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Abstract
& Key message Allometric biomass equations developed for individual shrubs can be applied to estimate shrubland fuels
from measurements of cover and average height by species.
& Context Shrubs are a major component of surface fuels in many fire-prone ecosystems. Shrub fuel loading is often estimated by
“double sampling”, where data from a destructive vegetation survey is used to model vegetation-fuel relationships (development
phase), and these relationships are then applied to vegetation data from a second survey (application phase). Vegetation-fuel
relationships can be modeled at different levels of vegetation detail, from individual plants to stands, but the increased effort of
detailed measurements may compromise large-scale applications.
& Aims To facilitate fuel loading assessments in Mediterranean shrublands, we present and test a novel method to estimate stand-
level shrub loading that consists in applying individual-level allometric equations to vegetation plot data collected by measuring
the percent cover and mean height of each shrub species.
& Methods We used individual-level data (i.e., plant dimensions and dry weights) to develop allometric equations for total and
fine (leaves and branches < 6 mm) biomass of 26 Mediterranean shrub species. We then evaluated the accuracy and precision of
the proposed method in comparison to an approach assuming constant bulk density, using data from 131 vegetation plots and
taking as benchmark stand-level loading estimates derived by aggregation of individual biomass allometric estimates. A second
set of 13 plots was used to quantify the additional error derived from visual estimation of species mean height and cover.
& Results The performance of species-specific models was acceptable in estimating total and fine biomass at the individual level.
When based on species mean height and cover data, stand-level fuel loading estimates calculated using the proposed method had
a better precision and accuracy than those obtained using bulk density values (− 4 vs. + 39% in relative bias; 10 vs. 40% in
relative MAE). Visual estimation of species mean height and percent cover led to 10 and 16% increase in MAE for species
loading estimates of total and fine fuels, respectively, with respect to estimates obtained without this source of error.
& Conclusions Our approach to estimate shrub loading allows combining fast species-level vegetation sampling with the flex-
ibility of individual-level allometries to model to size-related variations of bulk density.
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1 Introduction

Shrubs are a major component of surface fuels in many fire-
prone ecosystems such as shrublands, encroached grasslands,
woodlands, and forests, especially under low tree density
(Sabo et al. 2009; Coll et al. 2011). Key shrub fuel descriptors
such as loading, bulk density, dead-to-live ratio, and moisture
are required inputs to wildfire behavior models (Keane 2015).
Due to their high rate of energy exchange, shrub fine fuels
(i.e., leaves and fine branches < 6 mm diameter) are particu-
larly important to fire ignition and spread (Pyne 1984).
Properties of shrub fine fuels are related not only to short-
term meteorological conditions but also to long-term re-
sponses to natural (e.g., drought, browsing, tree canopy cover)
and anthropogenic (e.g., management) factors (Castro et al.
2003; Pimont et al. 2018; Ruffault et al. 2018). Moreover,
shrub fuel properties exhibit a strong interspecific variation.
For example, Pistacia lentiscus L. always has a low percent-
age of twigs in relation to total biomass, and Genista scorpius
(L.) DC. in Lam. et DC. has a high proportion of standing
dead material (Papió and Trabaud 1991). Fuel properties have
been linked to functional species groups related to post-fire
regeneration strategies (Saura-Mas et al. 2010; Vilagrosa et al.
2014). The diversity of morphological, physiological, and
phenological traits of woody plant species coexisting in the
shrub complex results in high spatial and temporal heteroge-
neity of fuel properties.

Fuel load (i.e., dry weight of fuel per surface area) is argu-
ably the most important property when studying wildland
fuels, and it can be estimated using a panoply of approaches
(Keane 2015). Although destructive methods, such as clipping
and weighting, are generally the most accurate to estimate fuel
load of shrub complexes, they are also expensive and time
consuming (Catchpole and Wheeler 1992; Bonham 2013).
Since destructive sampling is inefficient when the goal is to
make an inventory of shrub fuels over large spatial extents or
to monitor their dynamics over time (Keane 2015), the so
called “double sampling” approaches are often adopted. The
first sampling phase involves collecting a number of destruc-
tive samples to model the relationship between fuel load and
previously measured vegetation dimensions. This relationship
can then be applied in a second sampling phase where vege-
tation dimensions are either measured in field campaigns or
obtained through remote sensing (Kerr and Ostrovsky 2003).
Different kinds of relationships have been developed for dif-
ferent levels of detail in vegetation sampling (Catchpole and
Wheeler 1992), from individual plant measurements to stand-
level measurements of vegetation cover and height (Fig. 1).

At the individual level, allometric equations are commonly
used to estimate plant biomass from individual plant measure-
ments (usually crown dimensions, plant height, or basal stem
diameter; see arrow “1-1” in Fig. 1). Allometric relationships
for shrub species have been developed in different regions to

estimate both total biomass (Armand et al. 1993; Usó et al.
1997; Blanco-Oyonarte and Navarro-Cerrillo 2003; Conti
et al. 2013) and fine fuel fractions (Pereira et al. 1995; Paton
et al. 2002; Huff et al. 2017). Despite being flexible enough to
accommodate variations in bulk density related to plant size,
allometric equations have some limitations. They may not
have the same predictive ability in all sites where the species
occurs, as a result of either different environmental conditions
(e.g., forest canopy cover; browsing; fire) or genetic factors
affecting plant morphology (Catchpole and Wheeler 1992;
López-Serrano et al. 2005; Ritchie et al. 2013; Pimont et al.
2018). Moreover, it often happens that species-specific equa-
tions are lacking for some of the species found in the target
area. This can be solved using allometries developed for mor-
phologically or functionally similar species groups (Conti
et al. 2013; Casals et al. 2016). However, the potential de-
crease in the predictive ability incurred by using allometries
derived from group-specific instead of species-specific rela-
tionships needs to be quantified (Sah et al. 2004).

Identifying and tallying all individual woody plants in
fixed area plots becomes expensive for large-scale fuel sur-
veys, which leads to the development of vegetation-fuel rela-
tionships at coarser levels. Habitat-specific empirical relations
to predict shrub fuel loading can be fitted from stand-level
measurements such as visual estimates of total cover, mean
height, or apparent volume of the shrub layer (Pasalodos-Tato
et al. 2015) (see arrow “3-3” in Fig. 1). These relationships are
faster to apply than approaches requiring individual plant
measurements and are interesting because of the possibility
to obtain estimates over large areas with remote sensing tech-
nologies (Kerr and Ostrovsky 2003). Nevertheless, empirical
relationships developed from stand-level data may have low
predictive ability due to spatial variability in species compo-
sition (even within the same habitat) and between-species dif-
ferences in size-biomass relationships.

Between the individual and stand levels of vegetation sam-
pling detail lies the species level, which consists in estimating
dimensions of each species in the study plot, such as species
mean height and cover. Species-level data have the advantage
of allowing between-species morphological variability to be
accounted for. Developing approaches to estimate fuel loading
from species data is appealing because mean height and per-
cent cover of understory species are routinely recorded in
national forest inventory surveys (e.g., Villanueva 2004). To
obtain loading estimates from species data, one can calculate
the apparent volume occupied by each species and multiply it
by species-specific bulk density values (Fernandes 2009) or
use an allometric relationship similar to stand-level ap-
proaches (Porté et al. 2009; Ruiz-Peinado et al. 2013) (see
arrow “2-2” in Fig.1).

With the aim to facilitate regional assessments of fuel load-
ing (or forage availability, or carbon stock) in Mediterranean
shrublands, the main goal of this study is to present and
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evaluate a method to estimate shrub loading that consists in
developing allometric equations at the individual level and
applying them to vegetation plot data sampled by measuring
percent cover and mean height of each species (see arrow “1-
2” in Fig. 1). We start with the development of individual-
level allometric equations for total fuel biomass, fine fuel bio-
mass, and crown projected area of 26 shrub species of the
target region (Catalonia; NE of Spain). For those species sam-
pled in more than one site, we compare the performance of
species-specific vs. site-specific equations. We also assess the
loss of predictive capacity when allometries are calibrated for
functional groups. After that, we detail the proposed method
to estimate fuel loading and we use data from 131 vegetation
plots to evaluate its predictive capacity in comparison to an
approach assuming constant species bulk density. Finally, we
use a second set of 13 plots to quantify the additional error
derived from visual estimation of species mean height and
percent cover.

2 Material and methods

2.1 Study area

The study area is Catalonia (NE of Iberian Peninsula; Fig. 2).
The region is highly mountainous with the exception of the
southwestern plains of the Ebro basin. Elevation ranges from
sea level up to 3000 m, with a mean elevation of about 700 m.
Soil parent materials are most commonly limestones and
marls, though low metamorphic schists and granodiorites are
also frequent in the north and north-east and evaporites in the
central-western area. Mediterranean is the dominant climate,
but climatic variation is high following variation in topogra-
phy and continentality.

2.2 Target species and vegetation sampling

Our dataset for calibration of fuel allometries is a collection of
destructive individual-level field data obtained by different
research groups (Table 4 Appendix 1). The selection of spe-
cies aims to include the most common shrubs in Catalonia.
Specimens were sampled in a single location, but in nine spe-
cies specimens include two or three sampling locations to
account for geographic variation of morphology (Table 4
Appendix 1). The dataset includes 26 species belonging to
three plant forms: Macro-phanerophytes, nano-phanero-
phytes, and chamaephytes (Table 5 Appendix 1). Nano-
phanerophytes are, in turn, split on the basis of their post-
fire regeneration strategy (i.e., obligate seeders, facultative
seeders, and resprouters), according to Paula et al. (2009).

2.3 Development of allometric equations

Power functions are often used to study the relationship be-
tween individual volume and its corresponding total or fine
fuel biomass (Armand et al. 1993; Pereira et al. 1995; Paton
et al. 2002; Ruiz-Peinado et al. 2013). The following functions
were used to model total dry weight (Btotal; in kg) and fine fuel
dry weight (Bfine; in kg) of individuals:

Btotal ¼ atotal � Vbtotal ð1:1Þ
Bfine ¼ afine � Vbfine ð1:2Þ

where V is the apparent shrub volume (in m3) assuming the
shape of an elliptic cylinder, and atotal, afine, btotal, and bfine are
species-specific (or group-specific) parameters. Parameter a
represents the bulk density for a shrub of 1 m3, so its value
depends on how volume is defined (Pereira et al. 1995). We
did not consider alternative forms of solid bodies for the cal-
culation of apparent volume (Blanco-Oyonarte and Navarro-

Fig. 1 Conceptual diagram to illustrate different ways to estimate fuel
loading by “double sampling” (i.e., first sampling phase to obtain data to
model fuel-vegetation relationships and second sampling phase where
such relationships are applied). Continuous arrows (“1-1,” “2-2,” and
“3-3”) indicate “double sampling” approaches in which the two phases
are conducted with the same detail of vegetation sampling. The approach

evaluated in this paper is indicated using a thick dashed arrow (“1-2”),
implying a development phase at the individual level and an application at
the species level. Other approaches (i.e., thin dashed arrows “1-3” and “2-
3”) are mentioned in the “Discussion” section. BD stands for “bulk den-
sity.” Fuel loading estimates at species/stand levels may be obtained by
aggregation (agg.) of estimates obtained at lower levels
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Cerrillo 2003), because this often leads to proportional a
values (Usó et al. 1997). Parameter b represents the degree
of isometry/allometry in the relationship between volume and
biomass. It can be understood as the ratio between relative
biomass increments and relative volume increments, with
values below one indicating that bulk density decreases with
plant volume (Armand et al. 1993).

Coefficients for volume-biomass allometries were obtained
by fitting generalized linear models (GLMs) with a logarithm
link function and assuming Gamma-distributed errors
(McCullagh and Nelder 1989):

log E Bð Þð Þ ¼ log að Þ þ b

� log Vð Þ with B∼Gamma μ; νð Þ ð2Þ

where μ = E(B) and ν are the mean and dispersion parameters
of the Gamma distribution, respectively. GLMs directly fit the
expected mean of the dependent variable, hence avoiding the
biases of log-log linear regressions (McCullagh and Nelder
1989). The predictive value of allometric equations was
assessed by calculating the cross-validated (leave-one-out) bi-
as, mean absolute error (MAE), and coefficient of determina-
tion (R2) between the predicted and observed individual bio-
mass. For the nine species where different locations had been
sampled, we evaluated the degree of generality of species-
specific allometries by comparing them to models including
the location factor as potentially affecting both the intercept
and the slope of the relationship:

log E Bð Þð Þ ¼ log alð Þ � Lþ bl � log Vð Þ
� L with B∼Gamma μ; νð Þ ð3Þ

where L is an indicator variable of location, and al and bl are
location-specific parameters. Models fitted by either Eq. (2) or
(3) were compared in terms of predictive value and bymeans of a
likelihood ratio chi-square test.We also evaluated towhich extent

allometric equations calibrated after grouping the species into
functional groups had similar or worse predictive capacity than
species-specific allometries. For that, we fitted group-specific
allometric equations (Eqs. (1) and (2)), again using GLMs with
logarithm link and Gamma distribution of errors. As before, we
compared themodels of Eqs. (2) and (3), but replacing the role of
location by that of species identity.

2.4 Application of the individual-level allometries
to species-level data

When vegetation data consist in mean height (Hm; in cm) and
the percent cover (C; in %) per shrub species, we suggest to
calculate species fuel loading (kg m−2) by applying the allom-
etries developed at the individual level to an “average” indi-
vidual and multiply the resulting biomass by an estimation of
plant density. This requires developing an additional allometry
to estimate the projected crown area (CA; cm2) of individuals
from their height H (cm):

CA ¼ aarea � Hbarea ð4Þ
where, as before, aarea and barea are species-specific (or group-
specific) parameters. Applying Eq. (4) on Hm provides CAm,
the area occupied by an average individual. Multiplying Hm

byCAm (after expressing them in m and m2, respectively), one
obtains the apparent volume of the average individual (Vm; in
m3). Biomass allometries (Eq. (1)) can then be applied to
obtain Btotal,m orBfine,m estimates corresponding to the average
individual. Note that the whole process is equivalent to a sin-
gle allometric equation relating biomass to height, which in
the case of Btotal,m is

Btotal;m ¼ atotal � Hm � CAmð Þbtotal

¼ atotal � aareað Þbtotal � Hmð Þ 1þbareað Þ�btotal : ð5Þ

Fig. 2 Map of the location of the
131 10 × 10-m plots distributed
across the western and central
parts of Catalonia (NE Spain) and
used for the evaluation of the
proposed loading estimation
method. Colors indicate the
elevation at the plot site (gray
indicates a missing elevation
value) and shapes correspond to
habitat classes
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Finally, the loading of the species in the target area (W; in
kg m−2) is estimated as the product of Btotal,m or Bfine,m and N,
an estimate of density of individuals (in m−2) derived from
percent cover:

N ¼ C � 100ð Þ=CAm ð6Þ
Wtotal ¼ N � Btotal;m ð7:1Þ
Wfine ¼ N � Bfine;m ð7:2Þ

We estimated parameters aarea and barea of Eq. (4) by fitting
GLMs with Gamma errors (Eqs. (2) and (3)). We fitted Eq. (4)
and not Eq. (5) because explicit CAm estimates are needed for
Eq. (6). Crown area allometries were evaluated with the same
procedure used for fuel biomass.

2.5 Evaluation of the proposed method

We evaluated the performance of the method presented in the
previous section using data from 131 10 × 10-m plots distrib-
uted across the eastern and central parts of Catalonia (Fig. 2)
and surveyed by forest rangers (“Cos d’Agents Rurals de la
Generalitat de Catalunya”). On each plot, rangers tallied all
shrub individuals (height and crown dimensions) within two
90°-angle belt transects of 10 m length and 1 m width.
Individual-level biomass estimates were obtained using plant
measurements to calculate shrub volume (V), as explained in
Appendix 1, and applying Eq. (1) with species- or group-
specific allometric coefficients (Table 6 Appendix 2).
Biomass estimates were then aggregated into species and
stand loading values (in kg m−2), which were taken as bench-
marks to evaluate the predictive value of estimates derived
from species-level data.

Estimates of mean height (Hm) and percent cover (C) by
species were calculated from individual-level measurements:
Hm was calculated as a weighted average of individual
heights, using crown area as weight, whereasCwas calculated
as the sum of crown areas and expressed in percent of the
sampled area (20 m2). One species cover value exceeded
100% due to crown overlap and was truncated. These
species-level estimates contain very little measurement error,
so they are appropriate to assess the predictive capacity of
loading estimation methods while controlling for sampling
uncertainty (see next section). We compared the performance
of two approaches to estimate species and stand fuel loading:

1. Bulk density: We multiplied C and Hm to obtain a species
apparent volume per square meter, which we then multi-
plied by the species-specific (or group-specific) mean
bulk density values (Table 5 Appendix 1).

2. Up-scaled allometries: We estimated the CAm from Hm,
using species-specific (or group-specific) crown area al-
lometries (Eq. (4); Table 6 Appendix 2). Biomass values

for “average individuals” were then estimated using (spe-
cies- or group-specific) allometries (Eq. (1); Table 6
Appendix 2). Finally, species loadings were obtained
using Eqs. (6) and (7).

We assessed the predictive value of the two approaches by
calculating bias, mean absolute error (MAE), and coefficient
of determination (R2) of the resulting species and stand load-
ing estimates with respect to the benchmark values.

2.6 Quantification of the error derived from visual
vegetation sampling

Estimates of species C and Hm contain more or less measure-
ment error depending on the sampling method (Catchpole and
Wheeler 1992; Bonham 2013). To address the effect of this
additional source of error, we selected a second set of 13 5 ×
5 m vegetation plots where vegetation sampling was conduct-
ed both at the individual level (tallies) and at the species level
(visually). Species visual C and Hm estimates were made by
three different researchers and were averaged to decrease ob-
server bias. We compared the predictive performance of our
proposed loading estimation method from either (a) species
data obtained by aggregation of individual measurements (as
in the previous section) or (b) species data estimated visually.
As before, benchmarks for the evaluation were species load-
ings obtained from aggregation of individual biomass
estimates.

3 Results

3.1 Performance of individual-level allometric
equations

Bulk density of sampled individuals varied broadly among
species and individuals, with species mean values ranging
between 0.26 kg m−3 (Viburnum tinus) and 7.94 kg m−3

(Thymus vulgaris) for total biomass and between
0.21 kg m−3 (V. tinus) and 3.22 kg m−3 (Cistus laurifolius)
for fine fuel biomass (Table 5 Appendix 1). Cross-validated
predictive performance of individual-level allometries was
highest for total biomass (Wtotal; relativeMAE = 36%; rel. bias
+ 6%; R2 = 0.84), closely followed by fine fuel biomass (Wfine;
rel. MAE = 43%; rel. bias + 4%; R2 = 0.75), whereas the worst
performance was obtained for crown area allometries (CA; rel.
MAE = 56%; rel. bias + 5%; R2 = 0.58) (Table 1). The predic-
tive performance of allometries decreased when calibrating
equations for functional groups, leading to an + 18–20% in-
crease in MAE for biomass estimates and a + 6% increase for
crown area estimates, with respect to species-specific models
(Table 1). Table 6 Appendix 2 includes details of fitted allo-
metric coefficients and cross-validated predictive performance
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values for each species and functional group. We found sig-
nificant differences between location-specific (Eq. (3)) and
species-specific (Eq. (2)) models for total biomass in five of
the nine species where different localities had been sampled
(p-LRT in Table 6 Appendix 2). When location was included,
relative MAE decreased from 45 to 42% for total biomass and
from 44 to 38% for fine fuels (Table 1).

3.2 Evaluation of the proposed method

The total number of individuals tallied in the 131 vegetation
plots was 6900, and the number of individuals per plot ranged
between 8 and 148. Among all individuals, 72% belonged to
species for which species-specific allometric models were
available. The remaining were assigned the allometric param-
eter values of their corresponding functional group. Total
loading in plots ranged from 0.03 to 2.60 kg m−2 (average
0.81 kg m−2) and that of fine fuels from 0.03 to 1.76 kg m−2

(average 0.54 kg m−2).
Calculation of percent cover (C) and mean height (Hm) by

species resulted in 830 species records. Species and stand
loadings calculated using species-level data and species mean
bulk density estimates correlated quite strongly with values
obtained from aggregation of individual biomass estimates
(Table 2). However, medium and large loading values were

often overestimated with respect to benchmark values (Fig. 3)
and the overall relative bias was + 39% for total fuel and +
27% for fine fuel. Estimates derived from the proposed meth-
od based on up-scaled allometries were substantially more
accurate and precise that those derived from bulk density
(Table 2; see also Tables 7 and 8 Appendix 2). MAE of the
proposed method was 0.017 kg m−2 (14%) for total fuel at the
species level and 0.082 kg m−2 (10%) at the stand level, and
slightly larger errors occurred for fine fuels. Small negative
biases were however observed (− 4% relative bias for total
fuel and − 5% for fine fuel; Table 2).

3.3 Vegetation sampling effect on loading estimates

The second dataset of 13 25-m2 vegetation plots included
518 individuals and 49 species cover/height records. The
proposed approach tended to overestimate species loading
in this dataset (Table 3; Fig. 4), but the smaller sample
size (n = 49) leads to performance statistics that have larg-
er variance than in the previous dataset (n = 830). Visual
estimation of species C and Hm produced a moderate in-
crease + 0.022 kg m−2 (+ 10%) in MAE for total fuel and
+ 0.022 kg m−2 (+ 16%) for fine fuel; differences in bias
were small for both fuel fractions.

Table 1 Cross-validated predictive performance (mean absolute error
[MAE], bias, and coefficient of determination [R2]) of individual-level
allometric equations for total biomass, fine fuel biomass, and projected
crown area. The first two rows show the predictive performance of
species- and group-specific allometries. The predictive performance of

the nine species subset with different populations sampled is shown in
the last two rows, including or not the location factor. Table 6 shows the
allometric coefficients and predictive performance for every species and
functional group

Total biomass (Btotal) Fine fuels (Bfine) Crown area (CA)

Allometries fitted
by…

n MAE (kg) [%] Bias (kg) [%] R2 MAE (kg) [%] Bias (kg) [%] R2

(%)
MAE (cm2)
[%]

Bias (cm2) [%] R2

(%)

Species 795 0.438 [36.0%] + 0.070 [+ 5.7%] 0.839 0.284 [42.6%] + 0.028 [+ 4.2%] 0.751 4291 [56.1%] + 372 [+ 4.9%] 0.579

Functional groups 795 0.654 [53.8%] − 0.072 [− 5.9%] 0.633 0.425 [62.3%] + 0.024 [+ 3.6%] 0.446 4744 [62.1%] + 239 [+ 3.1%] 0.425

Species (subset) 431 0.374 [44.5%] + 0.025 [+ 3.0%] 0.756 0.224 [44.1%] +0.009 [+ 1.7%] 0.695 3291 [55.2%] + 179 [+ 3.0%] 0.602

Species and
location

431 0.357 [42.4%] − 0.009 [− 1.1%] 0.629 0.192 [38.0%] − 0.018 [− 3.5%] 0.649 2888 [48.5%] + 128 [+ 2.1%] 0.577

Table 2 Predictive performance (mean absolute error [MAE], bias, and
coefficient of determination [R2]) of species and stand loadings calculated
from species data using either species mean bulk density values (“bulk
density”) or the proposed method based on individual-level allometries

(“up-scaled allometries”). In all cases, benchmark loadings are those ob-
tained from aggregation of individual biomass estimates. Brackets for
MAE and bias indicate relative values

Species loading (n = 830) Stand loading (n = 131)

Fraction Method MAE (kg m−2) [%] Bias (kg m−2) [%] R2 MAE (kg m−2) [%] Bias (kg m−2) [%] R2

Total fuel (Wtotal) Bulk density 0.054 [42.9%] + 0.049 [+ 38.5%] 0.911 0.322 [39.8%] + 0.311 [+ 38.5%] 0.900

Up-scaled allometries 0.017 [13.6%] − 0.005 [− 3.7%] 0.971 0.082 [10.2%] − 0.030 [− 3.7%] 0.951

Fine fuel (Wfine) Bulk density 0.037 [43.0%] + 0.023 [+ 27.3%] 0.803 0.175 [32.4%] + 0.147 [+ 27.3%] 0.831

Up-scaled allometries 0.016 [18.7%] − 0.004 [− 4.8%] 0.913 0.074 [13.7%] − 0.025 [− 4.6%] 0.879
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4 Discussion

Species-specific allometric models developed at individual
level are commonly used as an indirect method to predict
biomass when destructive techniques are economically (i.e.,
time consuming) or scientifically (i.e., repeated inventories)
limited (Catchpole and Wheeler 1992; Bonham 2013). The
individual-level biomass allometries for 26 Mediterranean
species presented here complement existing equations for

the same or other shrub species in Iberian Peninsula (Pereira
et al. 1995; Castro et al. 1996; Paton et al. 2002; Blanco-
Oyonarte and Navarro-Cerrillo 2003; Castro and Freitas
2009). Individual-level allometries have potential limitations
derived from intra-specific or habitat-specific variations and,
accordingly, including location as a factor-improved models
of total biomass in five of the nine species where different
localities had been sampled. Our study was not designed to
test location effects, and it is likely that predictive ability of

Fig. 3 Comparison of species and
stand loadings calculated from
species data using either the
average bulk density or the
proposed approach based on
individual-level allometries.
Benchmark loadings (y axes) are
those obtained from aggregation
of individual biomass estimates

Table 3 Predictive performance (mean absolute error [MAE], bias, and
coefficient of determination [R2]) of species loadings calculated using the
proposed approach based on individual allometries and species mean
height and cover data obtained from either aggregation of individual
measurements (“individual sampling + aggregation”) or visual

estimation (visual species sampling). In all cases, benchmark loadings
are those obtained from aggregation of individual biomass estimates
(n = 49 after aggregation). Brackets for MAE and bias indicate relative
values

Fraction Source of species data MAE (kg m−2) [%] Bias (kg m−2) [%] R2

Total fuel (Wtotal) Individual sampling + aggregation 0.077 [34.7%] + 0.077 [+ 34.4%] 0.950

Visual species sampling 0.099 [44.8%] + 0.068 [+ 30.8%] 0.838

Fine fuel (Wfine) Individual sampling + aggregation 0.039 [27.8%] + 0.037 [+ 26.8%] 0.966

Visual species sampling 0.061 [43.8%] + 0.038 [+ 27.0%] 0.827
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allometries would decrease when applied to localities with
micro-environmental conditions different from the habitats
sampled in this study. Nevertheless, the overall predictive abil-
ity of allometries was only slightly better when considering
location-specific parameters (Table 1). The precision of allom-
etries decreased strongly (i.e., higher MAE) when calibrated
for functional groups in comparison to species-specific allom-
etries, stressing the need to develop species-specific
equations.

We presented an approach to apply our (or other) biomass
allometries to estimate fuel loading on vegetation data sam-
pled at the species level. Since bulk density (BD) refers to dry
weight per unit volume, applications of bulk density values to
estimate fuel loading with vegetation sampling at species or
stand levels (i.e., arrows “1-2” or “1-3” in Fig. 1) are not
uncommon in fire behavior decision support systems
(Ottmar et al. 2007). In contrast to allometric equations, using
BD assumes that plants have an isometric pattern of develop-
ment between volume and biomass. Values of b < 1 are very
frequent in our allometries, indicating that fuel density de-
creases with volume for most of our studied species.
Therefore, using mean BD estimates instead of allometric re-
gressions at the stand level can lead to large errors if the size of
plants is different to that of the plants corresponding to the BD
value. Our up-scaled use of allometric equations produced
more precise (lower MAE) and accurate (lower bias) loading
estimates than calculations based on BD. These results were to
be expected because allometric equations account for varia-
tions in density derived from variations in plant size. We ex-
emplified our method on allometric equations where the pre-
dictor for biomass was shrub volume, but the same strategy
could be used to up-scale biomass equations based on other
plant measurements, such as crown area, diameter, or height
(Paton et al. 2002).

Measuring the dimensions of all woody plants in a plot
requires much more effort than estimating mean height and

percent cover by species. The main advantage of applying
individual-level allometric equations to species-level mea-
surements is that it combines relatively fast vegetation sam-
pling (in the application phase) with the possibility to account
for variations in BD derived from both species identity and
plant size. Empirical relationships between stand vegetation
variables and fuel loading also require a low amount of
sampling effort in their application phase. Appendix 3 shows
the comparison of fuel loading estimates obtained using our
proposed method with those obtained using the approaches of
Fernandes et al. (2012) and Pasalodos-Tato et al. (2015).
Although it requires species identification, the comparison
indicates that our approach yields more accurate and precise
loading estimates, as it profits from information on species
composition within each plot and from allometries calibrated
for the target region. Species-specific empirical allometries
based on the percent cover and mean height of species in fixed
stands are also possible (arrow “2-2” in Fig. 1) (Ruiz-Peinado
et al. 2013), but such models require a much larger destructive
sampling effort in the development phase compared to
individual-level allometries. A further advantage of our ap-
proach is that a single individual-based destructive survey is
enough to fit fuel and crown area allometries, so that the ap-
plication to species-level data does not require additional de-
structive surveys.

Despite its advantages, the proposed method comes with
some limitations. First, it requires fitting an additional allom-
etry (height vs. crown area), which for many species we found
to be of lower predictive value than biomass allometries
(Table 6 Appendix 2). For the worst cases, crown area esti-
mates from allometries would not be better than fixed mean
crown area values. Wrong crown area (CAm) estimates can
lead to wrong estimates of shrub volume (Vm) and, hence,
poor estimates of biomass Btotal,m or Bfine,m. Second, CAm

estimates are also used to derive shrub density from percent
cover without accounting for the potential crown overlap

Fig. 4 Comparison of species
loadings calculated using species
mean height and cover values
obtained from either aggregation
of individual measurements
(“individual sampling +
aggregation”) or visual estimation
(“visual species sampling”).
Benchmark loadings (y axes) are
those obtained from aggregation
of individual biomass estimates
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between individuals (of the same species/group). Third, our
approach involves the assumption that the BD of a shrub of
“average” height equals the mean BD of all shrubs of the
target species in the vegetation plot. Therefore, we expect
the predictive value of our approach to be higher in cases
where height of individuals of the target species in the plot
is homogeneous. Notwithstanding these weaknesses, which
may imply an accumulation of estimation errors, we found
that our method reduced the error of loading estimates for
most species and species groups with respect to assuming
constant BD values (Tables 7 and 8 Appendix 2).

In practical applications of our method, estimates of species
mean height and percent cover will be more or less accurate
depending on the vegetation sampling method. Our results
indicate that an additional 10–16% error should be expected
if percent cover and mean height are estimated visually. This
increase in error should be evaluated against the benefit of
decreasing sampling effort with respect to individual-level
measurements. Functions to estimate fuel loading both from
individual-level data and from species cover and mean height
have been included in the R package “medfuels,” which is
freely available at GitHub https://github.com/spif-ctfc/
medfuels (De Cáceres et al. 2019).
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Appendix 1. Data used to develop
individual-level allometries

Our dataset for the development of fuel allometries is a col-
lection of destructive individual-level field data obtained by
different research groups aimed to include the most common
shrub species in Catalonia while taking into account some of
their geographic variation (Appendix Table 4). Specimens of
each target species were sampled in one to three locations,
depending on the species.

Table 4 Location, vegetation formation, and research group who measured/collected the individual shrub data. Species names in bold italics indicate
species that were sampled in more than one location

Location (county) Species sampled (individuals) Vegetation formation Researcher/group

Poblet (Conca de Barberà) Quercus ilex (15), Phillyrea latifolia (15) Open oak woodland Marc Taüll
Vilamajor (Montsec) Quercus ilex (20), Q. coccifera (20), Rosmarinus officinalis (20) Oak shrubland Marc Taüll
El Perelló (1) (Baix Ebre) Quercus coccifera (18), Rosmarinus officinalis (20), Pistacia

lentiscus (17),
Ulex parviflorus (20), Erica multiflora (20)

Open pine woodland Beatriz Duguy

Trago (Noguera) Rosmarinus officinalis (50), Genista scorpius (50) Open shrubland Pere Casals
Odèn (Solsonès) Buxus sempervirens (20), Genista scorpius (20), Rosa canina

(20), Thymus vulgaris (20)
Encroached grassland Lluís Coll

Collada de Toses (Cerdanya) Cytisus oromediterraneus (22) Encroached grassland Pere Casals
Madrona (Solsonès) Buxus sempervirens (30), Viburnum lantana (30) Dense pine woodland SPIF/CTFC
Madrona (Solsonès) Ligustrum vulgare (30), Cytisophyllum sessilifolium (30) Pine forest margin SPIF/CTFC
Santa Coloma de Farners (La Selva) Arbutus unedo (20), Cistus salviifolius (20),

Erica arborea (12)
Open pine woodland SPIF/CTFC

Santa Coloma de Farners (La Selva) Erica scoparia (20), Cistus salviifolius (20) Open woodland, dense shrubland SPIF/CTFC
Sant Celoni (Vallès Oriental) Cistus monspeliensis (20) Open pine woodland SPIF/CTFC
Sant Celoni (Vallès Oriental) Erica arborea (10), Viburnum tinus (20) Dense pine woodland SPIF/CTFC
El Perelló (2) (Baix Ebre) Erica multiflora (10) Open pine woodland CTFC
Begues (Baix Llobregat) Cistus albidus (20), Erica multiflora (20) Shrubland SPIF/CTFC
Sant Vicenç dels Horts (Baix Llobregat) Spartium junceum (20) Shrubland SPIF/CTFC
Castellbò (Alt Urgell) Cistus laurifolius (20) Shrubland CTFC
Can Gorgals (La Selva) Lavandula stoechas (20) Shrubland SPIF/CTFC
Can Gorgals (La Selva) Cistus monspeliensis (10), Cytisus scoparius (20) Open pine woodland SPIF/CTFC
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For each target species present in a sampling site, several
individuals (selected to span a range of sizes) were tallied for
crown length at its widest point (LM; cm), the perpendicular
crown extent at the same height (LP; cm) and maximum plant
height (H; cm). Each individual was clipped and separated
into fine (leaves and < 6 mm diameter stems) and coarse (>
6 mm diameter stems) fuel fractions. Reproductive structures
were discarded. Each fraction was weighted in the field (with
a precision of 10 and 50 g for fine and coarse fractions, re-
spectively) and a representative subsample was taken to the
lab, where it was weighted again after drying in the oven for
48 h at 80 °C. The ratio of fresh weight to dry weight of
samples was used to obtain the total dry weight (Btotal; kg)
and the dry weight of fine fuels (Bfine; kg) corresponding to
each individual. The complete dataset of individual measure-
ments is distributed with package medfuels and is available at
Zenodo https://doi.org/10.5281/zenodo.3356777 (De Cáceres
et al. 2019).

The projected crown area (CA; cm2) of each individual was
calculated assuming an elliptical crown shape:

CA ¼ π � LM=2ð Þ � LP=2ð Þ ð8Þ

We calculated the apparent shrub volume (V; m3) using the
shape of a cylinder:

V ¼ CA � H ð9Þ

Bulk density estimates (BDfine and BDtotal; kg m−3) were
obtained dividing the fine or total dry weight by apparent
volume and averaged by species and species group.
Appendix Table 5 shows the mean and range of the different
variables (H, CA, V, Bfine, Btotal, BDfine, and BDtotal) for indi-
viduals of each species.
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Appendix 2. Supplementary Tables

Table 6 Allometric regression coefficients (a and b) and cross-
validated R2 of the biomass (total and fine fuels) and crown area models
fitted for both species and groups. For species, column R2 full indicates
the cross-validated R2 of a model including location as additional predic-
tor (Eq. (3)) and p-LRT is the p value of a likelihood ratio test between a
model without location and a model including it (Eqs. (2) and (3)). For

species groups, p-LRT and R2 full are the same as before but replacing the
role of location by species. Missing values for p-LRT and R2 full corre-
spond to cases where either only one location was sampled, the fuel size
fractions were not separated in one ormore locations, or the species group
includes only one species with data

Total biomass (Btotal) Fine fuel biomass (Bfine) Crown area (CA)

Species/group atotal btotal R2 p-
LRT

R2

full
afine bfine R2 p-

LRT
R2

full
aarea barea R2 p-

LRT
R2

full

Chamaephytes (Ch) 1.9189 0.6873 0.77 0.000 0.75 0.7963 0.3762 0.43 24.589 1.1662 0.54 0.000 0.88

Lavandula stoechas L. 1.1574 0.4851 0.70 0.7963 0.3762 0.43 0.0065 2.9626 0.91

Thymus vulgaris L. 6.6493 0.9605 0.91 0.8229 2.3530 0.50

Macro-phanerophytes (MPh) 0.7856 0.8101 0.62 0.000 0.91 0.3596 0.7138 0.51 0.000 0.77 5.8458 1.4944 0.36 0.000 0.67

Arbutus unedo L. 0.3973 1.0774 0.89 0.2375 0.8631 0.68 0.6284 1.8804 0.73

Buxus sempervirens L. 1.0581 0.6849 0.59 0.000 0.62 0.3032 0.7163 0.54 0.9734 1.8072 0.80 0.000 0.81

Erica arborea L. 0.8820 0.9224 0.82 0.213 0.48 0.4234 0.7111 0.70 0.413 0.41 7.5880 1.3760 0.55 0.001 0.69

Ligustrum vulgare L. 0.3225 0.8106 0.80 0.1427 0.6443 0.84 8.0727 1.2580 0.37

Phillyrea latifolia L. 0.3106 0.7510 0.94 0.2502 0.7300 0.89 0.0080 2.8650 0.35

Pistacia lentiscus L. 2.1723 0.8654 0.96 1.1897 0.7337 0.74 0.0173 2.9654 0.55

Quercus ilex L. 0.7327 0.7376 0.83 0.000 0.83 0.5239 0.7337 0.84 0.012 0.81 1.8575 1.8855 0.61 0.000 0.79

Viburnum lanta L. 0.2872 0.7045 0.64 0.1308 0.5352 0.67 0.1068 2.1725 0.72

Viburnum tinus L. 0.2766 0.9225 0.81 0.1349 0.7261 0.79 9.4880 1.3509 0.30

Nano-phanerophytes (NPh) 1.2694 0.7610 0.77 0.053 0.74 0.7900 0.6942 0.63 0.060 0.55 0.9843 1.8759 0.43 0.000 0.47

Facultative seeders 1.2832 0.8258 0.79 0.000 0.65 0.7803 0.8240 0.70 0.000 0.66 1.9168 1.6929 0.53 0.000 0.65

Cytisophyllum sessilifolium
(L.) O. Lang

0.2313 0.8516 0.74 0.2068 0.8514 0.76 0.3508 1.9641 0.09

Cytisus scoparius (L.) Link. 1.2729 0.6773 0.89 0.8236 0.5315 0.66 0.0966 2.1168 0.31

Erica multiflora L. 1.4374 0.7916 0.68 0.181 0.68 1.1799 0.7531 0.50 0.009 0.57 10.171 1.3991 0.13 0.000 0.30

Genista scorpius (L.) DC. in
Lam. et DC.

1.9220 0.8807 0.95 0.360 0.95 0.8461 1.8983 0.42 0.000 0.69

Spartium junceum L. 0.5981 1.1340 0.54 0.2683 1.0322 0.63 0.1543 2.1752 0.30

Resprouters 1.2405 0.7436 0.77 0.000 0.93 0.7898 0.6622 0.56 0.000 0.86 3.5246 1.6961 0.29 0.000 0.54

Cytisus oromediterraneus
Ribas mart.

2.1591 0.8257 0.97 1.3856 0.7712 0.84 1.2410 2.1042 0.84

Erica scoparia L. 0.9959 1.0594 0.92 0.5492 0.8479 0.86 30.709 1.0000 0.07

Quercus coccifera L. 0.7559 0.5713 0.73 0.180 0.73 0.5148 0.5312 0.79 0.077 0.78 0.1306 2.4084 0.27 0.092 0.21

Rosa canina L. 0.9742 0.9396 0.95 11.157 1.4713 0.69

Seeders 1.2796 0.7270 0.52 0.000 0.78 0.7777 0.6476 0.45 0.000 0.75 0.1376 2.2836 0.48 0.000 0.55

Cistus albidus L. 0.4841 0.6330 0.68 0.2435 0.4986 0.36 0.6035 1.9060 0.46

Cistus laurifolius L. 2.3847 0.7004 0.77 1.3792 0.6066 0.74 0.0003 3.5744 0.53

Cistus monspeliensis L 2.3232 0.7917 0.85 0.000 0.83 1.6252 0.6947 0.74 0.000 0.75 0.0700 2.3642 0.25 0.001 0.29

Cistus salviifolius L. 0.4032 0.8618 0.56 0.000 0.87 0.3211 0.7940 0.59 0.000 0.86 1.9952 1.7842 0.27 0.001 0.33

Rosmarinus officinalis L. 1.9918 0.8348 0.82 0.002 0.71 1.3196 0.8929 0.77 0.001 0.82 0.1544 2.2532 0.51 0.000 0.54

Ulex parviflorus Pourr. 1.1109 0.9279 0.80 0.7171 0.8293 0.68 1.9095 1.6006 0.42
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Table 7 Number of species records (n) corresponding to each species/
group and mean absolute error (kg/m2) of species loadings calculated
using either the average bulk density or the proposed method based on
individual-level allometries. In all cases, benchmark loadings are those

obtained from aggregation of individual biomass. Rows of species groups
correspond to those species records for which a species-specific allometry
is missing

Fine fuel loading Total fuel loading

Species/group n Bulk density Up-scaled allometries Diff. Bulk density Up-scaled allometries Diff.

Chamaephytes (Ch) 116 0.0295 0.0280 − 0.0016 0.0125 0.0117 − 0.0009
Lavandula stoechas L. 1 0.0052 0.0031 − 0.0021 0.0042 0.0023 − 0.0018
Thymus vulgaris L. 33 0.0008 0.0010 0.0002 0.0008 0.0010 0.0002

Macro-phanerophytes (MPh) 116 0.0152 0.0067 − 0.0085 0.0201 0.0096 − 0.0106
Arbutus unedo L. 4 0.0017 0.0011 −0.0006 0.0020 0.0013 − 0.0008
Buxus sempervirens L. 29 0.0232 0.0088 − 0.0144 0.0594 0.0338 − 0.0256
Erica arborea L. 1 0.0201 0.0070 − 0.0131 0.0094 0.0022 − 0.0071
Phillyrea latifolia L. 6 0.0016 0.0038 0.0022 0.0018 0.0042 0.0025

Pistacia lentiscus L. 36 0.0118 0.0176 0.0058 0.0116 0.0149 0.0033

Quercus ilex L. 8 0.0355 0.0126 − 0.0228 0.0477 0.0176 − 0.0301
Nano-phanerophytes (NPh) 29 0.0326 0.0251 − 0.0074 0.0546 0.0342 − 0.0204
Facultative seeders 23 0.0019 0.0027 0.0008 0.0031 0.0044 0.0013

Cytisophyllum sessilifolium (L.) O. Lang 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Erica multiflora L. 30 0.0188 0.0124 − 0.0064 0.0183 0.0116 − 0.0067
Genista scorpius (L.) DC. in Lam. et DC. 77 0.0155 0.0054 − 0.0100 0.0155 0.0054 − 0.0100
Spartium junceum L. 1 0.0001 0.0000 − 0.0001 0.0013 0.0001 − 0.0013

Resprouters 70 0.0195 0.0103 − 0.0092 0.0165 0.0109 − 0.0057
Cytisus oromediterraneus Ribas mart. 12 0.0681 0.0502 − 0.0179 0.0698 0.0561 − 0.0137
Erica scoparia L. 1 0.0108 0.0002 − 0.0106 0.0075 0.0002 − 0.0073
Quercus coccifera L. 78 0.1866 0.0376 − 0.1490 0.2227 0.0480 − 0.1746
Rosa canina L. 12 0.0066 0.0071 0.0006 0.0066 0.0071 0.0006

Seeders 20 0.0073 0.0031 − 0.0042 0.0041 0.0030 − 0.0011
Cistus albidus L. 14 0.0024 0.0032 0.0008 0.0023 0.0029 0.0006

Cistus monspeliensis L 3 0.0026 0.0017 − 0.0009 0.0019 0.0012 − 0.0007
Cistus salviifolius L. 4 0.0006 0.0003 − 0.0003 0.0004 0.0002 − 0.0002
Rosmarinus officinalis L. 83 0.0460 0.0224 − 0.0236 0.1912 0.0324 − 0.1588
Ulex parviflorus Pourr. 17 0.0098 0.0072 − 0.0026 0.0103 0.0089 − 0.0014
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Appendix 3. Comparison of alternative
loading estimation models

We compared the performance of our proposed method of
shrub loading estimation from species-level vegetation data
with the approaches of Fernandes et al. (2012) and
Pasalodos-Tato et al. (2015), both requiring stand-level vege-
tation estimates. To apply these alternative approaches, we
aggregated individual-level data of the 131 10 × 10-m plots
into stand-level estimates of percent cover (C; in %) and mean
height (Hm; in m) in the same way as we did to obtain species-
level data (for nine plots C exceeded 100% and had to be
truncated). Fernandes et al. (2012) provide the following
equation to estimate shrub fine fuel loading, based on
Fernandes et al. (2002):

Wfine ¼ 0:555 � C � Hmð Þ0:743 ð10Þ

Pasalodos-Tato et al. (2015) provide the following equation
to estimate shrub total loading:

Wtotal ¼ a0 þ a1 � ln Hmð Þ þ a2 � ln FCCBlissð Þ ð11:1Þ
where FCCBliss is the so-called Bliss transformation of shrub
percentage cover:

FCCBliss ¼ sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C=100
p

� �

ð11:2Þ

Pasalodos-Tato et al. (2015) provide a0, a1, and a2 parameter
values for several habitats of Andalusia (S of Spain). We classi-
fied the 131 field plots into habitat classes, according to the Map

Table 8 Number of species records (n) corresponding to each species/
group and relative mean absolute error (%) of species loadings calculated
using either the average bulk density or the proposed method based on
individual-level allometries. In all cases, benchmark loadings are those

obtained from aggregation of individual biomass. Rows of species groups
correspond to those species records for which a species-specific allometry
is missing

Fine fuel loading Total fuel loading

Species/group n Bulk density Up-scaled allometries Diff. Bulk density Up-scaled allometries Diff.

Chamaephytes (Ch) 116 58.4 55.3 − 3.1 30.4 28.4 − 2.1
Lavandula stoechas L. 1 80.6 48.4 − 32.2 75.2 42.1 − 33.1
Thymus vulgaris L. 33 2.2 2.6 0.5 2.2 2.6 0.5

Macro-phanerophytes (MPh) 116 41.1 18.1 − 23.0 25.1 11.9 − 13.2
Arbutus unedo L. 4 9.4 6.2 − 3.2 5.7 3.6 − 2.2
Buxus sempervirens L. 29 30.0 11.3 − 18.7 21.6 12.3 − 9.3
Erica arborea L. 1 46.4 16.2 − 30.2 16.4 3.9 − 12.6
Phillyrea latifolia L. 6 18.1 42.3 24.3 16.2 38.7 22.5

Pistacia lentiscus L. 36 14.9 22.1 7.3 9.1 11.7 2.6

Quercus ilex L. 8 159.9 57.0 − 102.9 154.1 56.8 − 97.3
Nano-phanerophytes (NPh) 29 29.3 22.6 − 6.7 33.0 20.7 − 12.3
Facultative seeders 23 9.6 13.8 4.2 9.6 13.7 4.1

Cytisophyllum sessilifolium (L.) O. Lang 1 34.9 17.2 − 17.7 34.9 17.2 − 17.8
Erica multiflora L. 30 19.5 12.8 − 6.7 16.6 10.5 − 6.0
Genista scorpius (L.) DC. in Lam. et DC. 77 17.1 6.0 − 11.1 17.1 6.0 − 11.1
Spartium junceum L. 1 12.7 1.0 − 11.7 65.5 4.2 − 61.3

Resprouters 70 45.4 23.9 − 21.5 27.8 18.3 − 9.5
Cytisus oromediterraneus Ribas mart. 12 23.2 17.1 − 6.1 16.4 13.2 − 3.2
Erica scoparia L. 1 9.9 0.2 − 9.7 4.9 0.1 − 4.8
Quercus coccifera L. 78 140.9 28.4 − 112.5 120.0 25.9 − 94.1
Rosa canina L. 12 4.9 5.3 0.4 4.9 5.3 0.4

Seeders 20 31.5 13.4 − 18.1 13.7 10.1 − 3.7
Cistus albidus L. 14 24.6 32.8 8.1 18.4 22.9 4.5

Cistus monspeliensis L 3 39.3 25.8 − 13.6 29.3 18.1 − 11.2
Cistus salviifolius L. 4 44.0 21.9 − 22.1 32.4 15.1 − 17.3
Rosmarinus officinalis L. 83 18.5 9.0 − 9.5 45.8 7.8 − 38.0
Ulex parviflorus Pourr. 17 43.2 31.9 − 11.4 34.5 29.9 − 4.7
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of Catalan Habitats (1:50,000) based on the review and adapta-
tion to the Catalan territory to the EU List of Habitats of
Community Interest (Carreras et al. 2016). Comparing the
Catalan habitat definitions and the Andalusian habitat descrip-
tions in Pasalodos-Tato et al. (2015), we could establish a corre-
spondence for 95 plots, corresponding to five different
Andalusian habitats (see Appendix Table 9).

We compared the predictive value of the fine fuel loading
estimates of our approach based on species-level data with
those obtained by applying Fernandes et al. (2012) on the
set of 131 plots. Similarly, we compared the total loading
estimates of our approach with those obtained applying
Pasalodos-Tato et al. (2015) on the 95 for which a habitat
correspondence could be established.

As before, we evaluated each approach by calculating bias,
mean absolute error (MAE), and coefficient of determination
(R2) of the stand loading estimates with respect to the benchmark
values, which again were loadings obtained from aggregation of
individual biomass estimates. The results of the comparison are
shown in Appendix Table 10 and Appendix Fig. 5. Estimates
provided by the equation of Fernandes et al. (2012) most often

overestimated fine fuel loading, resulting in a much larger bias
and MAE compared to our approach. A possible explanation of
this divergence could be that the equation of Fernandes et al.
(2002) was calibrated using data from understory species in
Pinus pinasterAit. forests, where climate is wetter than our study
area and hence could support species with larger bulk density
such as Erica spp. and Ulex europaeus.

Table 9 Number of field plots (n) classified into Catalan habitat map classes, their corresponding CORINE code and Andalusian habitat formation,
description and regression coefficients (a0, a1 and a2) provided by Pasalodos-Tato et al. (2015)

Number Catalan habitat map
unita

CORINE codeb Formationc Andalusian habitat descriptionc a0 a1 a2

32 32 t 32.41 170 Associations dominated by Kernes
oak

− 0.483 1.347 1.174

16 32 h 32.123/32.211/32.214/
32.2191/32.24

180 Thicket of mastic trees − 0.483 1.347 1.174

44 32k/32ab/32l/32u 32.321*/32.322*/32.42/32.431/32.433
32.4B/32.4E

210 Heathers, Erinaceae bushes and
related groups

0.503 1.060 1.581

1 32x/32n 32.432/32.348/32.36/32.4 J 220a Rockrose shrubs and Cistaceae
bushes

2.586 0.000 1.715

2 32w/32n/32u 32.4811*/32.374*/32.375*/32.379*/32.4H 240 Leguminous gorse shrubs and
related groups

0.737 0.811 1.189

aMap of Catalan Habitats (Carreras et al. 2016)
b Directive 79/409/EEC
c Pasalodos-Tato et al. (2015)

Table 10 Predictive performance (mean absolute error [MAE], bias,
and coefficient of determination [R2]) of loadings calculated from
species data using the proposed method or from stand-level data using

the approaches of Fernandes et al. (2012) or Pasalodos-Tato et al. (2015).
In all cases, benchmark loadings are those obtained from aggregation of
individual biomass. Brackets for MAE and bias indicate relative values

Fraction Method Number MAE (kg m−2) [%] Bias (kg m−2) [%] R2

Fine fuel (Wfine) This study 131 0.074 [13.7%] − 0.025 [− 4.6%] 0.879

Fernandes et al. (2012) 131 0.526 [78.8%] + 0.418 [+ 77.3%] 0.601

Total fuel (Wtotal) This study 95 0.083 [10.2%] − 0.036 [− 4.5%] 0.951

Pasalodos-Tato et al. (2015) 95 0.275 [33.8%] + 0.102 [+ 12.5%] 0.696
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Total fuel loadings obtained using Pasalodos-Tato et al.
(2015) had better predictive capacity compared to Fernandes
et al. (2012), probably because climatic conditions are closer to
those of our study region and the use of habitat-specific equa-
tions (Appendix Table 10; Appendix Fig. 5b). Still, their esti-

mates had lower precision (higher MAE) and larger bias than
the estimates obtained using our approach. Here, the divergence
can be explained by uncertainties in the correspondence be-
tween Catalan and Andalusian habitats, but also to the fact that
our approach accommodates better to the variation of species
composition among plots assigned to the same habitat.
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