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Abstract
& Key message Elevated temperature, elevated CO2 concentration, and their combination significantly promoted the
number and biomass of female mulberry (Morus alba L.) flowers, but the opposite is true for males. This paper demon-
strates that male mulberry trees would suffer more negative effects on floral development and differentiation under
global warming.
& Context With the ongoing intensification of global warming, flower formation has attracted widespread interest because it is
particularly vulnerable to the effects of environmental factors. However, current knowledge of floral development regarding
gender and sex differentiation under elevated temperature, CO2 concentration, and their combination remains limited.
& Aims The aims of this study were to assess how sex-related differences in the morphology, biomass, and carbon (C) and
nitrogen (N) contents of flowers respond to elevated temperature and CO2 concentration.
& Methods Morus alba L. saplings (monoecious plants) were subjected to two temperature conditions (ambient vs. ambient +
2 °C) and two CO2 regimes (ambient vs. ambient + 380 ppm CO2) in growth chambers for 18 months growth, and differences in
flowering phase, sex ratio, floral morphology and biomass, as well as total carbon and nitrogen of male and female inflorescences
were investigated.
& Results Elevated temperature, elevated CO2 concentration, and their combination significantly increased the number and
biomass of female inflorescences but decreased the number and biomass of male inflorescences. Furthermore, the combination
of elevated temperature and CO2 concentration significantly decreased ovary length and C/N ratio of female flowers and the fresh
weight of male flowers. Additionally, C/N ratio was negatively related to morphological traits of male inflorescences but
positively related to tepal length of female flowers.
& Conclusion These findings indicate that global warming may affect floral development and sex differentiation in mulberry and
that the male inflorescences of M. alba may suffer more negative effects than female inflorescences with respect to flower
number, biomass, and morphological development.
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1 Introduction

With the ongoing global warming, the effects of elevated tem-
perature and atmospheric CO2 concentration on floral develop-
ment have increasingly drawn the attention of researchers.
Changes in floral morphology (e.g., diameter, petals, pistils,
stamens, and ovaries) and substantially reduced flower num-
bers were reported in response to increasing temperature in
some crop and horticulture plant species (e.g., Rodrigo and
Herrero 2002; Koti et al. 2004; Carvalho et al. 2005; Lucidos
et al. 2013; Jagadish et al. 2016; Liang et al. 2017). Corolla,
style, pedicel length, or inflorescence size increased with in-
creasing temperature in Vaccinium corymbosum L.,Mangifera
indica L., and Sandersonia aurantiaca L. (Lyrene 1994;
Sukhvibul et al. 1999; Catley et al. 2002), whereas pollen and
flower number were unaffected by moderately elevated tem-
perature in Lycopersicon esculentum Mill. and Impatiens
walleriana Hook. f. (Sato et al. 2006; Vaid and Runkle
2013). In addition, the length of flower stem and the numbers
of pigments, pollen, and flowers were markedly increased un-
der higher CO2 concentrations in Ambrosia artemisiifolia L.,
Eustoma grandiflorum (Raf.) Shinn., Rosa hybrida L., and
Viola × wittrockiana Gams. (Niu et al. 2000; Ziska and
Caulfield 2000; Ushio et al. 2014; Naing et al. 2016), whereas
the number of flowers per flower head was not significantly
affected by CO2 concentration in Lolium perenne L. and
Trifolium repens L. (Wagner et al. 2001). These results indicate
that themorphology and the number of flowers display species-
specific responses to enhanced temperature and elevated CO2.

On the other hand, sex differentiation of flowers was also
closely related to temperature, CO2 concentration, and carbon
to nitrogen ratio (C/N) (Korpelainen 1998; Wang et al.
2001; Chen et al. 2005; Hedhly et al. 2009). Higher tempera-
ture results in an increase in the number of male flowers (Sage
et al. 2015), whereas elevated CO2 results in the production of
more female-biased progeny in Silene latifolia cv Poiret
(Wang 2005); higher C/N ratio promotes male tendency while
lower C/N ratio inhibits male flower development in bitter
melon (Momordica charantia L.) due to its mediating role in
the production of gibberellic acid, indole acetic acid, and
dihydrozeatin which all have positive influence on flower for-
mation (Kossuth and Ross 1987; Wang et al. 2001; Talamali
et al. 2003; Glawe and Jong 2005). These studies indicate that
sex differentiation in flowers is determined not only by geno-
type and phytohormones but also by C/N ratio and environ-
mental factors (Yamasaki et al. 2000; Wang et al. 2001;
Deputy et al. 2002; Khryanin 2002; Wu et al. 2010;
Gerashchenkov and Rozhnova 2013; He et al. 2017).

Moreover, although the mechanism of sex differentiation in
plants is still unclear, dioecious species evolved from the mon-
oecious species through sexual specialization (Barrett 2002;
Dorken and Barrett 2004; Ehlers and Bataillon 2007).
Mulberry (Morus alba L.), an important tree in sericulture

and the silk industry in China, Japan, and India, is a highly
heterozygous plant and shows sexual polymorphism (mainly
dioecious or occasionally monoecious) (Tikader et al. 1995;
Thomas 2004; Qin et al. 2018). To date, studies on mulberry
have mainly focused on plant growth (Fukui 2000; Zeng et al.
2016), leaf quality (Chaitanya et al. 2001; Yu et al. 2013; Zeng
et al. 2016; Sarkar et al. 2017), and physiological traits
(Chaitanya et al. 2002; Ke et al. 2009), whereas there has been
limited research on floral development and sex differentiation.
Since flower formation is particularly vulnerable to the effects
of environmental factors (Korpelainen 1998; Stehlik et al.
2008; Hedhly et al. 2009; Buide et al. 2018), we hypothesized
that flower morphology and sex differentiation in those plant
species with sexual polymorphismwould be changed by glob-
al warming. To test our hypotheses, the sex-related differences
in flower number, flowering phase, biomass, morphological
traits, as well as the contents of carbon and nitrogen of mul-
berry flowers under elevated temperature, elevated CO2, and
their combination were investigated. The aim was to deter-
mine how sex-related differences in the morphology, biomass,
and carbon and nitrogen contents of flowers could respond to
elevated temperature and CO2 concentration.

2 Materials and methods

2.1 Plant material and experimental design

On February 15, 2015, a total of 45M. alba cuttings (10 cm in
length) were collected from 15 mature trees (2 genotypes)
growing in the germplasm base of the Sericultural Research
Institute, Sichuan Academy of Agricultural Sciences (30° 52′
N, 106° 04′E; 256m above sea level). These trees are normally
monoecious with separate male and female inflorescences on
the same plant. Each of these cuttings was planted in a seedbed
at the China West Normal University (30° 48′ N, 106° 04′ E;
276m above sea level) in Nanchong, Sichuan Province, China.
The annual mean rainfall, temperature, and insulation time in
this area are 1065 mm, 16.8 °C, and 1980 h, respectively (Luo
and Zhou 2007). After sprouting and growing for 5 months, 32
healthy saplings with similar size and height were selected and
replanted in 10 L (30 cm × 24 cm) plastic pots (one sapling per
pot) filled with 10 kg sandy soil (sand:soil = 1:1). The soil was
a Cambisol (pH 8.0) obtained from the experimental site,
which contained 10.9 g kg−1 organic carbon, 0.76 g kg−1 total
nitrogen, 0.89 g kg−1 total phosphorus, and 77.0 mg kg−1 avail-
able potassium (Chen et al. 2016; Huan et al. 2016).

The experimental layout was completely randomized with
two factors (temperature and CO2 regime). Two temperature
conditions (ambient vs. ambient + 2 °C) and two CO2 regimes
(ambient vs. ambient + 380 ppm CO2) were applied. Four small
growth chambers were used for the ambient temperature/CO2

(control), elevated temperature, elevated CO2 concentration, and
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elevated temperature + elevated CO2 concentration treatments.
The chambers were approximately cylindrical structures with an
internal volume of approximately 25 m3 and a ground area of
9 m2. The chambers were constructed of glass walls with poly-
carbonate plastic tops and transmitted approximately 90% of the
available light. The computer-controlled temperature and CO2

system (SIEMENS TD400C V2.0; Yisheng Taihe Science and
Technology Co. Ltd., Beijing, China) enabled automatic adjust-
ment of temperature andCO2 concentrationwithin the chambers
according to the ambient conditions. Eight saplings in each
chamber andmoving treatments among chambers every 30 days
were used to minimize random errors. To ensure that the exper-
imental plants received uniform illumination, their positions
were rotated weekly. Moreover, all the pots were watered every
2 days with the same amount of water (about 500 mL) to main-
tain constant soil moisture (soil water content was always kept at
26.2%; about 92% field capacity). The treatment lasted
18 months (started on October 20, 2015 and ended on April
30, 2017).

2.2 Plant morphology

Four saplings were randomly selected from each treatment at
the end of the experiment, and the shoot height and basal
diameter of each sapling was then measured with a meter
stick, respectively.

2.3 Flowering phase and sex ratio measurements

To document flowering phenology, four saplings were ran-
domly selected and marked prior to flowering (started on
February 1, 2017). The flowering status of each plant was
recorded at 2-day intervals during the flowering phase. The
initiation of flowering was defined as the day when the first
flower opened, and the last day of flowering was defined as
the day when the last flower wilted on the inflorescence. The
flowering monitoring continued throughout the spring (ended
on April 30, 2017). The flower sex ratio was calculated as the
number of female inflorescences divided by the number of
male inflorescences at whole plant level.

2.4 Floral morphology and biomass

During anthesis, four saplings were randomly selected from
each treatment, and fivemale or female inflorescences (single-
sex inflorescences) per sapling were randomly selected from
the middle of the stem (according to Yang et al. 2014). The
inflorescences were carefully cut from the stems in the morn-
ing (08:30–09:30). The length and fresh weight of each inflo-
rescence were measured using a digital calliper (0.01 mm ac-
curacy) and an electronic analytical balance with 0.0001 g
accuracy (FA2004B; Shanghai, China), respectively. Prior to
the removal of flowers from the inflorescence, the number of

flowers per inflorescence was counted. Three male or female
flowers per inflorescence were randomly selected, weighed,
and dissected under a stereoscopic microscope equipped with
a charge-coupled device camera (SMZ-168-TL; Motic,
Xiamen, China). The sizes of tepals, anthers, ovaries, and
stigmas were measured to the nearest 0.01mm using an ocular
reticle. To measure the total dry mass of inflorescences per
plant, all of the inflorescences on each selected sapling were
cut from the stem at late blossom. The samples were oven-
dried at 70 °C for 48 h to a constant weight and weighed.

2.5 Total carbon and nitrogen

At late blossom, male and female inflorescences from each
treatment were collected and oven-dried at 70 °C for 48 h to
a constant weight. The samples were ground in a mortar and
passed through a 40-mesh screen. The carbon and nitrogen
contents were quantified using a Vario MAX CN analyzer
(Elementar Analysensysteme GmbH, Hanau, Germany).

2.6 Statistical analysis

Differences among means were analyzed using Duncan’s multiple
range test following one-way ANOVA at a significance level of
P <0.05. Two-way ANOVAs were used to evaluate the effects of
temperature, CO2 concentration, and their combination. An
independent-sample t test was employed to determine differences
between male and female inflorescences. Pearson’s correlation co-
efficients were calculated to assess the relationships between each
of the element variables (carbon, nitrogen, and the ratio of carbon
to nitrogen) and themorphological traits ofmale or female flowers.
All analyses were carried out using the SPSS 19.0 for Windows
statistical software package (SPSS Inc., Chicago, IL, USA).

3 Results

3.1 Plant growth under elevated temperature
and CO2 concentration

Overall, compared with ambient conditions, the growth ofM.
alba saplings was significantly promoted by the combined use
of elevated temperature and CO2, and exhibited higher shoot
height and basal diameter at the end of the experiment (Fig. 1;
Appendix Fig. 7).

3.2 Flowering phase and sex ratio of flowers
under elevated temperature and CO2 concentration

The ratio of female to male flowers was significantly
increased under elevated temperature, elevated CO2 con-
centration, and the combined treatment (Fig. 2). A sig-
nificant difference was observed between the expression
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of male and female structures during the flowering
phase, with male flowers (approximately 7 days) consis-
tently showing a shorter developmental stage than fe-
male flowers (approximately 16 days) in each treatment.
Furthermore, the flowering phase of male inflorescences
was significantly increased in response to the elevated
temperature and CO2, whereas we detected no signifi-
cant difference in the response of female inflorescences
among the different treatments (Fig. 3).

3.3 Morphological traits of female and male flowers
under elevated temperature and CO2 concentration

At whole plant level, there were significant differences in the
number and length of inflorescence and the number of flowers
per inflorescence between male and female inflorescences
(Table 1, Fig. 4). In controls, the number and length of male
inflorescences were larger than those of female inflorescences.
In contrast, under enhanced temperature, elevated CO2, and

combined elevated temperature andCO2, therewere significantly
higher numbers of female inflorescences and flowers per female
inflorescence compared withmale inflorescences. At the individ-
ual plant level, the number of female inflorescences was signif-
icantly increased by elevated temperature and CO2 concentration
(P < 0.001), whereas the number of male inflorescences was sig-
nificantly decreased (P < 0.05; Table 1). Moreover, the length,
flower number, and fresh weight of male inflorescences were
significantly decreased by increased temperature, elevated CO2

concentration, and combined (P < 0.05), whereas the corre-
sponding traits in female inflorescences did not vary among
treatments (Table 1). At flower level, only ovary length differed
among treatments, showing a significant declining trend under
elevated CO2 concentration relative to the control (P < 0.05),
whereas for male flowers, tepal length and fresh weight of single
flowers were significantly decreased by increased temperature
(P < 0.05; Table 2, Fig. 4).

Fig. 1 The effects of elevated temperature, elevated CO2 concentration,
and their combination on shoot height and basal diameter inMorus alba
L. after 18 months growth.CK control, ETambiant + 2 °C, EC ambiant +

380 ppm, ETC combined ET/EC conditions. Different lowercase letters
above bars indicate significant differences among treatments according to
one-way ANOVA followed by Duncan’s test (P < 0.05)

Fig. 2 The effects of elevated temperature, elevated CO2 concentration,
and their combination on sex ratio in Morus alba L. CK control, ET
ambiant + 2 °C, EC ambiant + 380 ppm, ETC combined ET/EC condi-
tions. Different lowercase letters above bars indicate significant differ-
ences among treatments according to one-way ANOVA followed by
Duncan’s test (P < 0.05)

Fig. 3 The effects of elevated temperature, elevated CO2 concentration,
and their combination on flowering phase in Morus alba L. CK control,
ET ambiant + 2 °C, EC ambiant + 380 ppm, ETC combined ET/EC con-
ditions. Different letters above bars for the same sex group indicate sig-
nificant differences among treatments according to one-way ANOVA
followed by Duncan’s test (P < 0.05). Asterisks above bars denote statis-
tically significant differences between the sexes at P < 0.05 according to
independent-samples t test (***P ≤ 0.001)
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3.4 Biomass of female and male inflorescences
under elevated temperature and CO2 concentration

In the plants exposed to increased temperature, elevated CO2,
and their combination, female inflorescences displayed a higher
total biomass than male inflorescences (Fig. 5). Moreover, the
total inflorescence biomass per plant was significantly increased
relative to the control in response to elevated temperature, where-
as in plants exposed to the combined treatment, there was a
significant increase in female inflorescence biomass but a signif-
icant decrease in that of male inflorescences (P < 0.05; Fig. 5).

3.5 Nitrogen contents and C/N ratios in female
and male inflorescences under elevated temperature
and CO2 concentration

Under all treatments, nitrogen content of inflorescenceswas higher
in males than in females (Fig. 6a), while the C/N ratio of inflores-
cences was lower (except combined treatments) in males than in
females (Fig. 6b). Furthermore, elevated temperature, elevated
CO2, and combined treatments resulted in an increase in the nitro-
gen content of females, but a decrease in males (Fig. 6a).

3.6 Relationships among nutrient, mass,
and morphological characters of female and male
inflorescences

In female flowers, we detected a negative correlation between
carbon content and inflorescence number, and nitrogen con-
tent is negatively correlated to tepal length (Table 3). In male
flowers, single flower number and fresh weight were positive-
ly correlated with carbon and nitrogen contents, but negatively
correlated with the C/N ratio (Table 3).

4 Discussion

Plant size is an indicator of resource statues of a given stage
(Shaanker and Ganeshaiah 1984). Although most plants need
to reach mature age (or accumulate enough substances) before
they can bloom, mulberry trees grown from cuttings have the
capacity to bloom at the seedling stage (Okabe 1986). This
flowering capacity (especially female flowers number) could in-
crease with plant size, but it also could be triggered by environ-
mental stresses (Clay 1993; Méndez 1998; Trusov and Botella
2006). In present study, M. alba saplings were used as experi-
mental materials and exposed to higher temperature and CO2

concentration treatment for 18 months growth, which make it
possible to study the floral development and sex differentiation.

Our results are consistent with the findings of previous studies
that higher temperatures favor predominantly female flowering
in mulberry (Morus spp.) (Minamizawa 1963) and promoted an
increase in the proportion of female flowers (Sage et al. 2015).
Similarly, a warm temperature was favorable for female sex ex-
pression in Silene littorea Brot. (Buide et al. 2018). In contrast,
however, other studies have reported that the development of
male flowers in cucurbits and cucumber is promoted by high
temperatures (Miao et al. 2010). This phenomenon is closely
related to sex determination, which involves diverse mechanisms
at the genic, genomic, epigenetic levels, hormones, as well as the
specific life history traits and adaptation strategies of each species
(Dellaporta and Calderon-Urrea 1993; Charlesworth 2002;
Stehlik et al. 2008; Munné-Bosch 2015; Hobza et al. 2018).
For example, the SpGAI expression of sex-determining genes
and GA content is strongly modified by environmental factors
(Retuerto et al. 2018; West and Golenberg 2018). Hence, our
results provide evidence that global warming may lead to a pre-
dominance of female flowers and female bias in inflorescences
inM. alba plants.

Table 1 The effects of elevated CO2 concentration, elevated temperature, and their combination on the morphological characters of inflorescences in
Morus alba L.

Trait Treatment P

CK ET EC ETC PT PC PT×C

Female No. of inflorescences per plant 7.5 ± 3.6D * 116.8 ± 17.5B ** 72.0 ± 15.2C ns 176.5 ± 14.8A *** < 0.001 0.001 0.867

Avg. length per inflorescence (mm) 14.9 ± 1.4A ** 12.9 ± 1.5A ns 12.2 ± 1.4A ns 12.1 ± 0.8A ns 0.432 0.210 0.469

No. of flowers per inflorescence 35.6 ± 4.6A ns 28.8 ± 3.6A * 30.8 ± 4.4A ns 31.4 ± 1.8A ** 0.422 0.770 0.347

Fresh inflorescence weight (mg) 97.2 ± 22.3A ns 69.7 ± 11.6A ns 59.4 ± 9.7A ns 63.2 ± 5.7A ns 0.407 0.133 0.279

Male No. of inflorescences per plant 83.8 ± 15.8a 30.8 ± 12.6b 36.0 ± 16.4b 17.8 ± 5.7b 0.020 0.042 0.216

Avg. length per inflorescence (mm) 22.1 ± 1.3a 13.2 ± 1.9b 14.6 ± 0.7b 13.9 ± 0.7b 0.003 0.019 0.008

No. of flowers per inflorescence 32.3 ± 1.6a 17.2 ± 3.1b 21.8 ± 2.0b 17.1 ± 2.1b 0.001 0.037 0.039

Fresh inflorescence weight (mg) 145.6 ± 6.8a 71.4 ± 17.3b 78.3 ± 8.0b 62.9 ± 4.3b 0.001 0.003 0.015

CK control, ET ambiant + 2 °C, EC ambiant + 380 ppm, ETC combined ET/EC conditions. Each value is the mean ± standard error. PT, temperature
effect; PC, CO2 effect; PT×C, temperature × CO2 effect. Different letters in the same row indicate significant differences among treatments according to
one-way ANOVA followed by Duncan’s test (P < 0.05; significant effects in bold). Asterisks following capital letters denote statistically significant
differences between the sexes at P< 0.05 according to independent-samples t test (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ns not significant)
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Fig. 4 The morphological and
anatomical structures of male and
female flowers ofMorus alba L.
(The scales beside the
photographs is provided for scale
only; the structures were
measured with a micrometer)

Table 2 The effects of elevated CO2 concentration, elevated temperature, and their combination on themorphological characters of single flowers from
Morus alba L.

Trait Treatment P

CK ET EC ETC PT PC PT×C

Female Tepal width (mm) 0.89 ± 0.06A 0.79 ± 0.05A 0.79 ± 0.04A 0.78 ± 0.04A 0.258 0.261 0.329

Tepal length (mm) 1.56 ± 0.10A 1.29 ± 0.13AB 1.29 ± 0.04AB 1.26 ± 0.06B 0.116 0.119 0.206

Ovary diameter (mm) 1.37 ± 0.10A 1.32 ± 0.14A 1.23 ± 0.03A 1.14 ± 0.07A 0.442 0.115 0.836

Ovary length (mm) 1.63 ± 0.09A 1.61 ± 0.16AB 1.43 ± 0.01AB 1.34 ± 0.03B 0.470 0.018 0.689

Fresh flower weight (mg) 2.09 ± 0.31A 2.03 ± 0.41A 1.67 ± 0.18A 1.53 ± 0.12A 0.714 0.120 0.885

Male Tepal width (mm) 1.10 ± 0.06a 1.17 ± 0.02a 1.07 ± 0.04a 1.11 ± 0.06a 0.250 0.342 0.738

Tepal length (mm) 1.61 ± 0.04ab 1.38 ± 0.05c 1.66 ± 0.08a 1.46 ± 0.06bc 0.003 0.291 0.765

Anther width (mm) 1.41 ± 0.02a 1.54 ± 0.07a 1.45 ± 0.05a 1.38 ± 0.08a 0.616 0.339 0.105

Anther length (mm) 1.25 ± 19.0a 1.21 ± 0.07a 1.23 ± 0.04a 1.14 ± 0.08a 0.411 0.447 0.827

Fresh flower weight (mg) 5.24 ± 0.10a 4.61 ± 0.36b 4.61 ± 0.47b 4.30 ± 0.42b 0.002 0.075 0.068

CK control, ET ambiant + 2 °C, EC ambiant + 380 ppm, ETC combined ET/EC conditions. Different letters in the same row indicate significant
differences among treatments according to one-way ANOVA followed by Duncan’s test (P < 0.05; significant effects in bold)
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Flowering phenology (including the flowering phase) is
very sensitive to temperature, particularly during the spring
months (Osborne et al. 2000; Craufurd and Wheeler 2009),
and is accordingly considered to be a reliable indicator of
climate change. In this regard, previous studies reported that
elevated temperature and CO2 significantly increase the dura-
tion of the reproductive phase in Andropogon gerardii
Vitman, Dichanthelium oligosanthes ssp. scribnerianum,
Hesperostipa comata (Elias.) Barkworth,Koeleria macrantha
(Ledeb.) Schult, Panicum virgatum L., and Sphaeralcea
coccinea (Nutt.) Rydb. (Sherry et al. 2007; Reyes-Fox et al.

2014), which is consistent with our findings. Given that
changes in flowering times and phase may affect pollination
success and synchrony (Fitter and Fitter 2002; Rawal et al.
2015), an extended flowering phase for males would increase
pollen dispersal, enhance the attraction of pollinators, and re-
duce the adverse effects of warming on reproductive success
(Glaettli and Barrett 2008; Bandera and Vilagines 2013; Høye
et al. 2013). Hence, we conclude that a longer flowering phase
in male inflorescences induced by elevated temperature and
CO2 may benefit female flowers by increasing the receipt of
pollen, thereby improving pollination efficiency and promot-
ing the reproductive success of M. alba L.

Increased temperature and elevated CO2 had discernible
effects on the morphological traits of inflorescences and re-
sulted in different responses between two sexes in mulberry in
the present study, which indicate that elevated temperature and
CO2 treatments have differential sex-dependent effects on
flower morphology. According to Charlesworth and
Charlesworth (1981) and Worley and Barrett (2000), sexual
differences could be the result of different trade-offs in re-
source demanding and allocation, such as nitrogen and carbon
in flowers. Female is more carbon-demanding than male in
flower because of seed and fruit development (McDowell
et al. 2000), whereas male is more nitrogen-demanding than
female because of pollen production (Harris and Pannell
2008). Therefore, increased temperature and elevated CO2

concentration could indirectly affect floral development by
affecting carbon or nitrogen contents of flower. Consistent
with our conjecture, our results provide experimental evidence
that nitrogen content in female and male flowers was signifi-
cantly changed under elevated temperature or CO2 concentra-
tion treatments. On the other hand, our results in C/N ratio

Fig. 5 The effects of elevated temperature, elevated CO2 concentration,
and their combination on biomass (dry mass) in Morus alba L. CK
control, ET ambiant + 2 °C, EC ambiant + 380 ppm, ETC combined
ET/EC conditions. Different letters above bars for the same sex group
indicate significant differences among treatments according to one-way
ANOVA followed by Duncan’s test (P < 0.05). Asterisks above bars de-
note statistically significant differences between the sexes at P < 0.05
according to independent-samples t test (*P ≤ 0.05; **P ≤ 0.01; ***P ≤
0.001; ns, not significant)

Table 3 Correlation coefficients among morphological characters, the concentrations of carbon (C) and nitrogen (N), and the ratio of carbon (C) to
nitrogen (N) in female (upper triangle) and male (lower triangle, italic) flowers from Morus alba L.

C N C/N IN IL NFPI FIW FFW TL TW OL OD

C − 0.005 0.100 − 0.522* 0.046 − 0.142 0.023 0.127 0.041 0.013 0.291 0.188

N 0.690** − 0.995** 0.385 − 0.380 − 0.386 − 0.458 − 0.144 − 0.546* − 0.444 − 0.134 − 0.174
C/N − 0.562* − 0.985** − 0.442 0.388 0.375 0.464 0.160 0.554* 0.450 0.166 0.197

IN 0.542* 0.679** − 0.637** − 0.377 − 0.250 − 0.369 − 0.255 − 0.531* − 0.407 − 0.410 − 0.428
IL 0.565* 0.663** − 0.597* 0.770** 0.866** 0.811** 0.702** 0.654** 0.514* 0.561* 0.628**

NFPI 0.664* 0.742** − 0.676** 0.805** 0.855** 0.789** 0.533* 0.588* 0.472 0.402 0.409

FIW 0.692** 0.764** − 0.695** 0.818** 0.924** 0.941** 0.763** 0.867** 0.839** 0.704** 0.635**

FFW 0.428ns 0.472ns − 0.442ns 0.570* 0.552* 0.509* 0.657** 0.799** 0.700** 0.893** 0.893**

TL 0.383ns 0.459ns − 0.432ns 0.457ns 0.407ns 0.479ns 0.431ns 0.575* 0.898** 0.823** 0.769**

TW − 0.086ns − 0.095ns 0.081ns − 0.079ns − 0.109ns − 0.160ns 0.019ns 0.335ns − 0.185ns 0.708** 0.672**

AL 0.261ns 0.382ns − 0.385ns 0.443ns 0.255ns 0.470ns 0.483ns 0.789** 0.482ns 0.365ns 0.841**

AW − 0.074ns 0.066ns − 0.122ns 0.061ns − 0.114ns 0.030ns 0.107ns 0.556* − 0.053ns 0.363ns 0.641**

C/N the ratio of carbon (C) to nitrogen (N), IN inflorescence number, IL inflorescence length, NFPI no. of flowers per inflorescence, FIW fresh
inflorescence weight, FFW fresh flower weight, TL tepal length, TW tepal width, OL ovary length, OD ovary diameter, AL anther length, AW anther
width. Significance is indicated as follows: *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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(significantly negatively correlated with male inflorescences,
but was positively correlated with tissue of female flowers)
suggest that a lower carbon (or higher nitrogen) level is ben-
eficial for flower development. This is consistent with previ-
ous studies that an adequate level of nitrogen results in larger
and more numerous inflorescences in Calluna vulgaris (L.)
Hull, Canarium album L., and Cucurbita maxima Var. “Little
Cutie” (e.g., Gordon et al. 1999; Fernandez-Escobar et al.
2008; Hoover et al. 2012). Moreover, significant negative cor-
relations between the C/N ratio and male inflorescence traits
also indicate that more nitrogen for pollen production may
have restricted the development of male inflorescences. For
female flower, high C/N ratio is positively related with tepal
length, which suggests that female flower tend to increase
carbon investment in tepal extension to protect ovary. This
may be a crucial strategy of ecological adaptability in success-
ful pollination.

In addition, concomitant with an increase in the num-
ber of female inflorescences, we observed a decrease in
the number of male inflorescences on M. alba L. plants.
According to Galen (1999), small flowers could reduce
the physiological stress associated with reproduction in
times of resource limitation. Smaller and fewer male
flowers (or inflorescences) were produced under elevat-
ed temperature and CO2 concentration may have been
due to the increased allocation of resources to female
flowers under these conditions. In this regard, increasing
the number of female inflorescences, and thereby by
increasing the probability of receiving pollen, could be
a more effective strategy in terms of enhancing pollina-
tion efficiency than producing larger flowers (or inflo-
rescences) (Ohara and Higashi 1994). It is still needed
to investigate the sex differentiation mechanism in

molecular (e.g., RNA, DNA methylation, and histone
modification) and in evolution.

5 Conclusions and future perspectives

In terms of flower number, biomass, andmorphological traits, the
results of this study provide evidence that themale inflorescences
ofM. alba L. are more negatively affected than are female inflo-
rescences in response to elevated temperature, elevated CO2 con-
centration, and a combination of elevated temperature and CO2.
Additionally, we found that the C/N ratio was negatively associ-
ated with the morphological characters of male inflorescences,
whereas it was positively associated with tepal length in female
flowers. Our findings suggest that floral morphological traits and
sex differentiation of mulberry flowers would be affected by
global warming and result in changing the sex ratio. In this re-
gard, the present findings may have significant implications for
the optimization of fertilizationmanagement designed to regulate
inflorescence number and morphology in mulberry under condi-
tions of global warming.
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Fig. 6 The effects of elevated temperature, elevated CO2 concentration,
and their combination on nitrogen content and C/N ratio inMorus alb L.
CK control, ET ambiant + 2 °C, EC ambiant + 380 ppm, ETC combined
ET/EC conditions. Different letters above bars for the same sex group
indicate significant differences among treatments according to one-way

ANOVA followed by Duncan’s test (P < 0.05). Asterisks above bars de-
note statistically significant differences between the sexes at P < 0.05
according to independent-samples t test (**P ≤ 0.01; ***P ≤ 0.001; ns
not significant)
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