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Abstract
& Key message Local site-level calibration of allometric models was scrutinized. Two Bayesian calibration methods were
compared to local random effects estimations. The Bayesian calibration methods proved more effective than local
estimation of random effects in reducing prediction bias. The simplest literature-based calibration can be recommended.
The local calibration had minor effects on stem volume estimations.
& Context The spatial variability of trees allometry has long prompted the necessity for local, site- or stand-level calibrations.
Mixed-effect models have enabled a quantitative progress through a local calibration where data are available. More recently,
Bayesian statistics brought new alternatives owing to their formal definition of the random effects from prior information.
& Aims To compare three local calibration methods: (i) a calibration based on the estimation of the local random effects, (ii) a
Bayesian calibration where prevailing measurements are used to produce prior estimations, and (iii) a Bayesian calibration
reproducing a calibration based on literature data only.
& Methods The three calibrations were compared using a stem taper model developed for Norway spruce in Romania. The taper
model was fitted to a large dataset, then applied locally to two high-elevation sites with contrasting growing conditions.
& Results The local calibration of mixed-effect models resulted in small gains and high biases. The Bayesian calibrations yielded
better results, mostly because the Monte Carlo Markov Chain implementation permitted to tune of all the model’s parameters
simultaneously. The differences in stem volume estimations were however always very small ranging from − 5.2 to 3.3% of the
non-calibrated volume.
& Conclusion The Bayesian literature-like calibration performed as well as the calibration using the large dataset (4–97% bias
reduction according to the tree) and can be preferred for its ease of use.
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1 Introduction

The estimation of tree volume remains one of the most impor-
tant tasks in forestry and forest research. In spite of the invest-
ment to develop estimation methods, assessing tree volume
remains challenging, mostly because it can hardly be done
directly on the field. Estimating the aboveground volume on
large scale is usually done by applying allometric models
established either on felled trees, using remote diameter mea-
surements on standing trees, or more recently from laser scan-
ning (Calders et al. 2015). However, suchmodels are basically
non-generic (strongly influence/dependent on the observa-
tions used to fit them) and should be applied with care to trees
outside of the population used for the model’s fit. Indeed,
changes in the silvicultural regime or ecological conditions
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proved to be very influential on tree allometry and result in
biases for both total volume and its partitioning (Forrester
et al. 2017). The sampling itself may have a great influence
on the model’s fit, on the parameters and their confidence
interval, and the residual variance (Cunia 1964). If generality
is a desired property for a model, it is necessary to take all the
Bbetween stand^ and the Bwithin stand^ variability sources
into account for the equation building (Wirth et al. 2004).
The great number of volume or biomass equation developed
(e.g., Zianis et al. 2005 for temperate species, Henry et al.
2011 for tropical species, Chojnacky et al. 2014; Neumann
et al. 2016) is a direct consequence of the fact that the equa-
tions have a limited geographic validity and have often been
fitted on few trees. Taper equations can provide volume esti-
mations and are based on measurement of diameters along the
tree bole. Such models are therefore particularly sensitive to
spatial variations in stem form and represent good indicators
of the local errors that can result from applying allometric
models outside of their base geographic domain. Inversely,
including upper diameter measurements has been proved in
many occasions to improve substantially the estimation of the
volume thus making them more spatially robust (Kublin et al.
2013). Robust taper equations also require a local, site-
specific or stand-specific calibration, for unbiased predictions.

The use of mixed-effect models contributed to improving
the robustness of the models and reduce bias. They proved to
have smaller prediction errors than fixed-effect models and
were successfully utilized to do local calibration of allometric
models, hence intrinsically have greater adaptability (Lappi
1986; Calama and Montero 2004; Adame et al. 2008; Cao
and Wang 2011). The random parts of the models account
for the hierarchical structure of the dataset whereby several
trees are sampled from the same site, potentially violating the
hypothesis of independence among observations—this repre-
sents the majority of samplings in the literature. The random
effects also represent the geographic variation, generally a
site-level or plot-level variation, and possibly nested in a larg-
er regional or national level. Such models have been recently
developed for their ability to provide predictions at different
levels of the independent variables. However, the magnitude
and the distribution of the random effects are very seldom
reported and documented in the literature.

Predicting the random effects parameters for new levels
can be made using local calibration, which requires the use
of local measurements made on few trees, typically a small
fraction of the number used to fit the model. Methods and
limitations to the estimation of the random effects for predic-
tions can be found in Ni and Nigh (2012). This calibration
requires the estimation of the random effects parameters,
which are not formally defined but for which different estima-
tion procedures were proposed and have been successfully
applied in different forestry applications (e.g., Hall and
Bailey 2001; Cao and Wang 2011; Paulo et al. 2011). Yang

and Huang 2011 Another possible calibration has been recent-
ly proposed and seems to produce superior fits, particularly
when the dataset is small: the Bayesian calibration, which has
been recently advocated (Zapata-Cuartas et al. 2012; Zell et al.
2014). We are aware that the local estimation of random ef-
fects is generally based on the empirical Bayes approach
(Vonesh and Chinchilli 1997, Meng and Huang 2009), and
thus, local estimation of random effects can be considered as
a Bayesian estimation. But here, we refer to Bayesian calibra-
tion only for the situation where the model parameters are all
fitted based on Bayesian models, which is done here within
the Monte Carlo Markov Chain framework (MCMC).

In order to test and compare the two calibration methods,
the random effects parameters estimation or the Bayesian cal-
ibration, a taper model for Norway spruce (Picea abies L.)
was fit from a detailed measurement campaign over
Romania. The taper model was fit with random effects using
two methods, maximum likelihood and Bayesian, then ap-
plied to trees sampled from sites not used for the fit and with
different growing conditions, representing a difficult or risky
extrapolation. Last, a Bayesian calibration based on fit statis-
tics, not direct measurements, is implemented to test the po-
tential of literature-based calibration where local data are not
directly available.

2 Material and methods

2.1 The datasets

Two sets of data were used for the analysis: the first set, re-
ferred to as the fit dataset, was used to fit the models while the
second set was used to perform their local calibration and
validation.

2.1.1 The fit data set

The 16 plots were inventoried according to the National Forest
Inventory procedure (Marin et al. 2010), and 3 to 10 trees per
plot were selected for destructive measurements as a constant
fraction of the total number of trees in the plot. The plots
consisted in two concentric circles of fixed radius: 56 ≤
breast-height diameter (dbh) ≤ 285 mm within 0–7.98 m and
dbh ≥ 285 mm within 0–12.96 m. Within each plot, tally trees
are measured both in dbh, total height, base of living crown,
and base of dead crown. Plots were dominantly set up on
clear-cut areas (building road or electric lines) so that all tree
size (in diameter and height) but particularly big trees could be
sampled. Thus, the selection of the trees sampled was not
limited by silvicultural constraints, which would otherwise
have led to felling trees from lower canopy positions.
Successive diameters (outside-bark) were measured along
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the stem using a caliper after felling at prescribed heights: 0.1,
0.5, 1, 1.3, 2, 2.6, and 3 m and then every 2 m to the tip.

The fit sample covered a range of dbh from 5.6 to 53.4 cm,
and of total height from 1.3 to 41.6 m (Table 1).

2.1.2 The application set

Two high elevation stands were sampled in the buffer zone of
forest reserves, thus differing from the stands used for the fit
by their low-intensity (to no) forest management and a high
elevation as compared to the fit set. The first site (47° 46′19″
N, 25° 48′ 70″) was located in the Rărau GiumalăuMountains
at an elevation of 1350–1450 m on a slope of 25–35°. The
second site (47° 19′ 02″ N, 25° 15′ 10″) was located at a
similar elevation (1400–1500 m) and slope range, about
40 km apart from the first site.

At both sites, the application set was constituted of 24 trees
covering the diameter range of the stands, from 6 to 66 cm,
measured after felling. Two trees were sampled per diameter
class in each stand so the application sets can be randomly
split in two equally sized batches of trees (12 trees) having
very similar dimensions: one batch was used for the local
calibration and referred to as the calibration batch, the other
for describing the fit quality and quantifying the impact of the
calibration, referred to as the evaluation batch.

2.2 The stem taper equations

Many taper equations have been published, which differ both
in their form and in the number of their parameters. Flexibility
seems to have been an important aspect in the development of
the different equations, based on variety of functions, from

exponential to spline. Choosing the best suited taper equation
could be a study on its own, given the great diversity of pub-
lished equations: polynomial, variable-exponent (Kozak
1997), spline (Kublin 2003), continuous or segmented curves
(Max and Burkhart 1976). Although very different in their
shape and parametrisation, different models can have very
comparable performance, particularly for smooth and regular
stems such as that of spruce. As Arias-Rodil et al. (2015) put
it, Bnone can be considered best.^ The ultimate choice could
have been based on comparing the third decimal of some
statistics but the choice here was rather related to the possibil-
ity of including covariates and to the necessity to have a model
addressing separately each stem portions explicitly.

Thus, the stem taper equation used in this study is a
versatile equation successfully fit to a variety of species
such as eucalyptus (Saint-André et al. 2002; Gomat et al.
2011) and teak (Adu-Bredu et al. 2008). Given the dbh
and the total height of the tree (H), the equation relates the
relative diameter dr (dr = d/dbh) to the relative height hr
(hr = h/H) as:

dr ¼ a1 �
�
1−a2 � hrð Þ 1þ a3 � e−a4:hr

� �
− 1−a2ð Þ � hra5 ð1Þ

This taper model has the advantage of having parameters
specifically related to each of the main stem fractions: the stem
taper (a1 and a2), the butt-swell and taper of the lower stem
part (a3 and a4), and the stem top (a5).

This initial model was further developed by testing possi-
ble effects of covariables on the parameters of the model them-
selves (Adu-Bredu et al. 2008; Gomat et al. 2011). In our case,
the model (1) was fit once on the fit dataset individually, i.e.,
separately for each tree, then the 126 set of parameters were

Table 1 Comparison of the site and destructively sampled tree characteristics for the fit and evaluation datasets. Site ID; site name; elevation (m a.s.l.);
stand density; age class; sampled trees; dbh range (cm); tree height range (m)

Site N trees Elevation
(m a.s.l.)

Stand density
(stem−1)

Age (years) dbh range of sampled
trees (cm)

Height range of
sampled trees (m)

Stem volume (m3)
(min–max)

Fit dataset

Demacușa 15 900–1100 760–800 85 20.8–44.9 22.5–34.5 0.364–2.476

Frasin 6 825 440 95 8.3–49.7 6.9–37.1 0.022–2.864

Crasna 17 760–810 460–560 60–90 27.9–43.1 31.5–38.2 0.471–2.419

Valea Doftanei 33 1100–1200 600–740 50–70 9.4–22.4 6.3–24.5 0.032–0.455

Padeș 27 1300–1360 40–460 60–100 5.6–37.7 4.2–25.8 0.008–1.107

Delnița 10 1000–1100 130 39.8–66.1 38.9–45.1 2.374–6.825

Valea Putnei 18 20 7.5–13.3 10.0–18.4 0.024–0.118

Evaluation dataset

Rărau—batch 1 12 1350–1450 350 130 9.2–58.7 6.6–41.4 0.112–5.252

Rărau—batch 2 12 1350–1450 350 130 7.1–60.9 5.5–44.1 0.199–4.823

Călimani—batch 1 12 1400–1500 420 140 6.7–58.0 4.9–43.1 0.013–5.764

Călimani—batch 2 12 1400–1500 420 140 8.1–62.3 6.5–42.2 0.257–5.012

Annals of Forest Science (2019) 76: 65 Page 3 of 12 65



correlated to candidate covariables: h/d, dbh, top height and a

robustness index estimated as
ffiffiffiffiffiffiffiffiffiffiffi
π∙dbhð Þ

p
=H . There was little ev-

idence of correlation, except between a1 and tree height, ht.
The form of the relationship was clearly non-linear, and while
different forms were tested, a simple hyperbolic model
seemed the most suited. This lead to the more complete model
(2) derived from model (1) as:

dr ¼ a1−
a2

1þ a3

� �
�
�
1−b� hrð Þ 1þ c� e−d:hr

� �
− 1−bð Þ � hre þ ε ð2Þ

The model parameters for which a random site-level
effect was included were the parameters b, c, and d. It
was not possible to estimate random effects for all param-
eters because of computational issues despite the fair
amount of available data (N = 1896). The model with ran-
dom effects was in the form:

dr ¼ a1−
a2

1þ a3

� �
�
�
1−b2 � hrð Þ 1þ b3 � e−b4:hr

� �
− 1−b2ð Þ � hrb5 þ ε

ð3Þ
with ∀ k ∈ [2, 4], bk = βk + vk,j where is the fixed part of
the parameter βk, and vk,j is the random, site-level com-
ponent such that for each site j, vk, j~N(0, σk

2), and
model’s residual ε~N(0, σ2). The variance components
σk

2and σ2 are unknown and need to be estimated during
the MCMC fit. Convergence cannot be achieved if b5 is
expressed as a random-effect parameter. The final form
of the model was chosen based on fit statistics for dif-
ferent combinations of parameters using the Akaike in-
formation criterion (AIC), the bias, the model efficiency
(MEF), and a pseudo-R2. The bias, MEF, and pseudo-R2

were computed as:

Bias ¼ ∑ y−ŷ̂ð Þ2
n

MEF ¼ 1−
∑ y−ŷ̂ð Þ2

∑ y−y
� �2

Pseudo−R2 ¼ corr y; ŷ̂ð Þ2

where y is the measured relative diameter, ŷ the predicted
value, y the mean value over all n observations. The compar-
ison of the fit statistics for different model forms is displayed
in Table 6 (Appendix).

Autocorrelation in errors caused by the use of several mea-
surements per tree (Meng and Huang 2009) was not explicitly
corrected since most of it was absorbed by the random effects,
as also concluded by Trincado G, Burkhart (2006). Another
reason is that the autocorrelation, if any, cannot be supposed to
be equal among observation sets and thus cannot be directly
modeled.

2.3 Statistical methods

2.3.1 Mixed effect models maximum likelihood calibration

The taper model (2) was fit by maximum likelihood (ML)
using the nlme library (Pinheiro et al. 2016) of R (3.2.1).
The local calibration of a mixed effect model consists in esti-
mating the random effect parameters for new individuals.
According to Ni and Nigh (2012), there are two methods for
estimating the random effect parameters and two for
predicting the response variable, leading to four combinations,
of which only two are coherent. In short, while the expected
value of the random effect parameters is 0 by definition, the
value used for calibration is more generally the estimation
obtained at the latest iteration of the model fitting (iterative)
process. Such estimation is itself based on a predictor, for
instance the empirical best linear unbiased predictor
(EBLUP). In this situation the construction of the prediction
distribution is made based on the EBLUP expansion proce-
dure, also known as the first-order conditional expectation
(FOCE), initially proposed by Lindstrom and Bates (1990)
and described and implemented by Huang et al. (2009).
There are many examples of calibration following the method
described by Huang et al. (2009), and it will not be described
in further details here. The FOCE procedure followed to esti-
mate the random expansion values here was based on Huang
et al. (2009) and Ni and Nigh (2012). In this procedure, the
EBLUPs were first estimated by iteration as presented in the R
code associated to this article (Bouriaud et al. 2019), then
applied to the new data.

2.3.2 Bayesian calibrations

The taper equation fit using the nlme package of R was sub-
sequently used in a Bayesian Monte Carlo Markov Chain
framework using Stan (Hoffman and Gelman 2011) with the
library rstan (2.8.0, Stan Development Team 2016). Stan uses
a Hamiltonian Monte Carlo algorithm, the No-U Turn
Sampler. The default settings of the library were used for the
runs presented in this study. It typically uses half of the pre-
scribed number of iterations for the warmup, the posterior
distributions being based on the successive iterations.
Posterior estimates were based on post-warmup iterations on-
ly. The convergence was checked using the default functions
of the rstan package using the Rhat statistics (Gelman and Hill
2007). Each post-warmup iteration provides a set of model
parameters, predictions, and error estimations.

The first Bayesian calibration is based on the raw data of
the fit dataset and is therefore referred to as a database
Bayesian calibration (BCd). In the Bayesian framework, the
taper equation was first fit to the fit dataset, which produced a
first set of posterior distributions for the parameters. The equa-
tion was then fit to the application set. For this second fit, the
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priors of both the parameters and the variance components
were taken from the posterior distribution of the fit realized
on the fit data set. Both fittings are done simultaneously within
each loop of the MCMC. The distribution of the parameters
was supposed to be normal with means and variance to be
determined based on the posterior distributions.

The second calibration method (BCl) is the one that would
be used in the situation where the fit dataset cannot be used,
and the prior relies on the fitted values of the parameters only.
This situation is perhaps the most typical, when the parameters
of the model and their error can be obtained from the literature
but the (raw) data used for the fit are not. Several examples
were reported in the field (see Zell et al. 2014). In our exam-
ple, the parameters are obtained from the fit on the calibration
sites, hence independently from the application zone, and only
the fitted value of the parameters is being used as prior infor-
mation for the calibration on the application site. This calibra-
tion is referred to as the literature-based Bayesian calibration
(BCl) were prior information comes from independent studies
and parameter distribution is often not reported in the pub-
lished papers.

2.3.3 Volume estimations

The bole volume was estimated by numerical integration over
100 stem portions using the Smalian formula (see, e.g., Li and
Weiskittel 2010 and references herein). For the MCMC esti-
mations, the integration was repeated for each of the post-
warmup iterations of the MCMC, thus providing an estima-
tion of the standard deviation of the volume.

2.3.4 Fit statistics

The fit statistics included the mean bias of model predictions
(bias), the root mean square error of prediction (RMSEP),
estimated as:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Y i; j−Ŷ̂ i; j
� �2

n

s

and

bias j ¼
∑n

j¼1Y i; j−Ŷ̂ i; j

n

where n is the number of observations across all the trees and
positions in a given dataset, Yi, j is the measured stem diameter

for a given position i in a tree j, and Ŷ i; j is the corresponding
estimated stem diameter. Both RMSEP and bias are computed
on the dataset used for the fit and on the evaluation dataset, as
a measure of the prediction capacities of the model.

The effects of the calibration on the tree bole volume was
also tested based on the RMSEP and bias using the same

formulas, such that Yi, j is the measured volume (based on

measured diameters) of tree i in batch j, while Ŷ i; j is the cor-
responding estimated volume based on predicted diameters
for each of the non-calibrated or calibrated models.

3 Results

3.1 Taper model fit

The fit dataset was constituted of 126 spruce trees measured
from 16 different plots across Romania with diameter ranging
from 5.6 to 66 cm and a mean slenderness (ratio of total height
to diameter at 1.3 m) of 9.996 ± 2.571. The taper model (2)
was fit with three random plot-level terms using maximum
likelihood (Table 2). The model did not present signs of bias
(Figs. 1 and 2) and fitted conveniently the stem profile of the
trees despite the great variability of their provenience.

Based on the same input data, the model was fit in the
Bayesian MCMC framework. The prior was the estimation
of the ML fit, which was meant to maximize the similarity
between the ML and the Bayesian fits, since the use of differ-
ent start or prior values did not prove influential in our case
(Fig. 3). The metropolis acceptance probability was high
(0.87) and the Rhat values very close to 1 for all the model
parameters. ML and Bayesian fit resulted in very similar pa-
rameter estimates. The discrepancy in the parameters estima-
tion between the ML and Bayesian fit was less than 4% of the
estimation on average but parameter stability was higher for
theML fit (low std error/parameter value) (Table 2). The slight
differences in estimated parameters had little influence on the
stem profiles fitted, which were very similar for both models,
with a mean absolute difference of 0.01 (Fig. 3).

3.2 Likelihood calibration

First, the ML estimations of the model (3) were used directly
to estimate the stem profile of the trees of the application sets.
The prediction errors without local calibration were important
in the high-elevation dataset (Fig. 4, site 2 batch 2). The ap-
plication set was subsequently split in two: one batch of 12
trees was used to estimate the random effects using the FOCE
methods while the second batch of 12 trees (evaluation batch)
was held for testing the model after calibration.

The estimated random effects were globally smaller than
the parameters themselves (Table 3) and represented 31–92%
of the standard error of the parameter prediction. The calibra-
tion resulted in a mild reduction of the RMSEP (by 6.5 to
25.3% according to the test site, estimated as percent of the
non-calibrated model’s RMSEP) and the bias (up to 97% re-
duction) but not in all situations (Fig. 4, Table 4) because some
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trees displayed a profile different from the others and had a
strong influence on the validation statistics.

3.3 Bayesian calibrations

The data-based calibration (BCd) was based on the posterior
estimation of the model (2) fit parameters, which were used as
priors for the fit of the same model to the new test data. The
new parameter values for the test dataset differed substantially
from the prior values (Table 3) from 1.3 to up to 10%. After
calibration, the RMSEP on the fit batch generally decreased
more strongly than using ML FOCE calibration: from 4 to
65% according to the site (Table 4) and the bias from 4 to
97%. On the evaluation set, the RMSEP on the decreased by

5–65% and the bias from 4 to 97% (Fig. 4). The small size-tree
on site 2-batch 1 behaved differently from site 2-batch 2 and
was responsible for the higher bias and smaller RMSEP de-
crease. However, the fit with BCd was globally much better
than that of the ML.

Similarly, the literature-based Bayesian calibration BCl re-
sulted in decreased RMSEP (4–65%) and bias (7–96%), and
had values very comparable to that of the BCd (Fig. 4).
Occasionally, the bias reduction was even stronger than in
the BCd.

The distribution density of the diameter prediction errors
(measured-predicted) showed that the absence of calibration
resulted in larger errors and bias, which were strongly reduced
by the local calibration (Fig. 5). The calibrated predictions
(FOCE) represented a mean prediction error (over all the val-
idation trees) of ~ 3.16 mm (against 3.34 mm for non-
calibrated predictions) and a maximum error of ~ 22.94 mm
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Fig. 2 Residuals of the model (3) fitted by maximum likelihood versus
model predictions
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Fig. 1 Stem profile of all trees used for the taper model fit based on the
ML fit of the model (3).The relative height is the ratio between the height
at any point above the ground (h) to the top height of the tree (H).
Similarly, the relative diameter is the ratio between the diameter at any
point (d) to the breast-height diameter (dbh)

Table 2 Inference of the parameters using maximum likelihood (ML, left 4 columns) versus Bayesian model in Stan (fitted within MCMC using 2
chains each with 1000 post-warmup draws) for the taper model (3) fitted on the fit dataset

ML parameter estimation Bayesian MCMC estimation

Parameters Value Standard error t value p value Mean Standard error
of the mean

Standard deviation Rhat

a1 1.6076 0.1313 12.2473 0.0000 1.6394 0.2037 0.0129 1.0021

a2 0.6739 0.1244 5.4161 0.0000 0.7064 0.1956 0.0125 1.0021

a3 3.0271 0.9548 3.1705 0.0015 3.3337 1.2112 0.0551 1.0008

b2 0.6304 0.0275 22.9100 0.0000 0.6342 0.0332 0.0019 0.9995

b3 0.3493 0.0369 9.4708 0.0000 0.3683 0.0424 0.0016 1.0018

b4 60.2292 6.4776 9.2981 0.0000 69.6040 9.0887 0.3565 0.9999

b5 4.4087 0.1729 25.6036 0.0000 4.4511 0.1824 0.0041 1.0000

ε1 0.0431 0.0431 0.0007 0.0000 0.9999
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Fig. 4 Residual graphs of the predicted relative diameter for each
application site and evaluation batch. ML refers to the mixed-effect
prediction not calibrated, ML FOCE to the FOCE calibration, BCd to
the data-based Bayesian calibration, and BCl to the literature-based

calibration. Within each site models are calibrated on one batch (the
calibration batch) of 12 trees, then applied on the other batch (the
evaluation batch) and residuals are expressed as measured-predicted
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from the non-calibrated predictions. But the Bayesian calibra-
tions reduced even further the error magnitude with a mean
error of 2.45 mm and 7% more diameters within the range of
− 1 to + 1 mm from the measured value.

3.4 Consequences on the estimation of the stem
volume

Stem volume is an integrated representation of the taper fit. In
order to quantify the consequence of the deviations in the
modeled stem profile, the bole volume resulting from the in-
tegration of the model were computed for each variants: ML
without local calibration, ML with local calibration, BCd, and
the BCl. The difference between local calibrated and uncali-
brated predicted volumes ranged from − 5.2 to 3.3% (Fig. 6),
thus representing a maximum deviation of ~ 0.1 m3 from the
non-calibrated predictions at tree level. Globally, for the two
test stands, local calibration resulted in larger predicted vol-
umes (Table 5). The difference between BCd and BCl calibra-
tions was smaller than the prediction’s confidence interval and

can be deemed insignificant. Nevertheless, the calibration re-
sulted in systematic and strong reductions of the bias of vol-
ume estimations, with the strongest reductions for the
Bayesian calibrations (Table 5). The RMSEP was likewise
noticeably reduced by the calibration with the exceptions of
the FOCE calibration.

4 Discussion

Calibrating the model improved markedly the predictions but
high biases remained. The Bayesian calibrations proved supe-
rior to the ML one, particularly for their ability to reduce
biases. The BCl proved as good as the more difficult calibra-
tion using raw data BCd.

These results confirm the fact that the Bayesian calibration
improves substantially the prediction abilities of a model.
Interestingly, the Bayesian calibration based on the sole
knowledge of the parameters fit on external data (the
literature-based calibration) proved as good as the more

Table 3 Estimation of the random effects and model (3) parameters for each site and calibration batch. BCd refers to the Bayesian data-based
calibration while BCl refers to the Bayesian literature-based calibration

Parameter M.L. fixed Site Random parameter New parameter BCd BCl

b2 0.6303719 Ap. 1 batch 1 − 0.01015404 0.6202179 0.6297889 0.6300823

Ap. 1 batch 2 − 0.01554865 0.6148233 0.6388681 0.6394577

Ap. 2 batch 1 − 0.00846694 0.621905 0.622501 0.6223621

Ap. 2 batch 2 − 0.01487004 0.6155019 0.643453 0.6438258

b3 0.3492837 Ap. 1 batch 1 0.01355861 0.3628423 0.3611102 0.3615243

Ap. 1 batch 2 0.01546979 0.3647535 0.3561766 0.3563752

Ap. 2 batch 1 0.01378309 0.3630668 0.359316 0.3595053

Ap. 2 batch 2 0.01262041 0.3619041 0.3560215 0.3566447

b4 60.229160 Ap. 1 batch 1 5.964609 66.19377 73.45418 73.7597

Ap. 1 batch 2 5.227134 65.45629 74.76358 75.00014

Ap. 2 batch 1 5.428521 65.65768 73.07313 73.26324

Ap. 2 batch 2 5.724993 65.95415 76.77054 77.11607

Table 4 RMSEP and mean bias
decrease of the diameter model
predictions as percent of the non-
calibrated ML model. FOCE re-
fers to the calibration based on
estimating random effects using
the first-order conditional expec-
tation procedure, BCd refers to
the Bayesian data-based calibra-
tion, and BCl refers to the
Bayesian literature-based
calibration

RMSEP decrease (%) Mean bias decrease (%)

Calibration
dataset

Evaluation
dataset

Batch type FOCE BCd BCl FOCE BCd BCl

Ap. 1 batch 1 Ap. 1 batch 1 Calibration 13.20 56.15 55.98 48.69 71.93 71.04

Ap. 1 batch 2 Evaluation 18.49 58.34 58.32 33.25 96.98 96.28

Ap. 1 batch 2 Ap. 1 batch 1 Evaluation 10.51 65.49 65.50 97.29 87.86 87.56

Ap. 1 batch 2 Calibration 20.66 56.26 56.26 66.52 88.24 88.47

Ap. 2 batch 1 Ap. 2 batch 1 Evaluation 25.38 59.37 59.49 59.08 86.88 88.84

Ap. 2 batch 2 Calibration 21.75 4.81 3.66 29.28 74.76 75.64

Ap. 2 batch 2 Ap. 2 batch 1 Evaluation 6.49 26.69 27.10 97.40 3.86 7.04

Ap. 2 batch 2 Calibration 8.92 48.66 48.59 48.45 67.02 65.61
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elaborate method—but difficult to implement—which re-
quires the raw data. Hence, the literature-based calibration
seems a very efficient and desirable option because it is very
simple to implement and much faster. The new sampling al-
gorithm implemented in Stan has brought a significant im-
provement compared to previous MCMC algorithms, which
could be slow. But even so, the fit of the data-based Bayesian
calibration takes several minutes of computation, compared to
several seconds only for the literature-based calibration.
Analyzing aboveground biomass equations for several spe-
cies, Zell et al. (2014) came to the same conclusion that a
Bayesian calibration performs very well even with reduced
sample size, but has the advantage over other biomass estima-
tion procedures to provide prediction intervals.

The ML calibration appeared to bring fewer improvements
than the Bayesian calibration. Themain reason for the discrep-
ancy between the two families of method mostly comes from
the fact that theML calibration can only tune the parameters of
the model that have a random component. In this study, three
out of six parameters had a random component. Increasing the

number of random parameters may not always be possible and
convergence issues can rise. For one given model, the number
of parameters that can be left as mixed-effect parameters may
differ according the data as, e.g., in Meng and Huang (2009).
The Bayesian calibration therefore has an appreciable advan-
tage over the calibration of mixed-effect models that all pa-
rameters are being optimized together during the calibration
procedure and has no computational issues, long as the
Markov chain converges.

The model fitted used diameters measured at successive
heights, up to the tree top. Contrarily to other studies where
the model is localized using a single additional diameter (i.e.,
on top of the traditional dbh) taken at an upper stem position
(e.g., Cao 2009), the model here was fitted based onmore than
5 additional measurements per tree. Despite using more mea-
surements, biases remained and the prediction errors without
calibration remained important.

The number of trees used for the calibration may be influ-
ential. Here, we used a balanced split design where 12 trees
were constantly used for both the calibration and the
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evaluation, and were sampled in the same diameter size class,
to avoid extrapolation pitfalls. Our study proves that a reduced
number of trees are sufficient to reduce substantially the pre-
diction error and the bias of a model. Nevertheless, it should
be noted that some trees displayed divergent profiles and cre-
ated difficulties both in the fit and the validation. One way to
cope with such trees may be to realize successive random
draws from the same sample and use the average parameter
value over the draws.

The estimated random effects were always smaller than the
standard error of the parameters estimation, yet contributed
greatly to improve the model fit. The gain in using random
effects was perhaps maximized in this study, because the
stands used for the calibration and validation were purposely
sampled from sites displaying very different growing condi-
tions. This situation is however representative of protected
forests where tree form differs significantly from managed
and open forests and where sampling is often prohibited. In
our case, gain resulting from local calibration can be seen from
the parameter values obtained for the two application sites:
they were substantially lower (b) and higher (c and d) than
the values obtained for the mean population of the fit dataset
(Table 4) meaning that trees of these forest reserves have a
lower taper (more cylindrical) and higher butt-swell at a fixed
diameter and height. A direct application of the model, with-
out local calibration would thus result in an underestimation of
the true volume.

The consequences of a non-local calibration on the estima-
tion of the volume were in the 5% range, which can be con-
sidered as low. But because of the bias, the errors would not
compensate between trees and any stand-level application
would result in a severe deviation of the per-hectare volume,
in our case in the sense of a sub-estimation of the stand-level
or per-hectare volume.

The methodology proposed in this paper is then of major
importance for forests where sampling is difficult and even

impossible (for instance in tropical rain forests). Given its
parsimony, the local calibration can be performed from litera-
ture parameters and from very few felled trees (whenever
possible), or from non-destructive measurements (see Picard
et al. 2012), or from new technologies such as terrestrial
LiDAR (Hackenberg et al. 2015). The literature-based calibra-
tion offers the possibility to reduce substantially such errors by
defining an informative and constraining prior. The results can
be generalized to other situations and other allometric models.
The generality of the results comes from the fact that all the
parameters of the allometric models can be tuned by the cal-
ibration simultaneously, and the calibration does not depend
on a particular structure or model form. In our example, the
model has twice as many parameters (6) as in classic volume
or biomass allometric models that have only 2 or 3
parameters—plus potentially one more for the variance model
in case of heteroscedasticity. This opens new possibilities to
considerably improve national volume (and therefore bio-
mass) estimations at national scales, especially for tropical
countries where data availability can be very scares for both
volume and biomass (Henry et al. 2011, 2013, 2015).

5 Conclusions

Several conclusions may be drawn from the study. First, the
local calibration of the stem profile model reduced markedly
the prediction errors: 4–65% reduction in the RMSEP for all
calibrationmethods. The Bayesian calibrations performed bet-
ter than the calibration based on estimating random effects
with a stronger bias reduction (4–97% according to the tree).
The Bayesian calibration based on literature data and a cali-
bration dataset performed as well as the complex calibration
based on both a fit dataset and a calibration dataset. The
literature-based calibration thus represents a very promising
method to locally calibrate allometric models with minimal

Table 5 Comparison of the
batch-level descriptive statistics
of the estimated tree volume, ac-
cording to the calibration method.
The mean volume and the
RMSEP are expressed in liters

Dataset Statistic ML FOCE BCd BCl

Ap. 1 batch 1 Mean volume 1551.6 1551.5 1574.0 1573.7

RMSEP 42.2937 44.5706 29.2764 29.2764

Bias 21.6329 0.5934 − 0.9125 − 0.8470
Ap. 1 batch 2 Mean volume 1885.7 1905.4 1905.4 1905.4

RMSEP 64.3553 59.2268 0.5406 0.5406

Bias 29.9579 19.3224 3.4273 3.3120

Ap. 2 batch 1 Mean volume 1586.6 1597.3 1613.2 1613.3

RMSEP 39.0386 39.1232 32.6995 32.6995

Bias 21.6443 21.7363 − 0.7996 − 0.5364
Ap. 2 batch 2 Mean volume 1551.6 1551.5 1574.0 1573.7

RMSEP 53.1784 61.3128 44.2898 44.2898

Bias 14.8974 − 4.8770 − 4.7998 − 4.8373
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measurements. However, regardless of the method, the local
calibration of the taper model did not result in significant
changes in the estimated stem volume with differences be-
tween non-calibrated and calibrated estimations ranging from
− 5.2 to 3.3% of the non-calibrated volume.
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