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Abstract
& Key message Nitrogen addition through drip fertigation to a poplar plantation (Populus × euramericana BGuariento^)
promoted fine root growth only in the early period. The relationship between root growth and soil N content was positive
in the first 2 years, but became negative in the third year when the soil N availability had substantially increased.
& Context Nitrogen (N) deficiency is common in forest soils, and N addition is sometimes applied in the case of intensive
plantations. There is a need to better document the impact of N addition through the high-efficiency fertilization technique on
fine root morphology and growth, given their importance for the uptake of nutrients and for tree growth.
& Aims We aimed to quantitatively investigate the responses of fine roots in morphology and growth to N addition through
surface drip fertigation over multiple years in a Populus × euramericana BGuariento^ plantation.
& Methods A field experiment that included four drip fertigation treatments with N addition levels (0, 60, 120, and
180 kg N ha−1 year−1) was conducted for three successive years. A coring method was used to sample soils and quantify the
root morphological traits and soil N content along 0–60-cm profiles.
& Results The root biomass density, length, surface area, specific length, and tissue density were significantly higher in the N
addition treatments than those in the control after the first year, but the positive effect decreased in the second year. In the third
year, root biomass in the N addition treatments was even lower by 11–39% than that in the control. The relationship between root
growth and soil N content was also positive in the first 2 years and negative in the third year.
& Conclusion N addition promoted fine root growth mainly in the shallow soil and in the early period of experiment. The
relationship between root growth and soil N content became negative in the third year when the soil N availability had
substantially increased. It is suggested that fine roots adjust their growth and morphology in response to N availability varying
along the soil profile and with the fertilization duration.

Keywords Nitrogen addition . Fine root . Root morphology . Vertical distribution . Drip fertigation . Populus × euramericana
BGuariento^

1 Introduction

Root systems can adjust their morphological traits in response
to the local heterogeneity of soil nutrients (Fort et al. 2015;
Kou et al. 2015; Liu et al. 2017; Ostonen et al. 2007). In
particular, fine roots play a crucial role in regulating plant
and ecosystem functions through acquiring nutrients. Recent
studies have shown that fine root morphological traits vary
widely across nutrient patches, water resources, and plant spe-
cies (Eissenstat et al. 2015; Kou et al. 2015; Liu et al. 2015;
Wang et al. 2016). Increasing evidence suggests that trees
optimize their resource uptake by modifying fine root growth
and morphological traits (Mou et al. 2013; Wang et al. 2013;
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Wang et al. 2016). Several morphological and physiological
traits have been used as potential indicators of nutrient absorp-
tion ability of trees (Ostonen et al. 2007). Among those, root
biomass density is the most commonly investigated parameter
in the context of fertilization effects (Ostertag 2001). The root
length density is assumed to be proportional to the resource
acquisition potential (Aerts and Chapin 1999; Eissenstat et al.
2000; Wurzburger and Wright 2015). The specific root length
is used to characterize the economic aspects of root systems
(Fitter et al. 1991). Overall, previous studies emphasized the
responses of fine roots to climate changes or nutrient patches.
Investigations of the responses of fine roots in the field have
been infrequent (Wang et al. 2016). Knowledge of potential
effects of fertilization management on fine root morphological
characteristics based on long-term field experiments is still
insufficient. Understanding their spatial and temporal re-
sponse characteristics could not only contribute to the eluci-
dation of nutrient absorption mechanism but also help effi-
cient management practices in forest plantations.

Forest ecosystems are commonly limited by soil nitrogen
availability (Kou et al. 2015; Lebauer and Treseder 2008;
Wang et al. 2017). Improvement of available N in intensively
managed forests has yielded substantial increase in production
(Clemensson and Persson 1995; Holopainen and
Heinonentanski 1993; Wang and Liu 2014). However, more
studies have found that enriched available N resulted in de-
creases in biomass, length, and the number of fine roots (Li
et al. 2015; Nadelhoffer 2000; Van Diepen et al. 2010; Wang
et al. 2013). Further investigation is thus needed to clarify how
fine roots change their growth and morphological traits in re-
sponse to N addition in forest plantations, especially to the
recent highly increasing anthropogenic N deposition
(Galloway et al. 2008; Kou et al. 2016). Previous studies on
nitrogenmanagement have been performed either on pot-grown
specimens or on field-grown trees with conventional fertiliza-
tion techniques (Coleman 2007; Yan et al. 2018). Long-term
field experiments with high-efficiency fertilization techniques
should be of great significance to our limited understanding of
the effects of nitrogen addition on fine roots within a soil profile.

Poplar plantations are one of the most widely planted com-
mercial forests, and China has the largest area in the world
(Dickmann 2006; Perry et al. 2001; Yan et al. 2018). High-
efficiency fertilization techniques such as fertigation have been
increasingly applied to the cultivation of plantations to meet
their high nutrient requirements around the world (O’Neill
et al. 2014; Rennenberg et al. 2010; Wang et al. 2015).
Although previous studies have shown that fertigation can sig-
nificantly promote the growth and production of polar planta-
tions (Wang et al. 2015; Yan et al. 2018; Yan et al. 2016), the
responses of root systems were not reported. Several studies
investigated fine root characteristics in poplar (Alafas et al.
2008; Dickmann et al. 1996; Douglas et al. 2010; Heilman
et al. 1994; Mulia and Dupraz 2006; Pregitzer et al. 2000),

but those on root morphological traits in response to N addition
through long-term field experiments were relatively few (but
see Coleman 2007; Dickmann et al. 1996). It remains unclear
how fine roots of poplar adjust their morphology in balance
with absorption in response to increased N availability.

The aim of this study was to quantitatively examine the
responses of fine root growth and morphological traits to ni-
trogen addition through surface drip fertigation over multiple
years. The specific objectives were (i) to identify whether the
fine root morphology would be affected by the N addition
through surface drip fertigation, (ii) to explore whether the
fine root growth and biomass would be promoted by N addi-
tion and positively related to N dosage, and (iii) to determine
whether such an effect is constant across years.

2 Materials and methods

2.1 Site description and plant material

The experiment was conducted at a research field in Shunyi
District, a northern suburb of Beijing, China (40° 05′ 48.7″ N,
116° 49′ 35.6″ W, 28 m above sea level). The site is charac-
terized by a warm temperate continental climate with an an-
nual mean temperature of 11.5 °C, precipitation of 625 mm,
and a frost-free period of approximately 195 days. The soil is a
sandy loam, and the total nitrogen, available N, available
phosphorus, and potassium contents at the beginning of the
experiment were 0.58 g kg−1, 12.79 mg kg−1, 4.89 mg kg−1,
and 195.31 mg kg−1, respectively. Detailed information of soil
physical properties has been presented in Yan et al. (2018).

The plantation was established in the spring of 2011 with 3-
year-old saplings that were cultured from cuttings of a fast-
growing poplar clone (Populus × euramericana BGuariento^).
Saplings were planted in alternating wide (12 m) and narrow
(6 m) rows at an intra-row spacing of 4 m, resulting in an
overall planting density of 300 trees ha−1. Surface drip irriga-
tion pipes were laid along the tree rows, and each pipe roughly
supplied water at a flow rate of 2 L h−1 during operation.

2.2 Experimental design

The field experiment comprised four N application treatments
each with three replicates (0.13 ha each) that were arranged in a
randomized block design. N addition treatments through sur-
face drip fertigation (DF) were applied in the growing seasons
over three successive years (2012–2014). Urea (CH4N2O) in
three doses (totally 60, 120, and 180 kg N ha−1 year−1, denoted
as DFN60, DFN120, and DFN180, respectively) was applied
through six times each year by dissolving it in water. The fourth
treatment was the control, representing the conventional man-
agement in this region. Because the N addition treatments have
water inputs during the surface drip fertigation, an equal amount
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of water was also applied simultaneously to the control by drip
irrigation. Furrow irrigation was applied to both the control and
treatments to promote leaf expansion at the beginning of the
growing season. The actual water amount was determined by
reading the meters after irrigation. Errors might exist among the
four treatments. The total irrigation amounts for the four treat-
ments in 2012, 2013, and 2014 were 354.4–398.1 mm, 389.8–
429.7 mm, and 363.6–386.5 mm, respectively, approximating
56–68% of the mean annual precipitation in the region. The six
N application times were May 5, June 1, June 21, July 8,
August 2, and August 29 in 2012; April 28, May 20, June 13,
June 30, July 26, and August 17 in 2013; and April 21, May 12,
June 7, July 7, August 2, and August 28 in 2014.

2.3 Root sampling and measurements of root
morphological traits

Sampling of fine roots was conducted using a soil coring
method in October of each growing season. Six trees of aver-
age size were selected from each block to locate the root
sampling spots. The soil core was taken at a 1-m distance from
the trunk of the selected sample tree and directly below the
drip irrigation nozzle. Six soil cores (10-cm internal diameter,
10-cm height) were sampled in the 0–60-cm soil layer (i.e., 0–
10, 10–20, 20–30, 30–40, 40–50, and 50–60 cm) at each spot.
A total of 432 soil cores were collected. Each soil sample was
gently wet sieved using fresh water to rinse the soil and other
materials from the roots with two sieves (0.8 and 0.125-mm
mesh) to avoid losing fine roots. Live roots were distinguished
from dead roots by their lighter color and greater resilience (Xi
et al. 2013). All live roots were stored in tightly sealed valve
bags and kept frozen until root morphological measurements
were made.

Root morphology was determined using an Epson Twain
Pro high-quality scanner. Using forceps and dissecting needles,
all the fine root segments were carefully spread out on a trans-
parent plastic sheet without overlap and abutments. Images at
400 dpi were obtained and saved in a tagged image file format.
The length, surface area, volume, and average diameter of roots
were determined using the image analysis softwareWinRHIZO
(Regent Instruments Inc., Quebec, Canada). The roots with a
diameter > 2 mmwere excluded from calculations in this study.
After morphological trait measurements, the roots were dried at
65 °C to a constant weight for the determination of dry mass.

2.4 Soil nitrogen content

Field sampling for soil nutrient analyses was conducted at the
beginning of the experiment (March 2012) and in October at
the end of each growing season at a 1-m distance from the
trees corresponding to those for fine root sampling. Core sam-
ples were taken to a 60-cm depth at 20-cm intervals (i.e., 0–20,
20–40, and 40–60 cm) at each location. N concentrations were
analyzed using the Kjeldahl method.

2.5 Data analysis

The root biomass density (RBD, g m−3 soil), root length den-
sity (RLD, m m−3 soil), and root surface area (RSA, m2 m−3

soil) data were calculated as total dry mass, root length, and
surface area of a sample/soil core volume, respectively. The
specific root length (SRL, m g−1) was calculated from the total
fine root length in each soil core divided by their dry weight.
The root average diameter (RAD, mm) was calculated from
themean of total roots in each soil core. The root tissue density
(RTD, g cm−3 root) was the ratio of the sample root dry mass
to its volume.

Table 1 The p values of repeated-measurement ANOVA for responses
of root biomass density (RBD), root length density (RLD), root surface
area (RSA), specific root length (SRL), root average diameter (RAD), and

root tissue density (RTD) to N dose, soil depths, the year of experiment,
and their interactions

Source of variation df p value and significance level

RBD (g m−3

soil)
RLD (m m−3

soil)
RSA (m2 m−3

soil)
SRL
(m g−1)

RAD (mm) RTD (g cm−3

root)

N dose 3 < 0.001*** < 0.001*** < 0.001*** < 0.001*** 0.200NS < 0.001***

Soil depths 5 < 0.001*** < 0.001*** < 0.001*** < 0.001*** 0.024* 0.013*

Year of experiment 2 < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001***

N dose × soil depths 15 < 0.001*** < 0.001*** < 0.001*** < 0.001*** 0.066NS 0.001**

N dose × year of experiment 6 < 0.001*** < 0.001*** < 0.001*** < 0.001*** 0.053NS < 0.001***

Soil depths × year of experiment 10 < 0.001*** < 0.001*** < 0.001*** < 0.001*** < 0.001*** 0.001**

N dose × soil depths × year of
experiment

30 < 0.001*** < 0.001*** < 0.001*** 0.001** 0.016* 0.001**

Significance of analysis of variance factor: *p < 0.05; **p < 0.01; ***p < 0.001

NS not significant
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Fig. 1 Root biomass density (RBD) under different N addition treatments during 3 years of experiment. Values are expressed as means and standard
errors (SE). Different letters within the same soil layer indicate significant difference among N addition treatments
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Fig. 2 Root length density (RLD) under different N addition treatments during 3 years of experiment. Values are expressed as means and standard errors
(SE). Different letters within the same soil layer indicate significant difference among N addition treatments
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All statistical analyses were conducted using SPSS 22.0 for
Windows (SPSS Inc., Chicago, IL, USA). The three-way re-
peated-measure ANOVAwas used to examine the effects of the
N addition, soil depth, year of experiment, and their interactions
on the RBD, RLD, RSA, SRL, RAD, and RTD. Multiple com-
parison amongN addition treatments within each soil layer was
conducted using the Tukey’s test (significance level was set at
p = 0.05). Prior to the ANOVA, all data was tested to satisfy the
assumptions of normality (p > 0.05) and homogeneity of vari-
ance (p < 0.05). The relationships between RLD, RSA, RBD,
and soil N content were analyzed by the linear regressionmeth-
od for mean values using SigmaPlot 12.5.

3 Results

3.1 Effects of N dosage, soil depth, year
of the experiment, and their interactions on root
morphological traits and biomass

The RBD, RLD, RSA, and SRL varied across N dosage, soil
depth, and year of the experiment (Table 1). The effects of N

dosage, soil depth, year of the experiment, and their interac-
tion on RBD, RLD, SRL, and RSA were all statistically sig-
nificant (p < 0.001 or p < 0.01). The RAD was statistically
different among soil depths (p < 0.05) and among the years
of experiment (p < 0.001), but the effects from N dosage and
the interactions between N dosage and either of the other two
factors were not significant (p > 0.05). The effects on RTD
were significant (p < 0.05) for all the factors, and those affect-
ed by N dosage, year of the experiment, and various interac-
tion effects reached high significance (p < 0.001 or p < 0.01).

3.2 Vertical distribution of fine roots in response to N
addition

Experiments over 3 years showed that the RBD, RLD, RSA,
SRL, and RTD were much higher in the top 30-cm layers in
both the treatments and the control, and they decreased with
the soil depth (Figs. 1, 2, 3, 4, and 5). Taking the RBD as an
example, their distribution percentages in the 0–30-cm soil
layer were as high as 70–74%, 66–67%, and 66–67% in the
three successive years, respectively. The difference in RAD
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Fig. 3 Root surface area (RSA) under different N addition treatments during 3 years of experiment. Values are expressed as means and standard errors
(SE). Different letters within the same soil layer indicate significant difference among N addition treatments
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Fig. 5 Root tissue density (RTD) under different N addition treatments during 3 years of experiment. Values are expressed as means and standard errors
(SE). Different letters within the same soil layer indicate significant difference among N addition treatments
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Fig. 4 Specific root length (SRL) under different N addition treatments during 3 years of experiment. Values are expressed as means and standard errors
(SE). Different letters within the same soil layer indicate significant difference among N addition treatments
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among soil depths was also statistically significant (p < 0.05)
according to the results of ANOVA (Table 1).

3.3 Fine root morphological traits and biomass
in response to N addition

In each of the three experimental years, all the fine root mor-
phological traits and biomass showed differences between the
N addition treatments and control in the upper soil layers,
though they were not always statistically significant between
any two treatments (Figs. 1, 2, 3, 4, and 5). In the first year, the
RBD, RLD, RSA, SRL, and RTD in the N addition treatments
were significantly higher than those of the control, especially
in the surface soil of 0–30 cm in depth (p < 0.05). Compared
with the control, the N addition treatments enhanced the RBD,
RLD, RSA, SRL, and RTD by 23–84%, 169–224%, 21–
184%, 21–36%, and 5–35%, respectively (Figs. 1a, 2a, 3a,
4a, and 5a). However, the positive effect decreased in the
second year, and there was no significant difference between
DFN180 treatments and the control (p > 0.05) (Figs. 1b, 2b, 3b,
4b, and 5b). In the third year, the RBD, RLD, RSA, and RTD
in most of the soil layers under the N addition treatments were
significantly lower than the control (Figs. 1c, 2c, 3c, and 5c).
For example, the RBD was 11–39% lower in the N addition
treatments than those in the control (Fig. 1c). Additionally, the
RAD did not show significant differences among the N

addition treatments and the control throughout the three suc-
cessive years of the experiment (Fig. 6).

The specific relationships between the N content in soil and
root morphological traits were investigated for the 3 years
(Fig. 7). Overall, the figures clearly show that upper soil con-
tains higher N contents and greater values for the fine root
parameters. Among the treatments and the control, the root
morphological traits were linearly correlated with the soil N
contents in each soil layer, with the extent of change (i.e.,
slope of regressions) decreasing in deeper soil. The regres-
sions showed a decreasing trend of the positive correlation
with the treatment year as expressed by the regression slopes.
In particular, the correlations were even negative in the third
year, coinciding with the information from Figs. 1, 2, and 3.

4 Discussions

4.1 Effects of N addition through surface drip
fertigation on root morphology and growth vary
with years of the experiment

Fine root growth was promoted by N addition and positively
related to N dosage in the first year of the experiment.
However, such a positive relationship was not observed from
the second year. The fine root biomass was significantly higher
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Fig. 6 Root average diameter (RAD) under different N addition treatments during 3 years of experiment. Values are expressed as means and standard
errors (SE). Different letters within the same soil layer indicate significant difference among N addition treatments
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in the control than in the N addition treatments in the third year,
showing a negative relationship between the root growth pa-
rameters and N dosage (Figs. 1c and 7). These suggest that the
effects of N addition on fine root growth vary over time. There
have been reports of positive, negative, and no effect of N
addition on fine root biomass. While some studies showed an
increase in fine root biomass following N addition (Liu et al.
2017; Nadelhoffer 2000; Noguchi et al. 2013; Pregitzer et al.
1993; Wang et al. 2016), others showed that N addition and
higher N availability reduced fine root production and turnover
in forests (Burton et al. 2000; Li et al. 2015; Peng et al. 2017;
Tateno et al. 2004; Wang et al. 2012; Wurzburger and Wright
2015). Moreover, some studies even showed that N fertilization
had no effect on fine root biomass or length density (Genenger
et al. 2003; Pregitzer et al. 1995; Tingey et al. 1996). Based on
the 3-year experiment, our results suggest that these

inconsistent responses should be related to different soil N con-
ditions and plant species.

In the first year of our study, a positive effect of N addition
was clearly observed, yielding 25–78% higher RBD than those
in the control (Fig. 1a). This is consistent with the condition of
the relatively young trees whose root systems have not fully
developed and thus could not absorb and utilize water and nu-
trient resources from deep soil. Therefore, fine roots tended to
expand and proliferate in the surface soil where water and nu-
trient conditions were improved by drip fertigation. Young trees
are generally considered to have relatively inadequate root sys-
tems that would be more likely to show a strong positive re-
sponse to the addition ofN (Chen andBrassard 2013; Peng et al.
2017). In addition, trees should be more sensitive to nutrients
under low nutrient conditions; it is thus reasonable that N addi-
tion accelerates root growth in the first year of an experiment.

(a)
R

oo
t l

en
gt

h 
de

ns
ity

(m
 m

-3
 so

il)
R

oo
t s

ur
fa

ce
 a

re
a

(m
2  m

-3
 so

il)
R

oo
t b

io
m

as
s d

en
sit

y
(g

 m
-3

 so
il)

0

10000

20000

30000

40000

(a)1
st

 year  r
2
=0.85

2
nd

 year r
2
=0.94

3
rd

 year r
2
=0.99

1
st

 year  r
2
=0.91

2
nd

 year r
2
=0.75

3
rd

 year  r
2
=0.961

st
 year r

2
= 0.98   

2
nd

 year r
2
=0.97  

3
rd

 year r
2
=0.95  

(b) (c)

(d)

0

5

10

15

20

(a)1
st

 year r
2
=0.98

2
nd

 year r
2
=0.93

3
rd

  year r
2
=0.96

1
st

 year  r
2
=0.98

2
nd

 year r
2
=0.97

3
rd

 year  r
2
=0.921

st
 year  r

2
= 0.94  

2
nd

 year  r
2
=0.96  

3
rd

 year  r
2
=0.98  

(e) (f)

(g)

0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

(a)

Soil  N content (g kg-1)
0.5 0.6 0.7 0.8 0.9 1.0

1
st

 year r
2
=0.92 

2
nd

 year r
2
=0.90

3
rd

  year r
2
=0.95

0.5 0.6 0.7 0.8 0.9 1.0

1
st

 year  r
2
=0.82

2
nd

 year r
2
=0.91

3
rd

 year  r
2
=0.89

1
st

 year  r
2
= 0.91

2
nd

 year  r
2
=0.89

3
rd

 year  r
2
=0.90

(h) (i) 

Soil depth 0-20 cm Soil depth 20-40 cm Soil depth 40-60 cm

Fig. 7 Relationships between root length density (RLD), root surface
area (RSA), root biomass density (RBD), and soil N content in different
soil depth during 3 years of experiment. Lines are fitted linear

relationships; black circle and sold line indicate the first-year relationship;
white circle and dashed line indicate second-year relationship, and gray
triangle and gray line indicate the third-year relationship

13 Page 8 of 12 Annals of Forest Science (2019) 76: 13



In the second year of N addition treatments, only medium
and low levels of N dosage showed increasing effects on the
RBD, whereas the RBD for high N dosage was not significant-
ly different from the control (Fig. 1b). In the third year, fine root
biomass, length, surface area, and tissue density were even
significantly lower in the N addition treatments compared to
the control (Figs. 1c, 2c, 3c, and 5c). Such results can be ex-
plained by the influence of stand age and experimental duration
on the responses of fine roots to N addition (Peng et al. 2017).
After the study site has been fertilized with N for a period, trees
should experience lower levels of N limitation than they did
originally. After 3 years of surface drip fertigation, the N con-
tents in the 0–20 and 20–40-cm soil layers of this experiment
were approximately 6–28% and 8.2–25% higher for the soils
treated with fertigation than for the control (Fig. 8). The Blaw of
the minimum^ theory suggests that a plant should not neces-
sarily increase the proportion of C to roots if it is not N-limited
(Peng et al. 2017). A similar response pattern in which N-
induced changes in root biomass were negatively correlated
with experimental duration was also reported by Bobbink
et al. (2010) and Phoenix et al. (2012). Ostertag (2001) noted
that the long-term effects of N fertilization on the fine root
biomass differ from short-term effects. Previous studies suggest
that RTD tends to increase to adapt to water shortage and
nutrient-poor conditions and high level of soil N fertility would
cause a decrease of RTD (Eissenstat et al. 2000; Ostonen et al.
2011). The changing trend of RTD in this study was similar to
that of RBD and most other parameters, which implies that the
reduction of RTD appears only when the N availability exceeds
a threshold level.

Additionally, with increasing age, trees have more com-
plete and deeper root systems, and they can uptake water
and nutrient resources in the deeper soil layer. This is in ac-
cordance with the trade-off between cost and profit, i.e., plant
roots tend tomaximize benefits while minimizing costs during
resource uptake and utilization (Eissenstat and Yanai 1997).
One important cost is tissue construction for building absorp-
tive surfaces for water and soil nutrients. The poplar trees in
this study might have lower construction costs per unit of fine
root biomass in the first year of the experiment and thus
showed greater root proliferation. Conversely, in the third year
of the experiment, fine root parameters would hardly change
under the N-rich condition following high doses of N addition
or as N addition exceeds a threshold. These results also imply
that the poplar clone changes its root system to adapt to fluc-
tuating soil nitrogen conditions.

4.2 N addition through the drip fertigation
technology affected fine root growth in shallow soil
rather than in deep soil

N addition through surface drip fertigation promoted fine root
growth, especially in the surface 0–30-cm layer. The first rea-
son should be the concentrated distribution of fine roots in the
surface soil layer in most forests, and shallow roots can benefit
from their better soil nutrient and physical conditions. In ad-
dition to the higher concentration of nutrients, the aeration and
texture for root growth are also better in topsoil than in deeper
layers (Chen and Brassard 2013; Jobbagy and Jackson 2001;
Schenk and Jackson 2002). The occurrence of more fine roots
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in the surface soil is reasonable especially under this high N
condition (Bennett et al. 2002; Zewdie et al. 2008). Second, N
addition through surface drip irrigation in our study should
have percolated slowly to approximately 50 cm in depth (Xi
et al. 2013; Yan et al. 2016); fine roots in the topsoil layer
should have priority access to nutrients (Chang et al. 2012;
Vogt et al. 1981). The effect of fertigation management on soil
N content should have gradually moved downward in the soil
as N addition continues.

5 Conclusions

Nitrogen addition through surface drip fertigation affected
fine root growth positively in the early period in a
Populus × euramericana BGuariento^ plantation, and
there was a positive correlation between root growth and
soil N content. The positive effect was greater in shallow
soil than in deep soil, and varied with time. Root growth
under the N addition treatments decreased in the third
year when the soil N availability had substantially in-
creased, and the relationship between root growth and soil
N content became negative. It is suggested that the fine
roots adjust their growth and morphology in response to
N availability varying along the soil profile and with the
fertilization duration.
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