order subclass and higher values in the second-
order subclass derived by our method compared with the
classical approach, providing important insight on the turn-
over rate of the corresponding branching-orders. In partic-
ular, fine root turnover rate was higher (i.e., faster) if new
sub-classes were applied. The statistical significance of the
regression analysis between fine root length and soil tem-
perature was observed only for the smallest fine root sub-
class using either the classical or the new classification.
However, when the diameter thresholds outputting of our
model were used, a higher significance of regression than
the classical one was yielded. These findings are supported
by previous work on beech (Montagnoli et al. 2014) that
demonstrate how the growth of the very fine root fraction,
mainly longitudinal type, is driven by soil temperature.
Moreover, our findings are also consistent with Bjork et
al. (2007) and Makita et al. (2011) who reported a morpho-
logical plasticity of roots especially in the finest fine root
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fraction, which belongs to the first- and second branching-
order, being the most sensitive to environmental factors
(Montagnoli et al. 2012a, b; McCormack et al. 2015;
Ostonen et al. 2017). Another interesting aspect that
emerged is that at deeper soil layers, where relationships
between fine roots and environmental cues are usually
lower (Hendrick and Pregitzer 1996), our model yielded
significant effects that the classical approach failed to de-
tect. Thus, these findings make the assumed causal rela-
tionship between soil temperature and fine root elongation
highly plausible and highlights that the application of our
integrated method has the potential to unveil ecological
mechanisms occurring in fine roots dynamics. We believe
that one reason for the effectiveness of our model is that
our data used for model construction only contains two
main sources of variance. The quantitative source of vari-
ance is linked to the variability of the amount of roots
found in each sample. The qualitative source of variance,
because our dataset relied on the intra-annual dynamics of
root architecture and branching order, is linked to the
change of proportion between fine root sub-class pools
due to seasonality (Konopka et al. 2005; Harteveld et al.
2007; Brassard et al. 2009; Montagnoli et al. 2012a,b,
2014; Maeght et al. 2015). In this study, data transforma-
tion removed the quantitative variance while maintaining
the qualitative variance to allow defining species-specific
new fine root sub-classes. Therefore, we stress that for a
model, it is fundamental to analyze data obtained from
seasonal sampling and a specific plant species.

5 Conclusion

Our species-specific integrated technique provided a better
resolution than the classical approach to segregate fine root
population of Fagus sylvatica into diameter classes. Thus, we
were able to fit fine root diameters with branching order and
dynamics in relation to environment (i.e., soil temperature and
depth). Our model has the potential to reduce the time-
consuming nature of data analysis, to unveil ecological mech-
anisms of fine root dynamics, and to make the diameter clas-
sification more precise and trustworthy.
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