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Abstract
& Key message We present a novel approach to define pure- and mixed-forest typologies from the comparison of pairs of
forest plots in terms of species identity, diameter, and height of their trees.
& Context Forest typologies are useful for many purposes, including forest mapping, assessing habitat quality, studying forest dynam-
ics, or defining sustainablemanagement strategies. Quantitative typologiesmeant for forestry applications normally focus on horizontal
and vertical structure of forest plots as main classification criteria, with species composition often playing a secondary role. The
selection of relevant variables is often idiosyncratic and influenced by a priori expectations of the forest types to be distinguished.
&Aims We present a general framework to define forest typologies where the dissimilarity between forest stands is assessed using
coefficients that integrate the information of species composition with the univariate distribution of tree diameters or heights or
the bivariate distribution of tree diameters and heights.
&Methods We illustrate our proposal with the classification of forest inventory plots in Catalonia (NE Spain), comparing the results
obtained using the bivariate distribution of diameters and heights to those obtained using either tree heights or tree diameters only.
& Results The number of subtypes obtained using the tree diameter distribution for the calculation of dissimilarity was often the
same as those obtained from the tree height distribution or to those using the bivariate distribution. However, classifications
obtained using the three approaches were often different in terms of forest plot membership.
& Conclusion The proposed classification framework is particularly suited to define forest typologies from forest inventory data
and allows taking advantage of the bivariate distribution of diameters and heights if both variables are measured. It can provide
support to the development of typologies in situations where fine-scale variability of topographic, climatic, and legacy manage-
ment factors leads to fine-scale variation in forest structure and composition, including uneven-aged and mixed stands.
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1 Introduction

Vegetation classifications are powerful tools to describe, sum-
marize, and represent the variation of vegetation across space
and time (De Cáceres et al. 2015). The development and use of
typologies in forestry can be traced back to the birth of forest
science, because forest types have traditionally helped foresters
to summarize site and stand quality, a prerequisite for predicting
potential growth or timber yield (Cajander 1949). Nowadays,
forest typologies are important tools for assessing and monitor-
ing the state of forest ecosystems at several scales (Corona
2016). They are useful for many purposes, such as assessing
habitat quality or the vulnerability to disturbances, anticipating
forest dynamics, or mapping forest resources for the definition
of sustainable stand-oriented management strategies (e.g.,
James and Wamer 1982; Bebi et al. 2001; Bruciamacchie
2001; Barbati et al. 2007, 2014). In addition, combining de-
tailed forest typologies with three-dimensional remote sensing
data has recently shown its potential for mapping variations on
developmental stages, post-disturbance regeneration patterns,
or even the change of management activities on forested land-
scapes (Falkowski et al. 2009; Bottalico et al. 2014; Martín-
Alcón et al. 2015; Valbuena et al. 2016, 2017).

Forest typologies can be rather informal qualitative de-
scriptions, sometimes complemented with profile diagrams
to make them easier to communicate (O’Hara et al. 1996;
Larsen and Nielsen 2007). Alternatively, they can be defined
quantitatively and the resulting forest classes be differentiated
using formal assignment rules (e.g. classification trees) on the
basis of chosen thresholds for relevant variables (e.g., Bebi
et al. 2001; Bruciamacchie 2001; Giannetti et al. 2018).
Quantitative assignment rules can be defined by expert knowl-
edge, after preliminary inspection of the main axes of varia-
tion of potential variables (e.g., Aunós et al. 2007), but a more
data-driven approach involves two steps: (1) to define homo-
geneous groups of forest plots using unsupervised classifica-
tion methods (i.e., hierarchical or non-hierarchical clustering);
(2) to define assignment rules by means of supervised classi-
fication (e.g., discriminant analysis, classification trees, or
neural networks), using the classification produced in the first
step as training data (Reque and Bravo 2008; Martín-Alcón
et al. 2012; De Cáceres and Wiser 2012). The first step of the
data-driven approach requires deciding how to measure the
resemblance between forest plots, i.e., deciding which struc-
tural and compositional variables are relevant and how to
combine their information in a resemblance (dissimilarity or
similarity) coefficient.

Fine-grained quantitative forest typologies normally focus
on structure as main classification criteria (e.g., basal area,
canopy cover, the distribution of tree diameters and heights,
stocking density, or wood volume) (Faith et al. 1985;
McElhinny et al. 2005). Very often, the chosen variables are
expressed in different units (e.g., basal area vs. dominant

height) and/or are partially correlated (e.g., basal area vs. mean
quadratic diameter), which requires employing variable stan-
dardization or factor analysis prior to the calculation of dis-
tances between forest stands (e.g., Reque and Bravo 2008;
Martín-Alcón et al. 2012; Casals et al. 2015). Besides the need
to represent both horizontal and vertical structure, there are no
standard choices of relevant variables and procedures to de-
fine typologies, which results in variable choices being rather
idiosyncratic to each classification analysis. In addition, the
scope of typologies is often restricted to forests where a single
target species is dominating or has minimum abundance (in
terms of basal area or number of individuals). For example, in
Spain, quantitative forest typologies have focused on silver fir
(Abies alba Mill.), beech (Fagus sylvatica L.), sessile oak
(Quercus petraea Matt.), or mountain pine (Pinus uncinata
Ram.) forests (Aunós et al. 2007; Reque and Bravo 2008;
Martín-Alcón et al. 2012). The role of other tree species than
the target ones is only accounted for implicitly, by considering
variables such as the percentage of the total basal area corre-
sponding to the target species or the ratio of the average size
for individuals of the target species compared to others
(Aunós et al. 2007; Reque and Bravo 2008). Although coarse
forest typologies exist simultaneously addressing variation in
structure and composition (e.g., Godinho-Ferreira et al. 2005;
Barbati et al. 2014), quantitative classifications addressing in
detail the compositional and structural variation of mixed-
forests are rare (Ngo Bieng et al. 2006). This may seem sur-
prising, since mixed forests occupy almost one-fourth (23%)
of the European’s forested land (Forest Europe, UNECE, FAO
2011) and their importance is progressively increasing in re-
sponse to the growing complexity of societal demands
(Bravo-Oviedo et al. 2014). Adopting similarity or dissimilar-
ity coefficients designed to account for multiple structural and
compositional attributes would allow defining fine forest ty-
pologies in different contexts (even-aged vs. uneven-aged,
pure vs. mixed) in a more consistent way.

Ecologists have long compared the composition of plant or
animal communities using species presence-absence or abun-
dance data (i.e., cover or density values) and multivariate re-
semblance coefficients (Legendre and Legendre 2012).
However, the usefulness of this type of coefficients in forestry
is rather limited, due to the inability to simultaneously consid-
er the vertical and horizontal structure of stands. At most,
compositional coefficients have been used for the classifica-
tion of stands in terms of the composition within canopy and
understory layers separately (Youngblood 1993). De Cáceres
et al. (2013) presented a general framework to compare eco-
logical communities that takes into account the size structure
and composition simultaneously and illustrated their approach
for the comparison of forest stands in terms of diameter dis-
tribution and tree species identity. While this framework has
been successfully applied to describe and typify the structure
and composition of Anatolian black pine forests (Yılmaz et al.
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2018) and to assess the amount structural and compositional
variation within forests (Yao et al. 2019), its full potential for
the definition of forest typologies remains to be explored.
Moreover, when characterizing and/or differentiating forest
stands from a forestry perspective, both the distribution of tree
diameters and tree heights may be relevant, because the pro-
vision of several forest goods (e.g., timber quantity and qual-
ity) and services (e.g., soil protection or habitat quality) de-
pends on the distribution of these two variables. Although the
two are often correlated, general frameworks to measure the
resemblance between forest stands could take into account the
joint bivariate distribution of diameters and heights.

The objectives of this article are twofold. First, we
introduce an extension of the De Cáceres et al. (2013)
framework to allow considering two size variables (name-
ly height and diameter), instead of only one, when calcu-
lating the resemblance between forest stands. Second, we
illustrate the usefulness of this approach to define typol-
ogies of different kinds, including pure vs. mixed stands
or even-aged vs. uneven-aged stands. In the following
section, we first review the conceptual and mathematical
aspects of the framework of De Cáceres et al. (2013),
describe its extension to consider two size variables, and
present a small simulation study that illustrates the behav-
ior of the proposed dissimilarity coefficients. Then, we
use our dissimilarity framework and unsupervised cluster-
ing techniques to derive pure- and mixed-forest typologies
from forest inventory data. When doing that, we compare
the results obtained using the bivariate distribution of tree
diameters and heights with those obtained using one of
the two marginal distributions only. Finally, we discuss
the advantages and limitations of the resemblance frame-
work, including potential applications beyond the defini-
tion of typologies.

2 Resemblance between forest stands
in terms of structure and composition

2.1 Original framework

The framework of De Cáceres et al. (2013) allows defining
and calculating the dissimilarity between forest stands in a
flexible way, depending on the choice of variables made by
the user regarding three aspects of stand organization
(Pommerening 2002):

a. Abundance (i.e., horizontal structure): A non-negative
variable to represent the space occupied by plants, such
as density, (projected) crown cover or basal area.

b. Size (i.e. vertical structure): A (continuous or ordinal)
variable to represent plant size, such as tree diameter or
plant height.

c. Composition: A categorization of plants, such as species
composition, growth forms, or other functional
distinction.

Choices for (a) and (b) imply specifying a distribution of
the total abundance into size classes (e.g., overall density or
basal area into tree diameter or height classes). Instead of
using this size distribution directly, however, the framework
operates on the basis of cumulative values. The cumulative
abundance profile (CAP) is a function taking a size value as
input and returning the cumulative abundance of plants whose
size is equal to or larger than the input value. For example, if
tree diameter is chosen as the size variable and basal area as
the abundance variable, the CAP value is the cumulative basal
area corresponding to trees as thick as or thicker than the input
diameter (see Fig. 1). CAP is a non-increasing function whose
value is always maximal for the smallest value of the size
variable (e.g., the cumulative basal area corresponding to the
smallest diameter class is equal to the basal area of the stand).

The procedure to calculate the resemblance between a pair
of forest stands can be summarized in three steps: (1)

Fig. 1 Example of calculation of resemblance between a pair of
monospecific stands using the CAP framework. a Distribution of trees
in diameter 5-cm classes in the two stands. b CAPs for the two stands,
using diameter as size variable and basal area as abundance variable.
Values of Ak, Bk, andCk are indicated in each of three areas resulting from
the intersection of CAPs
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calculating the CAP for each tree species (or compositional
class) in each of the two stands, (2) comparing the CAPs of the
two stands for each species, and (3) pooling the result of CAP
comparisons across species with an appropriate dissimilarity
coefficient. The details of the three steps are as follows (De
Cáceres et al. 2013):

Step 1 Calculation of CAP, following the definition given
above, is done for each k species and for each of
the two stands separately. The importance accorded
to differences in stand horizontal structure (a), verti-
cal structure (b), and composition (c) will depend on
the variables and/or transformations chosen to repre-
sent these aspects when building CAPs. For exam-
ple, dividing trees into angiosperm and gymno-
sperms, instead of using species composition, will
decrease the importance of compositional vs. struc-
tural differences. Similarly, the importance of vertical
structure can be modulated by changing the resolu-
tion of diameter or height bins (Yao et al. 2019).
Unequal widths of diameter or height bins can be
used to modulate the importance accorded to differ-
ences in abundance across tree size (e.g., using diam-
eter quadratic bins will increase the importance of
differences in saplings). Finally, the role of horizontal
structure can be modulated by transforming CAPs
prior to their comparison. For example, a square root
transformation applied to cumulative abundance
values will decrease the importance of differences
in horizontal structure with respect to the other as-
pects (De Cáceres et al. 2013).

Step 2 The comparison of the two CAPs for a given species
k—CAP1k and CAP2k—is done by integrating the
comparison of cumulative abundance values along
the values of the structural variable. This comparison
leads to distinguishing between three regions in the
diagram that shows the two CAPs: Ak, the areas
where the two profiles overlap; Bk, the areas where
CAP1k exceeds CAP2k; and Ck, the areas where
CAP2k exceeds CAP1k (Fig. 1b). If θ is the size var-
iable, the three quantities are mathematically calcu-
lated using

Ak ¼ ∫∞θ¼0min CAP1k θð Þ;CAP2k θð Þð Þ⋅dθ
Bk ¼ ∫∞θ¼0 CAP1k θð Þ−min CAP1k θð Þ;CAP2k θð Þð Þð Þ⋅dθ
Ck ¼ ∫∞s¼0 CAP2 j θð Þ−min CAP1k θð Þ;CAP2k θð Þð Þ� �

⋅dθ
ð1Þ

While eq. 1 assumes a continuous size variable, if one
employs a discrete size variable (i.e., height or diameter bins)
to define CAPs, then Ak, Bk, and Ck are calculated replacing
integrals in eq. 1 by summations across size classes.

Step 3 The species-wise comparison of pairs of CAPs
results in values Ak, Bk, and Ck for each species
k. At this point, compositional resemblance coef-
ficients typical of community ecology can be cal-
culated, provided they can be decomposed into
quantities analogous to Ak, Bk, and Ck (Tamás
et al. 2001). Although several coefficients were
presented in De Cáceres et al. (2013), we focus
here on Dman and Dbray, which are generalizations
of the Manhattan (or city-block) distance and the
percentage difference (alias Bray-Curtis) dissimi-
larity (Odum 1950; Bray and Curtis 1957), re-
spectively. The Manhattan distance calculated
across all species (from k = 1 to k = p species or
compositional classes) is

Dman ¼ ∑p
k¼1 Bk þ Ckð Þ ð2Þ

and the corresponding generalization of the Bray-Curtis dis-
similarity is

Dbray ¼ ∑p
k¼1 Bk þ Ckð Þ

∑p
k¼1 2Ak þ Bk þ Ckð Þ ð3Þ

The main difference between Dman and Dbray is that
the latter involves a normalizing factor that relativizes
the dissimilarity between the two stands to the [0–1]
interval. For example, in the single-species case of the
CAPs represented in Fig. 1b, Dman = 31.8 and Dbray =
0.265.

2.2 Extension of the framework

With the aim of comparing forest stands in terms of their
observed bivariate distribution of tree heights and diame-
ters, we define here the cumulative abundance surface
(CAS) as a function taking a pair of values of size variables
and returning the cumulative abundance of individuals
whose sizes are equal to or larger than the values given. If
one takes height and diameter as size variables and basal
area as abundance measure, the CAS function will return
the basal area of trees as tall as or taller than the input height
value and, at the same time, whose diameter is as thick as or
thicker than the input diameter value (Fig. 2a, b). Like the
marginal distributions of any bivariate joint distribution,
CAS can be marginalized into the CAPs of its two size
variables (Fig. 2c, d).

The calculation of resemblance between stands is analo-
gous to the original procedure but replacing the role of
CAPs by CASs. In step 1, one calculates the CAS for each
species in each stand. The comparison of CAS1k and CAS2k
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for a given species k (step 2) is done by integrating the com-
parison of cumulative abundance values across the plane de-
fined by the two size variables. In this case, the intersection of
the two surfaces defines three volumes: Ak—the volume com-
mon to the two cumulative surfaces; Bk—the volume that
occurs in CAS1k but not in CAS2k; and Ck—the volume that
occurs in CAS2k but not in stand CAS1k. If θ and φ are the two
size variables, the three quantities are

Ak ¼
Z ∞

θ¼0

Z ∞

φ¼0
min CAS1k θ;φð Þ;CAS2k θ;φð Þð Þ⋅dθ⋅dφ

Bk ¼
Z ∞

θ¼0

Z ∞

φ¼0
CAS1k θ;φð Þ−min CAS1k θ;φð Þ;CAS2k θ;φð Þð Þð Þ⋅dθ⋅dφ

Ck ¼
Z ∞

θ¼0

Z ∞

φ¼0
CAS2k θ;φð Þ−min CAS1k θ;φð Þ;CAS2k θ;φð Þð Þð Þ⋅dθ⋅dφ

ð4Þ

As before, we require the resemblance indices (step 3) to be
a function of Ak, Bk, and Ck for each species. In particular,
Dman and Dbray (eqs. 2 and 3) can be calculated without mod-
ification. Functions to build CASs and to calculate the resem-
blance coefficients Dman and Dbray have been included in the
R package ‘vegclust’ (De Cáceres et al. 2010).

2.3 Simulation study

We simulated tree data using Johnson’s Sbb distribution
(Johnson 1949; Schreuder and Hafley 1977) to study
whether Dman and Dbray can reflect differences in terms of
total basal area, tree diameter distribution, and tree height
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Fig. 2 Example of the construction of a CAS and its marginal CAPs for
diameters and heights from individual tree data. a A scatterplot of
diameter and height values in a 20 × 20 m forest plot. b The cumulative
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distribution (see details in Annex 1). We did not include
differences in composition because they were already stud-
ied in De Cáceres et al. (2013). In a first experiment, we
simulated 25 different stands by crossing five treatments in
stand basal area (5, 10, 15, 20, and 25 m2/ha; labeled ‘1’ to
‘5’) with five treatments in size distribution (labeled ‘a’ to
‘e’), assuming that when stands had trees larger in diameter,
those trees were also taller (i.e., in treatment ‘a’ mean dbh/
height was 5 cm/4 m; in ‘b’ 12 cm/5 m; up to 80 cm/20 m in
‘e’). In a second experiment, we simulated stands having all
the same basal area (25 m2/ha) but differing in height dis-
tribution, diameter distribution, or both. In this case, we
crossed five treatments in diameter distribution (labeled
‘a’ to ‘e’) with five treatments in tree height distribution
(labeled ‘1’ to ‘5’). Thus, stands could be composed of
short and thin trees, tall and thin trees, short and thick trees,
or tall and thick trees; with intermediates situations being
also covered. For every stand, we simulated tree individuals
until the target basal area was met.

The CAS for each stand was built taking basal area as
abundance variable and tree diameter and tree height as size
variables. We then calculated the resemblance between all
pairs of the 25 stands using either Dman or Dbray. Kruskal’s
non-metric multidimensional scaling was used to display each
of the resulting dissimilarity matrices in a two-dimensional
scatter plot (see Annex 1, Figs. 9 and 11). Both coefficients
were responsive to variations in stand basal area, tree height
distribution and tree diameter distribution, and the resulting
resemblance matrices satisfactorily preserved the ordering of
stands along the simulated gradients of the two experiments.
Nevertheless, the behavior of Dman and Dbray differed in the
magnitude of dissimilarity values for stands having low basal
area. CASs enclose a larger volume when either the basal area
of the stand increases or when trees are larger (see Annex 1,
Figs. 8 and 10), which leads to larger values of Ak, Bk, and Ck

when comparing CASs in those situations. Since Dman does
not have a normalizing factor in its formula, the resulting
distance value was affected by differences in CAS volume.
The choice of a dissimilarity index should be made in relation
to the problem at hand (Legendre and De Cáceres 2013). After
inspecting the results of the simulation study, we concluded
that Dman is more appropriate than Dbray for forestry applica-
tions because it better represents the differences in the distri-
bution of wood volume across species or tree sizes.

3 Definition of forest types in Catalonia using
forest inventory data

Here, we illustrate the usefulness of the framework presented
in the previous section to define forest typologies on the basis
of differences in stand composition and structure. Starting
from forest inventory data, we generated a classification

system for forests in Catalonia (NE of Spain) with two classi-
fication levels. Forest types of the first (coarser) level were
defined using species dominance as single classification crite-
rion whereas the definition of subtypes of the second (finer)
level included both composition and structure as classification
criteria. To evaluate the effect of considering the bivariate
distribution of diameters and heights vs. considering one of
the two marginal distributions alone, we compare the typolo-
gies obtained using the extended (CAS) framework with the
typologies obtained using the original (CAP) framework.

3.1 Data preparation

We compiled 10,546 plot records of the Third Spanish Forest
Inventory (NFI3) in Catalonia (DGCN 2005). NFI3 plots con-
sist of four nested circular subplots (of radius 5, 10, 15, and
25 m). For each subplot, species identity, height (cm), and
diameter at breast height (dbh, cm) of a living tree are recorded
only if its diameter is larger than a threshold (7.5, 12.5, 22.5,
and 42.5 cm, respectively). For example, between 15 m and
25 m radius, only trees larger than 42.5 cm are recorded. In
subplots of 5 m radius, the number of saplings (2.5 cm ≤ dbh ≤
7.5 cm) per species and their average height is also recorded.
We calculated the basal area per hectare (m2/ha) correspond-
ing to eachmeasured tree bymultiplying the normal section of
the tree by a density factor that depended on the subplot indi-
cated by its dbh. We focused on forests dominated by the 12
most prevalent tree species in the region: Aleppo pine (Pinus
halepensis Mill.), Black pine (P. nigra Arnold), Scots pine
(Pinus sylvestris L.), Mountain pine (Pinus uncinata Ram.),
Stone pine (Pinus pinea L.), Maritime pine (Pinus pinaster
Aiton), European fir (Abies alba Mill.), Holm oak (Quercus
ilex L.), Cork oak (Q. suber L.), Downy oak (Quercus humilis
Mill.), Portuguese oak (Quercus faginea Lam.), and European
beech (Fagus sylvatica L.). We discarded from the data set a
total of 3168 forest plots where tree species other than those
mentioned accounted for more than 20% of basal area or more
than 20% of all individuals.

3.2 Level 1–dominance-based forest types

With the remaining 7378 plots, we first defined forest types
depending on species dominance. A given plot was consid-
ered to be dominated by one of the twelve tree species if that
species alone accounted simultaneously for more than 80% of
basal area and more than 80% of tree density. Similarly, the
plot was considered as being co-dominated by two species if
each of them alone accounted for between 20 and 80% of
basal area or density and altogether they accounted for more
than 80% of both variables. Forest types defined in this way
were only considered valid if they had at least 10 plots
assigned to them, to ensure a minimum number of class mem-
bers. Among the 7378 plots evaluated, 4337 were dominated
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by a single species whereas 2034 were co-dominated by two
species (see Table 1). The remaining 1007 plots were consid-
ered as showing intermediate dominance patterns and were
discarded for the definition of forest subtypes. We calculated
the non-parametric (Spearman’s ρ) correlation between tree
diameters and tree heights of each species in each forest plot.
Average correlations were rather high for forests dominated
by Abies alba but much lower for those dominated by oak
species like Quercus ilex or Q. faginea (Table 1).

3.3 Level 2–forest subtypes

For each dominance-based forest type, we considered the
definition of subtypes according to both composition and
structure. We generated subtypes using either the extended
(CAS) framework or the original (CAP) framework. CASs
for each plot and species were built using basal area as
abundance variable and taking tree diameter and height as
size variables. In order to increase the sensitivity of dissim-
ilarities with respect to recruitment stages, diameter bins
were finer to distinguish thin trees than to distinguish thick
trees: dbh limits (in cm) for class rwere defined as 4 + [(0.5·
(r-1))2, (0.5·r)2] cm. The resulting bins were 4–6.25 cm,
6.25–9 cm, 9–12.25 cm, 12.25–16 cm, 16–20.25 cm, etc.
Height classes were defined using 100-cm bins. CAPs were

built in the same way as for CASs, taking either tree diam-
eter or tree height as (single) size variable (these will be
referred to as CAP(d) or CAP(h), respectively). We evalu-
ated the dissimilarity between pairs of plots using Dman (eq.
2), with Bk and Ck calculated from either CAS pairs (eq. 4),
CAP(d) pairs, or CAP(h) pairs (eq. 1). The correlation be-
tween the three resulting dissimilarity matrices was almost
always above 0.85 (see Table S1.1 in SEM1), indicating a
large degree of agreement in the three ways of assessing
resemblance between forest stands (but see classification
results below). To illustrate how choices regarding the dis-
similarity metric and the definition of diameter and height
bins may affect the dissimilarity between forest plots, we
include in Fig. 3 the results of a small sensitivity analysis
using the 434 forest plots dominated by Pinus nigra. They
indicate that the dissimilarity metric (Dman or Dbray) is the
most critical choice (Fig. 3b). After that, including or not the
height or diameter distributions (i.e., splitting abundance
data into height or diameter bins) leads to markedly differ-
ent dissimilarity values. Whether bins are more or less fine-
ly defined is of lower importance, especially beyond a cer-
tain level of resolution (D3-D4 or H3-H4 in Fig. 3c).

For each dominance-based forest type and each of the
three approaches, partitions of different numbers of clus-
ters (from 2 to 12) were obtained as follows. Starting from

Table 1 Forest types (12 single-
species forests and 26 two-species
forests) defined by dominance
criteria, number of NFI3 plots
assigned to them

Forest type N Average
ρ(H, DBH)

Forest type N Average
ρ(H, DBH)

Single-species forests (12) Two-species forests (cont.)

Pinus halepensis 1297 0.666 P. nigra–Q. ilex 110 0.662/0.481

Pinus nigra 434 0.761 P. nigra–Q. humilis 90 0.795/0.588

Pinus sylvestris 679 0.694 P. nigra–Q. faginea 53 0.712/0.693

Pinus uncinata 431 0.741 P. sylvestris–P. uncinata 117 0.681/0.736

Pinus pinea 60 0.622 P. sylvestris–A. alba 19 0.616/0.890

Pinus pinaster 40 0.622 P. sylvestris–Q. ilex 143 0.635/0.612

Abies alba 42 0.831 P. sylvestris–Q. humilis 134 0.668/0.551

Quercus ilex 798 0.569 P. sylvestris–Q. faginea 24 0.685/0.624

Quercus suber 178 0.701 P. sylvestris–F. sylvatica 31 0.609/0.615

Quercus humilis 189 0.671 P. uncinata–A. alba 38 0.722/0.769

Quercus faginea 95 0.612 P. pinea–P. pinaster 14 0.457/0.712

Fagus sylvatica 94 0.740 P. pinea–Q. ilex 69 0.525/0.640

Total 4337 P. pinea–Q. suber 44 0.616/0.650

P. pinaster–Q. ilex 12 0.653/0.048

Two-species forests (26) P. pinaster–Q. suber 33 0.565/0.646

P. halepensis–P. nigra 94 0.714/0.792 A. alba–F. sylvatica 30 0.855/0.612

P. halepensis–P. pinea 74 0.622/0.665 Q. ilex–Q. suber 113 0.618/0.668

P. halepensis–Q. ilex 341 0.670/0.597 Q. ilex–Q. humilis 152 0.608/0.565

P. halepensis–Q. humilis 29 0.610/0.638 Q. ilex–Q. faginea 45 0.601/0.610

P. halepensis–Q. faginea 41 0.665/0.440 Q. suber–Q. humilis 10 0.711/0.865

P. nigra–P. sylvestris 174 0.741/0.665 Total 2034

Annals of Forest Science (2019) 76: 40 Page 7 of 19 40



the square matrix containing distances between pairs of
plots, an initial partition was generated by cutting the
dendrogram produced by Ward’s hierarchical clustering
(Ward 1963). Then, we used the clustering algorithm
Partitioning Around Medoids (Kaufman and Rousseuw
1990) to refine this initial partition. A cluster medoid is
defined as the object (i.e., a plot) having the minimal sum
of distances to all the other objects in the cluster. We
evaluated the final partitions corresponding to different
numbers of clusters using Silhouette analysis (Kaufman
and Rousseuw 1990). For each forest type, we selected
the partition with the maximum number of clusters
(subtypes) as long as the average cluster Silhouette was
larger than 0.20 and all clusters had at least 10 plots
assigned to them. Subtypes were not defined if no parti-
tion fulfilled these requirements.

The number of subtypes recognized for each
dominance-based forest type under each of the three

approaches is indicated in Table 2. In general, the number
of subtypes depended on the total number of plots includ-
ed in the dominance-based forest type. For example, pure
P. halepensis forests, the most frequent type, were
subdivided into the largest number of subtypes, whereas
only two subtypes were recognized for forests dominated
by A. alba or P. pinaster, both species with low preva-
lence in the study area. Forests co-dominated by two spe-
cies followed the same rule. While six CAS-based sub-
types were recognized for the common P. halepensis–Q.
ilex forests, several other mixed forests were represented
by too few plots to be divided into subtypes. Clearly,
those dominance-based forest types less represented in
the study area were described in less detail.

For 19 out of 36 dominance-based types, the number of
subtypes distinguished using the CAS framework was equal
to the number of subtypes distinguished using either CAP(d)
or CAP(h) (Table 2). However, the overall number of subtypes

Fig. 3 Sensitivity analysis regarding the effect of dissimilarity metric and
the resolution of diameter and height bins on the dissimilarities between
plots. Dissimilarities between the 434 forest plots dominated by Pinus
nigra were calculated using 50 combinations of dissimilarity metric
(either Dman or Dbray; filled circles and diamonds, respectively) and five
degrees of resolution in the definition of diameter bins (D0 to D4) and
height bins (H0 to H5). a Bin definitions graphically, along with the

symbol sizes (for diameters) and gray tones (for heights) used in the
remaining panels (b–d). b A metric MDS representation in two
dimensions (stress = 0.068) of the correlation between the 50 different
dissimilarity matrices. c, d The MDS representation when focusing on
the 25 combinations corresponding to Dman (stress = 0.099) and when
focusing on those corresponding to Dbray (stress = 0.131), respectively
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Table 2 Number of forest
subtypes (clusters) in classifica-
tions based on CAP(d) (i.e., using
diameter distribution alone), clas-
sifications based on CAP(h) (i.e.,
using height distribution alone)
and classifications based on CAS
(i.e., taking into account the bi-
variate distribution of diameters
and heights). The adjusted Rand
(Hubert and Arabie 1985) index
evaluates the degree of agreement
between the membership matrices
issued from each classification
approach. Adjusted Rand values
corresponding to line ‘Total’were
calculated after pooling the mem-
bership matrices corresponding to
the different dominance-based
types

(a) Single-species forests
(12)

Number of subtypes Adjusted Rand index

Forest type CAP(d) CAP(h) CAS CAP(d) vs.
CAP(h)

CAP(d) vs.
CAS

CAP(h) vs.
CAS

Pinus halepensis 7 12 12 0.545 0.460 0.464

Pinus nigra 5 6 5 0.631 0.513 0.621

Pinus sylvestris 3 5 6 0.326 0.374 0.529

Pinus uncinata 4 5 10 0.571 0.319 0.398

Pinus pinea 3 3 3 0.616 0.886 0.704

Pinus pinaster 2 2 2 0.900 0.900 1.000

Abies alba 3 2 2 0.602 0.472 0.647

Quercus ilex 3 8 11 0.387 0.324 0.498

Quercus suber 4 4 7 0.436 0.424 0.487

Quercus humilis 3 3 3 0.781 0.391 0.369

Quercus faginea 2 2 2 0.873 0.791 0.751

Fagus sylvatica 2 3 3 0.467 0.378 0.648

Total 41 55 68 0.579 0.509 0.567

(b) Two-species forests
(26)

Number of subtypes Adjusted Rand index

Forest type CAP(d) CAP(h) CAS CAP(d) vs.
CAP(h)

CAP(d) vs.
CAS

CAP(h) vs.
CAS

P. halepensis–P. nigra 3 3 3 0.624 0.481 0.672

P. halepensis–P. pinea 3 4 4 0.573 0.519 0.809

P. halepensis–Q. ilex 4 5 6 0.455 0.470 0.439

P. halepensis–Q. humilis 2 2 1 0.508

P. halepensis–Q. faginea 3 3 2 0.565 0.455 0.455

P. nigra–P. sylvestris 3 6 5 0.509 0.477 0.563

P. nigra–Q. ilex 3 3 4 0.890 0.774 0.753

P. nigra–Q. humilis 3 4 3 0.465 0.521 0.556

P. nigra–Q. faginea 2 2 2 0.533 0.716 0.533

P. sylvestris––P.
uncinata

4 4 4 0.463 0.760 0.517

P. sylvestris–A. alba 1 1 1

P. sylvestris–Q. ilex 2 3 3 0.378 0.480 0.601

P. sylvestris–Q. humilis 2 5 2 0.318 0.854 0.339

P. sylvestris–Q. faginea 2 2 2 0.681 0.681 1.000

P. sylvestris–F. sylvatica 2 1 1

P. uncinata–A. alba 2 2 2 1.000 1.000 1.000

P. pinea–P. pinaster 1 1 1

P. pinea–Q. ilex 2 3 4 0.477 0.543 0.583

P. pinea–Q. suber 2 2 2 0.821 0.909 0.738

P. pinaster–Q. ilex 1 1 1

P. pinaster–Q. suber 2 2 1 0.765

A. alba–F. sylvatica 1 2 2 0.425

Q. ilex–Q. suber 2 2 3 0.796 0.201 0.209

Q. ilex–Q. humilis 3 3 4 0.824 0.519 0.560

Q. ilex–Q. faginea 3 2 1 0.489

Q. suber–Q. humilis 1 1 1

Total 59 69 65 0.702 0.708 0.673
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was 133 using CAS, 124 using CAP(h), and 100 using
CAP(d), indicating a slightly greater diversity of bivariate dis-
tributions and height distributions, compared to the diversity
of diameter distributions. We calculated the Rand Index
(Hubert and Arabie 1985) to compare the classifications into
subtypes obtained under each approach. This index allows
comparing classifications with different numbers of groups
and is ranged between 0 (indicating a match between the
two classifications no greater than would be expected by
chance) and 1 (indicating a perfect match). Surprisingly, the
agreement between approaches was rather low for several
forest types (Table 2). A high level of agreement was obtained
for forests dominated by Pinus pinea or Pinus pinaster, prob-
ably due to a simplicity of forest structures derived from man-
agement, but in the remaining cases the agreement was mod-
erate or even low. In particular, the subtypes obtained using
either CAS, CAP(d), or CAP(h) were rather different for for-
ests dominated by Pinus uncinata, Pinus sylvestris, Quercus
ilex, Q. suber, and Q. humilis, indicating a high degree of
complexity in forest structures.

3.4 Interpretation of CAS forest subtypes

The characterization of all CAS-based subtypes is given
in tables (structural statistics) and figures (density and
basal area distributions across diameter and height clas-
ses) of SEM 2 and 3. Examining the distribution of den-
sity along tree size classes allowed us to interpret sub-
types from silvicultural and ecological perspectives. The
distinction between subtypes of single-species forests
could arise due to a higher density only, without substan-
tial differences in tree diameter or height distribution; or
be due to differences in the distribution of one or both
size variables. For instance, among the forest stands dom-
inated by P. nigra (Fig. 4 and Table S2.2), four subtypes
(PN1, PN2, PN4, and PN5) had diameter and height dis-
tributions that indicated different stages of development
of even-aged forests, whereas a fifth subtype (PN3) in-
cluded greater horizontal and vertical irregularity (i.e.,
uneven-aged stands). Among the even-aged subtypes,
PN2 and PN4 reflected similar developmental stages but
were noticeably different with regard to stand density. For
its part, subtype PN5 not only involved the most mature
stand development stage among even-aged forests, but
could also be described as a mature and densely stocked
uneven-aged stand.

Forests co-dominated by two species with similar degree of
shade-tolerance included subtypes where both species had
similar contribution to total basal area and subtypes when
either one species or the other was more abundant than the
other, but often with the two species having similar tree size
distributions. For example, the interpretation of subtypes co-
dominated by P. sylvestris and P. uncinata (Fig. 5 and

Table S3.10) led to the identification of one young and one
more mature stand subtypes, both with similar occupancy of
the two species (PSPU1 and PSPU2), and other two mature
subtypes, one dominated by P. sylvestris (PSPU3), the other
byP. uncinata (PSPU4). Similar interpretations could bemade
for pine-pine mixed forests (e.g., P. nigra–P. sylvestris,
P. halepensis–P. pinea, or P. halepensis–P. nigra) and oak-
oak mixed forests (e.g., Q. ilex–Q. humilis). In forests co-
dominated by two species showing different degrees of
shade-tolerance, trees of the shade-intolerant species were
generally of larger size than trees of the shade-tolerant species.
However, situations where the shade-tolerant species domi-
nated the stand were also identified (see SEM3). For example,
the six subtypes co-dominated by P. halepensis and Q. ilex
(Fig. 6 and Table S3.3) reflected structural and compositional
differences that in some cases indicated different successional
stages between the shade-intolerant and the shade-tolerant
species. A first subtype (PHQI1) matched with young and
open stands co-dominated by the two species. Four of other
subtypes (PHQI2, PHQI3, PHQI5, and PHQI6) showed a
dominant layer of P. halepensis over a non-negligible layer
of Q. ilex. These subtypes were differentiated by the size and
density of pines. The remaining subtype (PHQI4) suggested a
more advanced successional stage in which Q. ilex, although
growing in a lower stratum, had already become dominant in
terms of basal area. We reached similar interpretations for
several pine-oak mixed forests (i.e., combinations between
P. halepensis, P. nigra, P. sylvestris, or P. pinea, on one side,
and Q. ilex, Q. suber, Q. humilis, or Q. faginea, on the other),
but also for other kinds of mixed forests (e.g., P. sylvestris–F.
sylvatica or P. uncinata–A. alba).

4 Discussion

The approach presented here attempts to simplify the task of
determining the resemblance between forest stands. Instead of
requiring the selection of multiple variables, often having dif-
ferent units and therefore being difficult to consider simulta-
neously, our approach allows the analyst to compare the ver-
tical and horizontal structure of forest plots by performing a
small set of choices (one or two size variables, an abundance
variable and a compositional resolution). Similarly to other
approaches based on the Lorenz curves (Valbuena et al.
2013), our approach tries to exploit all the information in the
uni- or bivariate distribution of diameters and heights. Thanks
to the flexibility of dissimilarity indices based on CAPs and
CASs, our approach allows comparing and classifying forest
stands of very different kinds. Therefore, even if its spatial
grain is the forest plot, the same framework can be applied
consistently for large areas if combined with data from large-
scale forest surveys such as national forest inventories. Thus,
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it could be used to complement coarse forest typologies
(Barbati et al. 2014) with finer classification levels.

One of the main advantages of our approach is its flex-
ibility with regard to the kind of input data that it accepts
and the number of ways to analyze it. Multiple choices
can be made for size (i.e., vertical structure) and abun-
dance (i.e., horizontal structure) variables, as well as for
the definition of compositional classes. Here, we used
height and diameter, which seem natural choices of size
variables when comparing forest plots using individual
tree data. Comparisons between forest stands can be done
using both variables and cumulative abundance surfaces
(CASs), if both variables have been measured, or using

cumulative abundance profiles (CAPs) if only one of them
is available. If, for a given forest data set, the vertical
structure is defined as vegetation strata, one can adapt
the method by defining the highest stratum reached by
plants as the size variable. Our approach is also flexible
with respect to the variable chosen to represent horizontal
structure (e.g., basal area, projected cover or number of
individuals). For example, if forest data consists of re-
cords from Airborne LiDAR, one could classify them into
forest types choosing height classes as size variable and
the number of first LiDAR returns corresponding to each
height class as abundance (i.e., horizontal structure) vari-
able. With regard to compositional classes, species
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Fig. 4 Five subtypes of forests dominated by Pinus nigra (PN), ordered
by increasing stand’s basal area (see Table S2.2). For each subtype, we
show the distribution of basal area (m2/ha) among 1-m height classes and

5-cm diameter classes (first and second columns, respectively) and the
distribution of density (ind./ha) among height and dbh classes (third and
fourth columns, respectively)
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taxonomic identity seems a natural choice, but other clas-
ses such as functional groups could be used instead. If the
presence of dead trees, such as standing snags or fallen
logs is deemed relevant (e.g., if forest types need to
represent successional stages or habitat quality for
wildlife; McComb and Lindenmayer 1999), one can add
compositional classes to represent them (diameter and
height/length of the dead tree could still be used as size
variables). Another source of flexibility comes from the
possibility of altering the scale of the size variables or the
abundance variable. For example, in our application with
forest inventory data we defined quadratic diameter bins,
but linear or logarithmic bins would also be possible.

We found that tree diameters did not strongly correlate
(monotonically) with heights in our forest inventory data.
Further, classifications obtained using the CAS framework
were often not very similar to classifications obtained using
the original framework (CAP), even if the number of subtypes
recognized was often the same. Taking into account the bivar-
iate distribution of diameters and heights may better

accommodate to the complexity of forest structures than uni-
variate distributions. However, the observed higher overall
number of subtypes could be an artifact derived from inaccu-
racies in the estimation of tree sizes. Although we focused
here on how dissimilarities are defined, other important
choices for the definition of typologies are those of the unsu-
pervised classification algorithm and its parameters. With the
chosen values for average Silhouette (0.2) and minimum
membership (10 plots), the number of subtypes of some for-
ests, like those of Pinus halepensis, is probably too high for
practical use. Larger values of these thresholds would lead to
fewer subtypes in these cases, but could compromise the rec-
ognition of subtypes less represented in the forest inventory
data. Practitioners are welcome to search for parameter com-
binations that produce interpretable and operational
typologies.

While general and flexible, our approach has limita-
tions in the kind of structural variables that can be includ-
ed (McElhinny et al. 2005). Because it focuses on the
structure provided by plants (i.e., trees, shrubs, and even
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Fig. 5 Four subtypes of forests co-dominated by P. sylvestris (PS) and
P. uncinata (PU) (both shade-intolerant species), ordered by increasing
basal area (see Table S3.10). For each subtype and species, we show the
distribution of basal area (m2/ha) among 1-m height classes and 5-cm

diameter classes (first and second columns, respectively) and the distri-
bution of density (ind./ha) among height and dbh classes (third and fourth
columns, respectively)
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herbs), it does not accommodate easily to other structural
features such as litter cover or ground cover. Species di-
versity and variations in plant dimensions are fully represented
in our approach, but spacing between plants is only represented
in terms of density (Pommerening 2002). Unlike in Ngo Bieng
et al. (2006), patterns of spatial clumping or segregation of

plants are not taken into account for the definition of forest
types. Another limitation of the classification approach
employed here is that it does not produce determination keys
easy to apply for field sampling or assignment rules for map-
ping with remote sensing data (Valbuena et al. 2013).
Supervised classification might be needed to produce
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Fig. 6 Six subtypes of forests co-dominated by P. halepensis (PH; shade-
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and second columns, respectively) and the distribution of density (ind./ha)
among height and dbh classes (third and fourth columns, respectively)
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membership rules for mapping or keys for field determination.
Finally, our approach relies on a sufficiently accurate estimation
of the uni- or bivariate distribution of tree diameters and heights
in the input data. Limitations derived from field sampling pro-
tocols, such as a small plot size or the nested plot structure of
our forest inventory data, may be a source of error in the esti-
mation of dissimilarities and the resulting forest classes (Nanos
and de Luna 2017).

In our opinion, the approach presented here allows
the description and classification of forest stands (i.e.,
through forest plot data) at a sufficient level of detail to
facilitate forest planning and decision-making in biogeo-
graphic contexts where fine-scale variability of topo-
graphic, climatic, and land-use factors leads to large
variability in forest structure and composition (e.g.,
Bruciamacchie 2001). In particular, it allows classifying
mixed-forests according to structural attributes over
large areas, which remained a difficult and challenging
task until now. The compositional and structural typol-
ogies obtained using our approach can provide forest
managers with critical information for the efficient or-
ganization of silvicultural operations in time and space.
For example, they could be used to develop type-based
management guidelines aiming to either maintain a cer-
tain stock and size distribution of trees (e.g., Gove
2004) or emulate natural succession (e.g., Attiwill
1994). If necessary, the structural and compositional dis-
similarity between the managed stand and specific forest
types could be used to accurately monitor deviations
from planned sequences. Finally, our approach could
also be used in the study of forest dynamics (De
Cáceres et al. 2019). The definition of a forest typology
from consecutive surveys of permanent forest plots
could provide critical information on the prevalence of
regressive and successional series across a study area,
and allow the evaluation of the most important factors
driving such changes, including the role of disturbances
(Sánchez-Pinillos et al. 2019).
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Annex 1. Simulation study

Simulated treatments

We simulated forest tree data using Johnson’s Sbb distribu-
tion (Johnson 1949; Schreuder and Hafley 1977) to study
the appropriateness of Dman and Dbray to reflect differences
in terms of total basal area, tree diameter distribution and
tree height distribution. For simplicity, we did not include
differences in composition; these were considered in De
Cáceres et al. (2013). In all simulations some parameters
of the Sbb distribution were fixed (ρ = 0.8, δ1 = δ2 = 1.5).
We changed parameters γ1 and γ2 of the Sbb distribution
to simulate variations in the distribution of tree diameter and
tree height. Five treatments were considered for each size
variable (see Fig. 7). Five treatments of stand basal area
were also considered: 5, 10, 15, 20, and 25 m2/ha. For each
simulated stand we generated tree individuals until to the
stand’s target basal area was met.

Fig. 7 Marginal probability
density functions for tree
diameters and tree heights
obtained by setting different
values for Sbb parameters γ1 and
γ2, respectively
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First simulation experiment

In a first experiment, we generated 25 different stands by cross-
ing the five treatments in stand basal area (labeled ‘1’ to ‘5’) with
five treatments in tree size distribution (labeled ‘a’ to ‘e’), assum-
ing that when trees were larger in diameter they were also larger
in height (i.e., in treatment ‘a’γ1 = −5 andγ2 = − 3; in ‘b’γ1 =−
3.75 and γ2 =− 2; etc.). Thus, simulated stands were composed
of few small individuals, many small individuals, few large indi-
viduals, or many large individuals; with intermediate situations

being also covered. The CAS for each plot was built using basal
area as abundance variable and tree diameter and tree height as
size variables. We defined quadratic diameter bins, meaning that
more classes were defined to distinguish thin trees than to distin-
guish thick trees. Specifically, diameter limits (in cm) for class r
were defined as 4 + [(0.5·(r-1))2, (0.5·r)2] cm. The resulting clas-
ses were: 4–6.25 cm, 6.25–9 cm, 9–12.25 cm, 12.25–16 cm, 16–
20.25 cm etc. Height classes were defined linearly using 100-cm
bins. Figure 8 shows the CAS corresponding to each of the 25
simulated stands.
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Fig. 8 Cumulative abundance surfaces (CASs) corresponding to the 25 simulated forest stands of the first experiment. Each of the five rows corresponds
to the bivariate distributions of diameter and height presented in Fig. 7. Columns differ in the stand’s basal area simulated (5, 10, 15, 20, and 25 m2/ha)
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Fig. 10 Cumulative abundance surfaces (CASs) of the 25 simulated forest stands of the second experiment. Each panel corresponds to a combination of
diameter distribution (rows) and height distribution (columns) among those presented in Fig. 7. All stands have a basal area of 25 m2/ha
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hen calculated the resemblance between all pairs of
simulated stands using either Dman or Dbray. We used
Kruskal’s non-metric multidimensional scaling (nMDS)
to display each of the resulting dissimilarity matrices
in a two-dimensional scatter plot (Fig. 9). Both coeffi-
cients were responsive to changes in total basal area and
tree size. However, in the dissimilarity matrix obtained
using Dman the distances due to differences in tree size
were smaller between stands with small basal area than
between stands with large basal area (i.e., compare se-
quences a1-e1 and a5-e5 in Fig. 9). Similarly, the dis-
tances due to differences in basal area were smaller
between stands composed of small individuals than be-
tween stands composed of large individuals (i.e., com-
pare sequences a1-a5 and e1-e5 in Fig. 9a). These pat-
terns did not occur in the case of Dbray. Contrastingly,
with this coefficient the dissimilarity between a pair
stands differing in basal area was somewhat larger when
the two stands had 5 and 10 m2/ha, respectively (i.e., a1
vs. a2, b1 vs. b2, …; Fig. 9b), than when they had 20
and 25 m2/ha, respectively (i.e., a4 vs. a5, b4 vs. b5,
…; Fig. 9b). Similarly, the dissimilarity between pairs
of plots differing in tree distribution was larger between
small tree treatments (i.e., a1 vs. b1, a2 vs. b2, …; Fig.
9b) than between large tree treatments (i.e., d1 vs. e1,
d2 vs. e2, …; Fig. 9b).

Second simulation experiment

In a second experiment, we calculated the resemblance
among stands having all the same basal area (25 m2/ha)
but differing in height distribution, diameter distribution,
or both. In this case, we generated stands by crossing the
five treatments in diameter distribution (labeled ‘a’ to ‘e’)
with the five treatments in tree size distribution (labeled
‘1’ to ‘5’). Thus, stands could be composed of short and
thin trees, tall and thin trees, short and thick trees, or tall

and thick trees; with intermediates situations being also
covered. The CAS for each plot was built as before
(Fig. 10).

As with the first experiment, we calculated the resemblance
between all pairs of simulated stands using either Dman or
Dbray and displayed the resulting dissimilarity matrices using
non-metric multidimensional scaling (Fig. 11).

Both coefficients were responsive to changes in tree
diameter and tree height. Although the effects where
less obvious, the behavior of both indices was similar
to the first experiment. With Dman the distances due to
differences in diameter distribution were smaller be-
tween stands with short trees than between stands with
tall trees and, similarly, the distances due to differences
in tree height were smaller between stands composed of
thin individuals than between stands composed of thick
individuals (Fig. 11a). With Dbray the dissimilarity be-
tween stands differing in tree diameter was larger be-
tween thin tree treatments than between thick tree treat-
ments and, similarly, the dissimilarity between plots dif-
fering in tree height was larger between short tree treat-
ments than between tall tree treatments (Fig. 11b).
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