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Abstract
& Key message The accuracy of remote sensing-based models of forest attributes could be improved by controlling the
spatial registration of field and remote sensing data. We have demonstrated the potential of an algorithm matching plot-
level field tree positions with lidar canopy height models and derived local maxima to achieve a precise registration
automatically.
& Context The accuracy of remote sensing-based estimates of forest parameters depends on the quality of the spatial registration
of the training data.
& Aims This study introduces an algorithm called RegisTree to correct field plot positions by matching a spatialized field tree
height map with lidar canopy height models (CHMs).
& Methods RegisTree is based on a point (field positions) to surface (CHM) adjustment approach modified to ensure that at least
one field tree position corresponds to CHM local maxima.
& Results RegisTree has been validated with respect to positioning errors and the performance of lidar-derived estimation of plot
volume. Overall, RegisTree enabled to register field plots surveyed in a range of forest conditions with a precision of 1.5 m (±
1.23 m), but a higher performance for conifer plots, and a limited efficiency in homogeneous stands, having similar heights.
Improved plot positions were found to have a limited impact on volume predictions under the range of tested conditions, with a
gain up to 1.3%.
&Conclusion RegisTree could be used to improve the forest plot position from field surveys collected with low-grade GPS and to
contribute to the development of processing chains of 3D remote sensing-based models of forest parameters.
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1 Introduction

Canopy height models (CHMs) derived from remote sensing
methods, such as airborne laser scanning (ALS) and photo-
grammetric data, are recognized as a reliable and valuable
source of information for forest parameter estimation and as-
sessment (White et al. 2015a; Wulder 1998). They are also
efficiently used in combination with plot-level field inventory
data for both mapping forest parameters (Næsset 2007) and
supporting the development of multisource national forest in-
ventories (Tomppo et al. 2008; McRoberts and Tomppo
2007).

One of the key issues of combining remote sensing-based
CHMs and field data from national forest inventory for
assessing forest parameters relates to the spatial adjustment
of both data sources (Nakajima 2016; Johnson et al. 2014).
While 3D remote sensing data might provide a sub-metric
accuracy in both the vertical and horizontal dimensions
(Favorskaya and Jain 2017; Baltsavias 1999), the accuracy
of field plots positioning is constrained by the interaction of
the Global Navigation Satellite System (GNSS) signal with
the canopy elements, resulting in accuracies of a few meters
(~ 5 m) with low-cost differential GNSS measurements
(Ransom et al. 2010; Valbuena et al. 2010; Danskin et al.
2009; Wing and Eklund 2007). Overall, the positioning accu-
racy was found to vary predominantly with the GNSS device,
the forest type and density, as well as the integration time
(Andersen et al. 2009; Næsset and Jonmeister 2002). To a
certain extent, those errors in field plot positioning affect the
precision of forest inventory based on 3D remote sensing data
(McRoberts et al. 2018; Gobakken and Næsset 2009)
highlighting the need to enhance the spatial positioning of
field inventory data (Johnson et al. 2014).

Different approaches have been proposed to solve this is-
sue. They mainly consisted in matching algorithms aiming to
spatially adjust height information from field inventory with a
remote sensing-based CHM. State-of-the-art approaches rely
on either surface-to-surface, point-to-surface, or point-to-point
matching algorithms. An example of surface-to-surface ap-
proach was introduced by Olofsson et al. (2008). The method
requires a segmentation of the CHM. Both field positions and
CHM segments are converted into Gaussian surfaces using
diameter at breast height (DBH) and height information. The
match relies then on an image cross-correlation approach. In
point-to-surface approaches, the field positions are directly
matched with the CHM surface using correlation or error min-
imization approaches applied to heights or DBH (Monnet and
Mermin 2014; Dorigo et al. 2010). Hauglin et al. (2014) pro-
posed a point-to-point scoring approach matching ground-
derived positions with local maxima (LM) extracted from
the CHM (Hauglin et al. 2014; Dorigo et al. 2010; Olofsson
et al. 2008). Each approach has pros and cons. Surface to
surface depends on the method used to generate the surfaces.

The method proposed by Olofsson et al. (2008) further re-
quires a segmentation of the CHM, which is sensitive to omis-
sion and commission errors, and the point cloud density.
Conversely, point-to-surface approaches do not lead to any
hypothesis that tree position on the CHM could lead to inap-
propriate matches. Finally, point-to-point approaches lead to
strong assumptions on the spatial arrangement of trees.
Korpela et al. (2007) used a network of photogrammetric
measurements of tree tops to establish the absolute position
of large field plots through triangulation and least squared
adjustment, leading to decimeter-level accuracy. Those
point-to-point methods are however sensitive to the quality
of the LM, in terms of position, omission, and commission.
For example, large tree crowns with multiple LM or slanting
trees might lead to wrong match.

We suggest an algorithm that takes advantage of point-to-
surface and point-to-point approaches. We hypothesize that
point-to-surface approaches are more reliable than point-to-
point ones, because LM detection is prone to commission
and omission errors and can further be affected by horizontal
displacements of the LM with respect to the measured field
position at the tree base (Khosravipour et al. 2015; Vega et al.
2014). That being said, one drawback of point-to-surface ap-
proaches is their lack of priors, making it possible to match
objects of different nature. In heterogeneous areas, a common
mistake is matching small trees with the lower crown part of
tall trees in a close neighborhood of the CHM. Our intuition is
that this issue could be solved by taking the LM as spatial
priors into account. Building on this idea, the main objective
of this paper was to introduce a new point-to-surface field plot
registration algorithm constraint by LM and to evaluate its
performance in a range of forest conditions. The purpose of
the performance evaluation was threefold: (1) analyzing the
effect of algorithm parameters and forest structure and com-
position on the registration errors, (2) assessing the perfor-
mance of the algorithm with respect to a state-of-the-art algo-
rithm (Monnet and Mermin 2014), and (3) evaluating the im-
pact of the plot registration accuracy on the performance of
ALS-derived prediction model of forest volume.

2 Material and methods

2.1 Study sites

The study was conducted over four broadleaved dominated
forests (Bure, Saint-Gobain, Compiègne, Darney) and two
conifer-dominated forests (Vosges, Aillon). The data collec-
tion for Bure, Vosges, and Aillon was part of the research
project Foresee (http://foresee.fcba.fr, 2010–2014) (Dataset
1). Over Saint-Gobain, Compiègne, and Darney, the data
was acquired by Office National des Forêts (ONF) for man-
agement purposes (Dataset 2).
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The four broadleaved forests are located on a flat to rolling
terrain, with mean terrain slope varying from 2.9% (± 1.6%)
for Compiègne to 3.2% (± 7.3%) for Bure (Table 1). The for-
est of Bure (48.53° N, 5.37° E) is multilayered and intensively
managed, covering an area of around 50 km2, dominated by
European beech trees (Fagus sylvatica L.), European horn-
beams (Carpinus betulus L.), and sycamore maple trees
(Acer pseudoplatanus L.). The forest of Compiègne (49.40°
N, 2.90° E) covers 143 km2 and consists mainly in regular
stands of European beech and common oak (Quercus robur
L.). Saint-Gobain’s site (49.59° N, 3.37° E) covers 8.5 km2

and is made of regular stands of oaks and European beech
along with coppices of European hornbeams. The site of
Darney (48°08 N, 6.04° E, 150 km2) is also dominated by
oaks, mixed with beeches, hornbeams, silver firs (Abies alba
Mill.), and Norway spruces (Picea abies Karst.). The forest
structure is regular, forming a mosaic of age classes at the
landscape level. The Vosges forest (48.01° N, 7.13° E) ranges
between 200 and 1425 m elevation and extends over a hilly
relief, characterized by a mean slope of 44.4% (± 19.4%). The
site is dominated by silver fir, beech, and Norway spruce, in a
variety of forest structures. Finally, the mountain mixed forest
of Aillon, located in the Combe d’Aillon area in Eastern
France (45.61° N, 6.08° E), covers an area of 25 km2. It is
an old growth heterogeneous and uneven-aged forest, grow-
ing between 1055 and 1432 m elevation, dominated by silver
fir and Norway spruce, mixed with European beech and syc-
amore maple. The mean terrain slope is 44.3% (± 11.6%).

2.2 Field and lidar surveys

A total of 246 plots of 15 m radius (706.9 m2) were
inventoried over the different sites: 165 over the broadleaved
forests of the Bure forest (41 plots surveyed in February
2010), the Compiègne forest (33 plots, surveyed during winter
2014), the Saint-Gobain forest (43 plots, winter 2015), and the
Darney forest (48 plots, winter 2014) and 81 plots were

surveyed over coniferous forests in the Vosges (53 plots, dur-
ing winter 2011) and the Aillon (28 plots, in April–May
2011). All trees with a DBH equal or above 17.5 cm were
mapped using distance and angle measurements from the plot
center. A threshold of 7.5 cm was used for the Bure forest.
Along with tree position, DBH and species were recorded for
each tree. Tree height was measured either for each tree of the
plots (Aillon) or for the six trees having the largest diameters
(dominant trees) (other sites). Over the Bure forest, both
height measurement protocols were applied on distinct plot
subsets. DBHs were deduced from the circumference mea-
sured using a tape and both distances from the plot center
and tree heights were recorded with either a digital hypsome-
ter or a laser range finder (Haglöf, Sweden; Laser Technology,
USA). The plot volume (AGV, m3 ha−1) was derived from
site-specific allometric equations based on tree species,
DBH, and height (Deleuze et al. 2014). Overall, the sites
dominated by conifers show higher stem densities and stocks.
The mean plot density was 351 ± 191 trees per hectare over
the Aillon and reached 465 ± 206 stems per hectare over the
Vosges. For broadleaved forests, it varied from 187 ± 98 stems
per hectare for Saint-Gobain to 243 ± 89 over Darney. The
mean plot volume was maximal over Aillon (727.1 ±
233.3 m3 ha−1) and minimum over Saint-Gobain (278.3 ±
189.9 m3 ha−1) (Table 1).

The lidar data was acquired by different providers. Over the
Bure and the Aillon forests, the data was acquired by Sintegra
(France) using a Riegl LMS-Q560 flown at 550 m above
ground level (AGL) using a scan angle of 29.5° and a 50%
line overlap, leading to an average point density of 12 points
m−2. The Bure was flown over in October 2010, i.e., 8 months
after the field survey. The mountain mixed forest of Aillon
was flown over 3 months after the field survey, during
August 2011. The broadleaved forest of Darney was flown
over by the same provider in March 2014, during the field
measurement period, using a Riegl LMS-Q560i flown at
450 m AGL. The average point density was 21 points per

Table 1 Mean and standard deviation (SD) of the field inventory data for stem density, mean diameter at breast height (DBH), basal area (BA), height
of the dominant trees (H), and aboveground volume (AGV)

Dataset 1 Dataset 2

Bure Aillon Vosges Saint-Gobain Compiègne Darney

Plot number 41 28 53 43 33 48

Terrain slope (%) 3.2 ± 7.3 44.3 ± 11.7 44.47 ± 19.4 3.06 ± 5.2 2.9 ± 1.6 2.7 ± 7.3

Stem density (tree ha−1) 224 ± 174 351 ± 191 465 ± 206 187 ± 98 237 ± 76 243 ± 89

DBH (cm) 30.2 ± 9.3 39.6 ± 9.3 31.0 ± 7.8 32.1 ± 8.1 33.4 ± 9.0 32.5 ± 7.5

BA (m2 ha−1) 22.3 ± 25.6 45.1 ± 12.4 37.6 ± 16.6 18.5 ± 11.6 21.4 ± 8.6 20.9 ± 6.6

H (m) 20.1 ± 5.0 25.1 ± 3.4 23.9 ± 6.1 23.9 ± 5.8 25.3 ± 4.5 27.2 ± 4.0

AGV (m3 ha−1) 365.6 ± 498.3 727.1 ± 233.3 488 ± 254.3 278.3 ± 189.9 325.5 ± 170.2 320.6 ± 129.0

Only trees having a DBH greater or equal to 17.5 cm were considered. Terrain slope was derived from the lidar DTM
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squared meters (pts. m−2). The site of Saint-Gobain was flown
over by ECARTIP in September 2014. Compiègne was flown
over by AERODATA (France) in March 2015. Both flights
involved the same Riegl LMS-Q680i sensor flown at 530 m
AGL during the field inventory periods. The average point
density was 18 and 24 pts. m−2, respectively. Finally, the
Vosges area was surveyed by the Institut National de
l’Information Géographique et Forestière (IGN), in March
and April 2011, 8 to 10 months before the field survey. An
Optech ALTM3100 sensor was used at 1500 m AGL with a
71-kHz scan frequency and a 16° scan angle. The average
point density was 2.6 pts. m−2.

2.3 Data preparation

For the Riegl datasets, the waveform processing was carried
out by the data providers using RiANALYZE ©Software
(Riegl, Austria). For all the datasets, the ground points were
classified by the data provider, using the TIN-iterative algo-
rithm (Axelsson 2000) implemented within TerraScan soft-
ware (Terrasolid, http://www.terrasolid.fi/en/products/
terrascan), and manually controlled. The resulting
triangulated irregular network was then converted into a 1-m
cell grid to obtain the final digital terrain. Mean plot-level
terrain slope was generated from the digital terrain model
(DTM) using R and the Raster package (https://www.R-
project.org/, last consulted January10, 2019), by considering
an 8-pixel neighborhood. The points above the DTM were
processed to generate a CHM using a four-step procedure:
(1) a 1-m resolution digital surface model (DSM) is generated
by rasterizing the point cloud and selecting the maximum
elevation value of the points within each cell, (2) an inverse
distance weighting (IDW) method was used to compute emp-
ty cell values by interpolating the point values selected at the
previous stage, (3) a hole-filling algorithm (Véga and Durrieu
2011) was applied to the resulting DSM to remove outliers,
and (4) a CHMwas finally computed by subtracting the DTM
from the DSM.

In the field, plots were georeferenced using a differential
GNSS device (Trimble GeoXT, Trimble, USA), sometimes in
association with a total station (Bure) (Leica, Switzerland;
Trimble, USA). The position of all plots was refined in the
laboratory by an experienced operator who manually matched
the plot-level field tree map with the lidar data. This was done
by visually matching the field tree map (x, y, and height) with
the ALS point cloud in 3D. The operator only considered plots
with a positioning accuracy below 1 m. Note that for the
Foresee data (Bure, Aillon, Vosges), the task was performed
using the CHM data and mostly consisted in matching field
tree position with the lidar apparent tree crowns. For the three
other sites (Darney, Compiègne, Saint-Gobain), the high point
density and leaf-off conditions allow us to match the field tree
map directly with the tree trunks visible in the point cloud.

While such an approach is expected to provide more accurate
field plot positions, it might lead to larger errors with respect
to automatic matching and Foresee data, as it relies on the
CHM and not on the trunks.

2.4 RegisTree registration algorithm

Let us define N as the number of field-measured trees within a
plot and n as the subset of trees the height of which height has
been collected (n ≤N). The subset n of (x, y, h) triplets defines
the field tree map (FTM) used by the registration algorithm.
The algorithm fits the FTM with a CHM in a defined search
distance (Sd) in x and y directions.

The principles of RegisTree are presented in Fig. 1. The
algorithm fits an FTM with a CHM in a defined search dis-
tance (Sd) in x and y directions, ensuring that at least one of the
field trees is associated with a LM of the CHM. To account for
spatial uncertainties in matching a field position defined at the
DBH position and a remote sensing position defined at the tree
top, an iterative procedure was implemented, constrained by
two additional user-defined parameters: Nref as the number of
reference trees corresponding to a subset of the field trees
(FTM) and Nc as the number of candidate positions selected
for each reference tree. The selectedNref trees could vary from
1 to n and be processed in a height descending order to give
more weight to the taller trees in the plots. To avoid inconsis-
tent matches, only the dominant and co-dominant trees are
considered in the field tree map.

For each reference tree, the FTM is shifted throughout the
search distance Sd, ensuring that the considered reference tree
is located over a LM (LM ∈ Sd). Two statistics are computed
for every candidate position: the weighted root mean square
error (wRMSE) (Eq. 1) and the weighted correlation (wCorr)
(Eq. 2) (Pinto da Costa 2015) as follows:

wRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
HFTM ;i−HCHM ;i
� �2 �Wi

s

ð1Þ

wCorr HCHM ;W � HFTMð Þ

¼ cov HCHM ;W � HFTMð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov HCHM ;W � HCHMð Þ � cov HFTM ;W � HFTMð Þp

ð2Þ

cov x;W � yð Þ ¼
∑
n

i¼1
Wi � xi−xw

� �

yi−yw
� �

∑
n

i¼1
Wi

ð3Þ

where HFTM,i is the field measured height of the tree i and
HCHM,i is its height in the CHM; cov(x,w × y) is defined ac-
cording to Eq. 3 with xw and yw the weighted means, and
W = (W1,W2, … ,Wn) is the vector of weight accounting for
the status of dominance of the tree (see below).
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Indeed, for each reference tree, the number of candidate
positions computed equals the number of LM detected in the
search area. The Nc best positions are then selected based on
the minimization of wRMSE and maximization of wCorr. As
stated above, such a selection of multiple candidate positions
is done to avoid uncertainties linked to the unsupervised de-
tection of local maxima as well as inaccurate field tree posi-
tions due to operating errors or cases of bended trees. The
Nc × Nref positions obtained are merged and a third statistic
is computed as the distance between each candidate position
and their barycenter. The optimal position is selected through
a minimization of rank using three statistics.

RegisTree enables the estimation of a vector of weightsW in
the absence of information about the status of tree dominance,
in order to givemore weight to the largest trees. The approach is
not an attempt to model crown visible area with respect to plot
structure and composition but rather a way to discard understo-
ry trees from the matching process. This is done by estimating
the portion of the tree crown visible on the CHM according to
the FTM. Crown diameters of 2, 3, and 5 m are respectively
assigned to small (7.5–22.5 cm), medium (22.5–47.5 cm), and
large (47.5–67.5 cm) tree diameters classes according to the
French NFI standards. These crown radii correspond to 1/3 of
plot radius where the tree is measured by the NFI. The portion
of the tree crown expected to be visible on the CHM is calcu-
lated by subtracting the parts that intersect trees of higher class
with respect to the distance between trees in the FTM. If two
trees of the same class overlap, their visible crown surface is
considered unchanged. Finally, the remaining surface is nor-
malized by dividing it by the sum of all the visible—i.e., non-
null—crown surfaces in the plot. Null surfaces define

suppressed trees which are removed from the FTM. W was
computed using this approach in the framework of this study.

2.5 Accuracy assessment

2.5.1 Sensitivity analysis and benchmarking

A sensitivity analysis was conducted to test the impact of (1)
the number of reference trees (Nref) and candidate positions
(Nc), (2) the initial position, and (3) the size of the FTM. The
major results were further analyzed with respect to the forest
type and the accuracy requirements of the positioning. The
resolution of the CHM was not considered in the study.
Preliminary experiments indicated that while a higher CHM
resolution (i.e., 0.5 m) significantly increased the amount of
LM, thus introducing noise, a lower resolution (i.e., 2.0 m)
leads to a high number of omissions in the LM. Despite its
importance, the search area was also discarded from the sen-
sitivity analysis. Not only did we consider that a 10-m search
distance in both x and y directions was a good compromise to
account for relatively large positioning errors while minimiz-
ing the number of LM to test but also reducing the search
distance to the expected GNSS measurement error would re-
sult in an improved positioning accuracy. In the following, the
positioning accuracy was computed as the difference between
the reference position obtained by the operator and that of the
algorithm.

The quality of the positioning was investigated by shifting
the initial plot coordinates in both x and y directions with the
following values {(1, 1), (− 1, − 1), (2, − 2), (− 2, 2), (− 3, 3),
(3, − 3), (− 4, 4), (4, − 4), (0, 5), (0, − 5), (5, 0), (− 5, 0)} and by

Fig. 1 Principles of RegisTree algorithm
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measuring the frequency at which identical resulting final po-
sitions occur.

The effect of Nref and Nc on the accuracy of the registration
was tested in the following area: {Nref,Nc} ∈ ⟦1, 6⟧2. Nrefwas
limited to 6 as only the six dominant trees were measured in
five out of the six study sites. The analysis was extended to the
Aillon forest and a subset of plot of that of Bure, where all the
trees were measured for height. For this subset of plots, Nref

values of 6, 9, 12, 15, 18 (Aillon only), and above (i.e., full set
of tree) were considered.

The effect of forest type on the accuracy of the result was
investigated by analyzing the previous experiments according
to the following three classes: broadleaved, mixed, and conifer-
ous plots. Furthermore, to account for the effect of plot structure
and topography, the positioning accuracy was analyzed against
various forest attributes and the mean plot slope, respectively.

Finally, in order to test the performance of the algorithm
with respect to a state-of-the art algorithm, the performance of
the algorithm was compared with the one achieved with a
point-to-surface approach (Monnet and Mermin 2014). Both
algorithms were coded into R software (Version x64 3.4.1).

2.5.2 Impact on forest volume prediction models

The performance of the algorithm was also tested with respect
to lidar-basedmodels of forest volume. Twomodels were built
using both the initial and the registered coordinates. As the
initial coordinates were derived from differential GNSS data,
thus having a good accuracy, a third model was built after
shifting the initial coordinates by 5 m in the northern direction.
This test was performed to emulate the positional accuracy of
a consumer level GNSS device and assess the effect of the
local forest structure on the performance of the models.

For the three sets of plot positions, the lidar CHM was
clipped to the plot surface and various metrics were computed.
These include maximum height (Hmax), height of the 90th
percentile (H90), inner (Vin) and outer (Vout) canopy volumes
(Véga et al. 2016), gap area (Ga) and its corresponding inner
(VGin) and outer (VGout) volumes, variance (Hvar) and stan-
dard deviation (Hsd) of CHM height, and Rumple index (Ri)
(Kane et al. 2010). The forest type (i.e., deciduous, conifers, or
mixed) (Ftype) derived from field surveys was also considered.
From this set of metrics, predictive models of plot volume
were built using a best-subset linear regression approach.
The models taken on were the ones having the minimum
Bayesian Information Criteria (BIC) (Neter et al. 1985), with
a maximum variance inflation factor (VIF) lower than 5
(O'Brien 2007), all predictor variables being significant (at a
level of 0.01), and a non-significant normality test on model
residuals (Shapiro test at a level of 0.05). The accuracy of the
predictivemodels was assessed by performing a leave-one-out
cross-validation (LOOCV) (Picard and Cook 1984) and com-
puting corresponding root mean square error (RMSEcv) and

adjusted determination coefficient (Adj. R2). The statistical
analyses were performed with R using ClustOfVar libraries,
leaps, car, and DAAG (https://cran.r-project.org/).

3 Results

3.1 Sensitivity analysis

The analyses were conducted using a search distance (Sd) of
10 m in both x and y directions. Figure 2 shows the results of
RegisTree’s sensitivity analysis regarding both the number of
reference trees (Nref) and the number of candidate positions
(Nc), for the whole dataset and according to forest type.
Overall, the positioning error decreased when Nref and Nc

increased. On the range of tested parameters’ values, the best
results for the whole dataset were obtained with Nref = 5 and
Nc = 6. The same optimum was achieved for both conifer and
broadleaved plots. The trend over the mixed plots seemed to
be less clear. The minimum error was obtained with Nref = 5
and Nc = 1. Despite this, the results appeared to be stable in all
cases with values of both Nref and Nc over 4, highlighting the
robustness of the algorithm to forest type.

Figure 3 shows an example of registration results achieved
using the optimal set of parameter values (Nref = 5, Nc = 6).
Using an FTM of 6 trees, the algorithm achieved registration
errors of 1.56 m (± 1.32 m SD), with minimum and maximum
values of 0.08 and 9.06 m, respectively (Table 2). The best
results were obtained with mixed plots, with a mean error of
1.05 m (± 0.91 m SD) and a maximum error of 4.18 m. The
mean error was 1.06 m (± 1.26 m SD) in conifer plots and
reached 1.53 m (± 1.33 m SD) in broadleaved plots. The re-
sults for Dataset 1 outperformed those of Dataset 2, with mean
errors of 1.37 m (± 1.40 m SD) and 1.74 m (± 1.23 m SD).
However, this was expected as Dataset 1 contains more than
90% of the conifer plots. Accordingly, the algorithm per-
formed better over the conifer forests of Aillon, showing an
error of 0.69 m (± 0.47 m SD).

The effect of the initial position on the robustness of
RegisTree is presented in Fig. 4. Overall, higher resilience of
positions, defined as the convergence of the algorithm towards
the same position, produces lower errors and lower extreme error
values (Fig. 4a). Errors appear to have stabilized when the num-
ber of identical positions is equal or greater than 4 (i.e., 30% of
the initial positions tested). That said, the correlation between the
registration error and the resilience of the output remains limited
(Pearson correlation coefficient of − 0.36). Figure 4b shows that
the registration error remained largely independent from the ro-
bustness of the algorithm to the initial position.

The effect of the number of trees on the registration error
was investigated for the Aillon and Bure forests, in which all
trees were surveyed for height (Table 3). For the coniferous
plots of Aillon,FTM of 6, 9, 12, 15, 18, and more than 18 trees
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were tested, for a total of 15 plots. The best results were ob-
tained with an FTM of 12 trees, with a mean error of 0.69 m
(± 0.39 m). Beyond this value, the error increased continuous-
ly from 0.92 m (± 0.57 m) with an FTM of 15 to 1.03 m (±
0.67 m) with an FTM greater than 18. Over the broadleaved
plots of the Bure forest, FTMs of 6, 9, 12, 15, and greater than
15 trees were tested, representing a total of 13 plots. With
respect to the Aillon forest, it was not possible to consider
an FTM of 18, because the number of plots making it possible
was limited to 6. Over the Bure forest, the error tended to
decrease with an increasing FTM. The mean error reached a
minimum value of 1.30 m (± 0.47 m) with an FTM of more
than 15 trees.

Generally, the performance of RegisTree was slightly im-
pacted by forest attributes (Table 4). The higher correlations
were obtained for mean terrain slope and plot basal areas, with
values of − 0.17. The standard deviation of height was also
negatively correlated with error, with a value of − 0.16.
Interestingly, the worst registrations were obtained for plots
having a standard deviation of height below 4 m (Fig. 5),

illustrating the challenges associated with the registration of
plots in homogeneous forest conditions, like plantations or
less textured canopies (Fig. 3).

3.2 Performance against a state-of-the-art method

The performance of RegisTree against a state-of-the-art point-
to-surface approach is presented in Table 5. Both methods
performed almost similarly with respect to the size of the
FTM. The state-of-the-art method provided its best results
using an FTM of 6 trees and the weighted mean absolute
height error (wmae) criteria (mean error of 2.18 m ± 1.99 m).
With both FTM sizes, RegisTree performed slightly better
than the state-of-the-art method. The best result was obtained
using the full FTM, with a mean error of 1.5 m (± 1.23 m).

3.3 Effect of position of volume prediction

The results of the predictive models of total plot volume are
presented in Table 6. The same independent variables were

Fig. 2 Sensitivity analysis of RegisTree to the number of reference trees (Nref) and candidate positions (Nc) according to different forest types
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selected for the four tested scenarios and included the canopy
volume (Vin), the gap area (Ga), and the forest type (Ftype). For
each model, all the variables were significant at 0.95 and the
variance inflation factor of all the variables was below 5. As
expected, the best results were obtained using the reference
plot positions, with a cross-validation adjusted R-squared (cv-
Adj-R2) of 0.81 and a cross-validation root mean squared error
(cv-RMSE) of 94.4 m3 ha−1 or 26.4%. The model based on
RegisTree positions performed better than the ones using ini-
tial or blurred positions. However, the differences were low.
The model based on RegisTree positions showed the same cv-
Adj-R2 than the reference position and a slightly higher cv-
RMSE of 94.7 m3 ha−1 (26.5%). In contrast, the degraded
initial positions generated a cv-Adj-R2 of 0.79 and a cv-
RMSE of 99.1 m3 ha−1 or (27.8%).

Fig. 3 Best and worst registration results for conifers (left) and deciduous (right) plots, obtained using a FTM of 6 trees and the optimal parameters
(Nref = 5, Nc = 6)

Table 2 Performance of the registration according to datasets and forest
types

Data Plot number Min Mean Max SD

All 246 0.08 1.56 9.06 1.32

Dataset 1 122 0.08 1.37 9.06 1.40

Dataset 2 124 0.08 1.74 6.91 1.23

Bure 41 0.09 1.45 7.67 1.26

Aillon 28 0.08 0.69 2.27 0.47

Vosges 53 0.16 1.66 9.06 1.71

Saint-Gobain 43 0.16 1.57 6.58 1.15

Compiègne 33 0.10 2.20 6.91 1.47

Darney 48 0.08 1.60 4.51 1.05

Conifers 60 0.08 1.06 7.13 1.26

Hardwood 168 0.09 1.53 9.06 1.33

Mixed 18 0.26 1.05 4.18 0.91
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4 Discussion

4.1 Positioning accuracy

With an FTM of six trees, the best results were obtained
using five reference trees and six candidate positions. This
result showed that keeping a large number of potential
positions (i.e., 30 in this case) provided more consistent
plot positions. In accordance with our working hypothe-
sis, this can be explained by the uncertainties associated
with the spatial registration of objects of a different kind
and characterized by a distinct level of accuracy and er-
rors. As expected, RegisTree performed better for conifer-
ous plots than for broadleaved plots. Conifers often have

more differentiated tree apices than broadleaved trees and
show more conical crown shapes, leading to contrasting
CHM heights. As a consequence, the 3D positions from
the CHM are expected to match better with the FTM in
coniferous plots. On the other hand, broadleaved species
often have multiple local maxima for a single tree crown
and are more difficult to measure in the field. Also, the
lidar acquisitions considered here were done in leaf-off
conditions. Such acquisition conditions are known to pro-
duce height underestimations as compared to leaf-on con-
ditions for broadleaved forests (Wasser et al. 2013). All in
one, uncertainties in apex positions and height measure-
ments contributed to lower precision in broadleaved
forests.

Fig. 4 Boxplot of registration errors as a function of the number of identical positions for the 13 starting position tested. a Results of all of the starting
positions (13 times 250 plots). b Reference position alone (250 plots)
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Overall, RegisTree turned out to be quite robust to the
initial positions. For the range of positions tested, the algo-
rithm achieved the same result in 65% of cases. That being
said, the error was not correlated to the resilience of the algo-
rithm to the initial position, making the criteria relatively sig-
nificant to qualify the accuracy of the resulting position.
However, large errors were systematically obtained in homo-
geneous plots, as defined by low standard deviation of tree
height (Fig. 5), with homogeneous canopy conditions, such as
plantations or textureless canopies (Fig. 3). This result is con-
sistent with Dorigo et al. (2010) who reported unreliable reg-
istration in very dense deciduous plots with tree apices not
clearly defined. Olofsson et al. (2008) and Dorigo et al.
(2010) further reported lower registration accuracies in dense
plots. Our results did not confirm this finding, with a correla-
tion between density and error of − 0.1 (Table 4). As acknowl-
edged by Dorigo et al. (2010), our results suggested that large
errors are attributed to homogeneous canopies, such as tex-
tureless canopies or regular plantations. In such plots, both the
FTM and CHM show little height variability, thus introducing
uncertainty in registration. For such plots, it is highly recom-
mended to narrow the search distance to avoid inconsis-
tencies. One may also consider that the positioning accuracy
is less of a problem in homogeneous plots, thus minimizing
the importance of improving plot position.

Increasing the size of the FTM improves the positioning
accuracy of deciduous plots by 62% (1.66 to 1.03 m mean
error). This result can be explained by the greater uncertainties
in defining the tree apices in broadleaved plots and is further
exacerbated in our study by the fact that ALS acquisitions
were performed in leaf-off conditions. Indeed, increasing the
FTM size might increase the constraints on the LM and thus
helps identify the optimal position. For conifer plots, the re-
sults are not as clear, and error tended to increase with FTM
including more than 12 trees. Because tree apices are often

more easily identifiable in conifer plots, a limited number of
dominant trees is sufficient to achieve the optimal plot posi-
tion. It could be hypothesized that increasing the FTM may
include co-dominant trees with undefined apices and with
apices that could be slightly shifted from the trunk position,
thus adding uncertainties. That said, the datasets used for test-
ing this effect were limited in sizes and extended analysis
would be required to validate findings on this parameter.
Independently from the FTM, the results given by RegisTree
provide a greater accuracy than that obtained using the state-
of-the-art point-to-surface approach (Monnet and Mermin
2014). This highlights the interest of the method and the in-
terest of using LM to constraint the point-to-surface approach.

The positioning accuracies obtained using RegisTree are
lower than the sub-metric ones that can be achieved under
forest canopies using differential GNSS data (Hauglin et al.
2014) under the range of parameter tested. However, it pro-
vides a valuable alternative to improve the positioning accu-
racy of plots surveyed using low-grade GNSS (Valbuena et al.
2010). The algorithm may be particularly relevant to NFIs in
the context of multisource forest inventories, as NFIs may not

Table 3 Mean registration error
(m) and standard deviation (in
parenthesis) with respect to the
size of the field tree map (FTM)
with Nref = 5 and Nc = 6

FTM size 6 9 12 15 18 Total

Aillon (n = 15) 0.71 (0.57) 0.75 (0.51) 0.69 (0.39) 0.92 (0.57) 0.96 (0.65) 1.03 (0.67)

Bure (n = 13) 1.66 (1.20) 1.81 (1.54) 1.68 (1.21) 1.61 (1.12) – 1.31 (0.47)

Table 4 Correlation of registration error with terrain and forest
parameters

Terrain slope (%) − 0.17
Plot density (stem ha−1) − 0.1
Mean tree height (−m) 0.11

Standard deviation of tree height (m) − 0.16
Mean tree diameter (cm) 0.02

Standard deviation of tree diameter (cm) − 0.05
Basal area (m2 ha−1) − 0.17
Total volume (m3 ha−1) − 0.11 Fig. 5 Registration error as a function of standard deviation of tree height

per plot
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be able to afford the acquisition cost of survey grade GNSS
receivers for numerous field crews (McRoberts et al. 2018).

Under high-density lidar acquisitions and leaf-off condi-
tions, the positioning accuracy could be improved by changing
the registration paradigm. Using point densities between 30 and
35 pts. m−2, Bock et al. (2017) showed that an individual tree
trunk could be identified and isolated. Such an approach makes
it possible to use the detected tree positions at DBH height
instead of LM. This would solve the issues with both LM
positions and height uncertainties and could also improve the
performance of algorithms in textureless broadleaved canopies.

4.2 Prediction of plot volume

The accuracy of plot-level predictive models of volume fol-
lows the same trends than the registration error did. The best
results were achieved with the plot positions that were
corrected manually. But RegisTree achieved almost similar
results. That said, the gain in performance remained moderat-
ed. Compared to the initial conditions, the gain in cross-
validated RMSE was only 0.7%, from 27.2% to 26.5%.
Even so, in the range of the tested conditions, a systematic
shift of 5 m of the differential GNSS position, representing
one third of the plot radius, only degraded the cross-validation
RMSE by 1.3%.While surprising with respect to Dorigo et al.
(2010), Olofsson et al. (2008), or McRoberts et al. (2018) who
reported a significant impact of the positioning accuracy on
the predictive models of forest parameters, our results are in
accordance with those reported by Monnet and Mermin

(2014) for a basal area. A possible explanation for this low
performance improvement lies in the quasi-absence of plots
falling between stands or at the forest boundaries. Contrary to
National Forest Inventory plots that are representative of all
forest conditions, the management inventory plots used here
were predominantly concentrated inside forest stands, with
locally homogeneous forest conditions.

Despite the slight improvement in model performance, the
achieved Adj. R2 are in the same range as those reported in
other studies. In similar forest conditions, Bouvier et al.
(2015) obtained predictive models of forest volume,
explaining 82% of the variance of the volume measured in
the field. For Scandinavian areas, Næsset (2007) reported R-
squared values within the range of 0.84 and 0.89. While our
study sites were quite varied in terms of forest structure and
composition, the performance of the models seemed to be
reasonable and could be further improved. ALS data were
acquired in a range of acquisition conditions, both in terms
of density and seasonality. The ALS data was not submitted to
any harmonization procedure. The differences in point densi-
ties may lead to bias in metrics influenced by the point density
such as the percentiles (Magnussen et al. 2012). This being
said, no such metrics were included in our models and the
spatial resolution of the CHMwas largely lower than the point
density, thereby limiting the problem with the raster-based
metrics. The seasonality might have penalized the perfor-
mance of the model, as a large majority of broadleaved plots
were scanned in leaf-off conditions. Beside the impact of leaf-
off conditions on the LM and therefore on the registration,
impact could be expected on metrics, like gaps and
percentiles. However, Wasser et al. (2013) and White et al.
(2015b) reported no effect of leaf-off and leaf-on conditions
on the performance of models, minimizing the potential influ-
ence of acquisition period on it. Potential improvements may
also be achieved by consideringmetrics describing the vertical
canopy structure such as density or penetration metrics
(Næsset 2007; Véga et al. 2016). There, a priority was given
to metrics describing the canopy volumes, with the underlying
objective of applying this approach to photogrammetric
models of forest canopies. We do consider that those kinds
of CHM and metrics have a high potential for multisource
forest inventories and large scale mapping and updating of
forest parameters owing to the availability of aerial photo-
graphs. That said, it would be worth testing the contribution

Table 5 Registration errors (m) obtained using RegisTree and a state of
the art point to surface method using FTM of six trees or more

FTM Min Mean Max SD

State-of-the-art (correlation) 6 0 3.69 9.89 2.57

State-of-the-art (wmae) 6 0 2.18 8.2 1.99

RegisTree 6 0.07 1.55 9.06 1.33

State-of-the-art (correlation) Full 0 3.9 12.81 3.09

State-of-the-art (wmae) Full 0 2.39 14.12 2.48

RegisTree Full 0.07 1.5 9.06 1.23

The state of the art method was tested with two registration criteria, the
correlation and the weighted mean absolute height error (wmae) (Monnet
and Mermin 2014). RegisTree was run with Nref = 5 and Nc = 6

Table 6 Adjusted R-squared
(Adj. R2), root mean squared error
(RMSE) (m3 ha−1 and %) of the
predictive model, and volume and
corresponding cross-validation
results (cv-Adj-R2, cv-RMSE)

Case Adj. R2 RMSE m3 ha‑1 (%) cv-Adj-R2 cv-RMSE m3 ha−1 (%)

Reference positions 0.82 91.9 (28.6) 0.81 94.4 (26.4)

Initial positions 0.81 94.5 (26.5) 0.80 97 (27.2)

Initial degraded positions 0.80 96.6(27.1) 0.79 99.1 (27.8)

RegisTree positions 0.82 92.1 (25.8) 0.81 94.7 (26.5)

All the selected models included the same independent variables: Vin, Ga, and Ftype
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of density and penetration metrics in order to have a more
complete assessment of the effect of plot position on the per-
formance of the models.

5 Conclusion

Improving the spatial registration between field and remote
sensing data is important for mapping purposes and inferential
estimation using auxiliary data. Many approaches have been
proposed to solve the problem with varying degrees of suc-
cess. The limited efficiency of matching methods comes from
both field (plot size, measurement availability, spatial posi-
tioning) and remote sensing data (nature, resolution). Here,
we suggest an algorithm called RegisTree to improve data
registration automatically by matching a spatialized field tree
height map with a CHM. RegisTree is based on a modified
point (field positions) to surface (CHM) registration approach,
ensuring that at least one of the field tree position matches
with a local maximum of the CHM. It allowed registering field
plots surveyed in a range of forest condition with an accuracy
of 1.5 m (± 1.23 m). RegisTree was found to be robust to the
forest conditions but performed better for conifers than for
hardwood, due to their more textured canopies. Due to the
complexity of canopy covers and an increase probability of
matching errors with increasing search distance, suchmethods
should be used to improve accuracy in the position of plots
surveyed with low quality GNSS or to locally improve the
position acquired using survey grade GNSS devices for tree-
based approaches for modeling forest parameters. Despite this
limitation, the development of remote sensing in forest mon-
itoring and management will certainly increase demand for
high precision data registration.

Acknowledgements The authors would like to thank the Office National
des Forêt (ONF) for providing lidar and Field data for St-Gobain,
Compiègne, and Darney.

Fundings Maryem Fadili has been funded by the DIABOLO—
Distributed, Integrated and Harmonised Forest Information for
Bioeconomy Outlooks—project. This project has received funding from
the European Union’s Horizon 2020 research and innovation program un-
der grant agreement No. 633464 (project duration: 1 March 2015 to 28
February 2019; coordinator, Natural Resources Institute Finland (Luke)).
Part of the data (Vosges, Aillon, Bure) has been acquired in the Framework
of the project FORESEE funded by the French National Research Agency
(ANR-2010-BIOE-008). ONF Département RDI and IGN Laboratory of
Forest Inventory (LIF) are supported by the French National Research
Agency (ANR) as part of the BInvestissements d’Avenir^ program
(ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Statement on data availability The datasets generated and/or analyzed
during the current study are not publicly available due to ownership and
funding constraints but are available from the author upon reasonable re-
quest and with permission of ONF and IGN. Code and sample data
supporting the findings of this study are available in the Zenodo repository
(Fadili et al. 2019)

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Andersen H-E, Clarkin T, Winterberger K, Strunk J (2009) An accuracy
assessment of positions obtained using survey- and recreational-
grade Global Positioning System receivers across a range of forest
conditions within the Tanana Valley of interior Alaska. West J Appl
For 24:128–136

Axelsson P (2000) DEM generation from laser scanner data using adap-
tive TIN models. Int Arch Photogramm Remote Sens Spat Inf Sci
33:110–117 Part B4/1

Baltsavias EP (1999) Airborne laser scanning: basis relations and formu-
las. ISPRS J Photogramm Remote Sens 54:199–214

Bock J, Piboule A, Jolly A (2017) TidALS: trunk identification in dense
Airborne Laser Scanner data to estimate. In: Silvilaser conference,
October 10–12, 2017, Blacksburg, Virginia, USA

Bouvier M, Durrieu S, Fournier RA, Renaud J-P (2015) Generalizing
predictive models of forest inventory attributes using an area-based
approach with airborne LiDAR data. Remote Sens Environ 156:
322–334

Danskin SD, Bettinger P, Jordan TR, Cieszewski C (2009) A comparison
of GPS performance in a southern hardwood forest: exploring low-
cost solutions for forestry applications. South J Appl For 33:9–16

Deleuze C, Morneau F, Renaud J -P, Vivien Y, Rivoire M, Santenoise P,
Longuetaud F, Mothe F, Hervé JC, Vallet P (2014) Estimer le vol-
ume total d’un arbre, quelles que soient l’essence, la taille, la
sylviculture, la station. RDV techniques ONF 44: 22–32

Dorigo W, Hollaus M, Wagner W, Schadauer K (2010) An application-
oriented automated approach for registration of forest inventory and
airborne laser scanning data. Int J Remote Sens 31:1133–1153

Fadili M, Renaud JP, Bock J, Vega C (2019) RegisTree: a registration
algorithm to enhance forest inventory plot georeferencing. V1.
Zenodo. [Dataset]. https://doi.org/10.5281/zenodo.2577140

Favorskaya MN, Jain LC (2017) Overview of LiDAR technologies and
equipment for land cover scanning In Handbook on advances in
remote sensing and geographic information systems: paradigms
and applications in forest landscape modeling, intelligent systems
reference library. Springer International Publishing, 122, pp 19–68

Gobakken T, Næsset E (2009) Assessing effects of positioning errors and
sample plot size on biophysical stand properties derived from air-
borne laser scanner data. Can J For Res 39:1036–1052. https://doi.
org/10.1139/X09-025

HauglinM, Lien V, Næsset E, Gobakken T (2014) Geo-referencing forest
field plots by co-registration of terrestrial and airborne laser scan-
ning data. Int J Remote Sens 35:3135–3149

Johnson KD, Birdsey R, Finley AO, Swantaran A, Dubayah R, Wayson
C, Riemann R (2014) Integrating forest inventory and analysis data
into a LIDAR-based carbon monitoring system. Carbon Balance
Manage 9:3

Kane VR, McGaughey RJ, Bakker JD et al (2010) Comparisons between
field- and LiDAR-based measures of stand structural complexity.
Can J For Res 40:761–773

Khosravipour A, Skidmore AK, Wang T, Isenburg M, Khoshelham K
(2015) Effect of slope on treetop detection using a LiDAR Canopy
Height Model. ISPRS J Photogramm Remote Sens 104:44–52

Korpela I, Tuomola T, Välimäki E (2007) Mapping forest plots: an effi-
cient method combining photogrammetry and field triangulation.
Silva Fenn 41:457–469

30 Page 12 of 13 Annals of Forest Science (2019) 76: 30

https://doi.org/10.5281/zenodo.2577140
https://doi.org/10.1139/X09-025
https://doi.org/10.1139/X09-025


Magnussen S, Næsset E, Gobakken T, Frazer G (2012) A fine-scale
model for area-based predictions of tree-size-related attributes de-
rived from LiDAR canopy heights. Scand J For Res 27:312–322

McRoberts RE, Tomppo EO (2007) Remote sensing support for national
forest inventories. Remote Sens Environ 110:412–419

McRoberts RE, Chen Q, Walters BF, Kaisershot DJ (2018) The effects of
global positioning system receiver accuracy on airborne laser
scanning-assisted estimates of aboveground biomass. Remote Sens
Environ 207:42–49

Monnet J-M, Mermin É (2014) Cross-correlation of diameter measures
for the co-registration of forest inventory plots with airborne laser
scanning data. Forests 5:2307–2326

Nakajima H (2016) Plot location errors of National Forest Inventory:
related factors and adverse effects on continuity of plot data. J For
Res 21:300–305. https://doi.org/10.1007/s10310-016-0538-1

Næsset E (2007) Airborne laser scanning as a method in operational
forest inventory: status of accuracy assessments accomplished in
Scandinavia. Scand J For Res 22:433–442

Næsset E, Jonmeister T (2002) Assessing point accuracy of DGPS under
forest canopy before data acquisition, in the field and after
postprocessing. Scand J For Res 17:351–358

Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical
models (2nd ed.). Irwin, New York

O'Brien RM (2007) A caution regarding rules of thumb for variance
inflation factors. Qual Quant 41:673–690

Olofsson K, Lindberg E, Holmgren J (2008) A method for linking field-
surveyed and aerial-detected single trees using cross correlation of
position images and the optimization of weighted tree list graphs In
proceeding of Silvilaser 2008, Sept 17-19, 2008 – Edinburgh, UK,
pp 95–104

Picard RR, Cook RD (1984) Cross-validation of regression models. J Am
Stat Assoc 79:575–583

Pinto da Costa J (2015) Rankings and preferences—new results in
weighted correlation and weighted principal component analysis,
SpringerBriefs in Statistics, 95 pp.

Ransom MD, Rhynold J, Bettinger P (2010) Performance of mapping-
grade GPS receivers in southeastern forest conditions. RURALS:
Review of Undergraduate Research in Agricultural and Life
Sciences: Vol 5: Iss 1, Article 2

Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O, Katila M (2008)
Combining national forest inventory field plots and remote sensing
data for forest databases. Remote Sens Environ 112:1982–1999

Valbuena R, Mauro F, Rodriguez-Solano R, Manzanera JA (2010)
Accuracy and precision of GPS receivers under forest canopies in
a mountainous environment. Span J Agric Res 8:1047–1057

Véga C, Durrieu S (2011) Multi-level filtering segmentation to measure
individual tree parameters based on Lidar data: application to a
mountainous forest with heterogeneous stands. Int J Appl Earth
Obs Geoinf 13:646–656

Vega C, Hamrouni A, El Mokhtari S, Morel J, Bock J, Renaud J-P,
Bouvier M, Durrieu S (2014) PTrees: a point-based approach to
forest tree extraction from lidar data. Int J Appl Earth Obs Geoinf
33:98–108

Véga C, Renaud J-P, Durrieu S, Bouvier M (2016) On the interest of
penetration depth, canopy area and volume metrics to improve
Lidar-based models of forest parameters. Remote Sens Environ
175:32–42

Wasser L, Day R, Chasmer L, Taylor A (2013) Influence of vegetation
structure on Lidar-derived canopy height and fractional cover in
forested riparian buffers during leaf-off and leaf-on conditions.
PLoS One 8:e54776

White JC, Stepper C, Tompalski P, Coops NC, Wulder MA (2015a)
Comparing ALS and image-based point cloud metrics and modelled
forest inventory attributes in a complex coastal forest environment.
Forests 6:3704–3732

White JC, Arnett JTTR, Wulder MA, Tompalski P, Coops NC (2015b)
Evaluating the impact of leaf-on and leaf-off airborne laser scanning
data on the estimation of forest inventory attributes with the area-
based approach. Can J For Res 45:1498–1513

WingMG, Eklund A (2007) Performance comparison of a low-cost map-
ping grade global positioning systems (GPS) receiver and consumer
grade GPS receiver under dense forest canopy. J For 105:9–14

Wulder M (1998) Optical remote-sensing techniques for the assessment
of forest inventory and biophysical parameters. Prog PhysGeogr 22:
449–476

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Annals of Forest Science (2019) 76: 30 Page 13 of 13 30

https://doi.org/10.1007/s10310-016-0538-1

	RegisTree: a registration algorithm to enhance forest inventory plot �georeferencing
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Study sites
	Field and lidar surveys
	Data preparation
	RegisTree registration algorithm
	Accuracy assessment
	Sensitivity analysis and benchmarking
	Impact on forest volume prediction models


	Results
	Sensitivity analysis
	Performance against a state-of-the-art method
	Effect of position of volume prediction

	Discussion
	Positioning accuracy
	Prediction of plot volume

	Conclusion
	References


